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Bloch oscillations in nanoscale Josephson junctions with a Coulomb charging energy comparable
to the Josephson coupling energy are explored within the context of a model previously considered
by Geigenmüller and Schön that includes Zener tunneling and treats quasiparticle tunneling as an
explicit shot-noise process. The dynamics of the junction quasicharge are investigated numerically
using both Monte Carlo and ensemble approaches to calculate voltage–current characteristics in
the presence of microwaves. We examine in detail the origin of harmonic and subharmonic Bloch
steps at dc biases I = (n/m)2ef induced by microwaves of frequency f and consider the optimum
parameters for the observation of harmonic (m = 1) steps. We also demonstrate that the GS model
allows a detailed semi-quantitative fit to experimental voltage–current characteristics previously
obtained at the Chalmers University of Technology, confirming and strengthening the interpretation
of the observed microwave-induced steps in terms of Bloch oscillations.

PACS numbers: 06.20.-f, 74.50.+r, 74.55.+v, 85.25.Cp

I. INTRODUCTION

Beginning in 1984, a group at Moscow State
University1–4 developed a theory of nanoscale Josephson
junctions for which the charging energy Ec = e2/(2Cj)
of a single electron on the junction capacitance Cj is
comparable to or exceeds the Josephson coupling energy
Ej = ~Ic/(2e), where Ic is the junction’s critical current.
In this limit, the charge Q on the junction capacitance
is replaced by its conjugate variable φ (the difference in
phase between the junction electrodes) as the relevant
classical variable of the system, and the dynamics of the
junction are radically altered. Thus, when Ej ≫ Ec a
dc current bias produces Josephson oscillations of fre-
quency fj = 2e〈V 〉/h (where 〈V 〉 is the average junction
voltage),5 whereas when Ec & Ej the Moscow State the-
ory predicts that a dc bias will produce Bloch oscillations
of frequency fb = 〈Ip〉/(2e), where 〈Ip〉 is the average
pair current through the junction. Signatures of Bloch
oscillations have been observed experimentally in vari-
ous device schemes.6–9 In particular, beginning in 1991
a group at Chalmers University of Technology9–16 ob-
served a microwave-induced peak in the d〈V 〉/dI curve
at a bias current I = 2ef , where f is the microwave fre-
quency. This peak demonstrates that Bloch oscillations
can phase lock with applied microwaves and suggests,
as noted by the Moscow State group, that a nanoscale
junction might be used to make a quantum standard for
current, just as larger junctions are used to make quan-
tum voltage standards.17,18 The question that remains is
whether the width of the peak in d〈V 〉/dI can be narrow
enough to create a standard of metrological precision. In
attempting to answer this question, we adopt a model of
nanoscale junctions explored by Geigenmüller and Schön
(GS) that explicitly incorporates the shot noise of quasi-
particle (single-electron) tunneling.19 We begin with an
introduction to junction dynamics and derive the equa-
tions of motion of a nanoscale Josephson junction. We
then explain each calculation approach in detail, namely
the Monte Carlo and the ensemble calculations. Using

the advantage of faster computational speed in the en-
semble approach, our model offers insight for the pa-
rameters needed to obtain current steps of metrological
interest. Ultimately, we show that this model provides
a semi-quantitative explanation of the Chalmers exper-
iments and demonstrates the possibility of creating a
metrologically precise current standard if the errors from
quasiparticle tunneling can be reduced.

II. JUNCTION DYNAMICS

The basic circuit considered here, shown in Fig. 1, con-
sists of a superconducting tunnel junction driven by a
current source I with source conductance Gs = 1/Rs.
The junction itself comprises a single-electron tunneling
element of conductance Gj = 1/Rj, a capacitor Cj , and a
Josephson element associated with pair tunneling charac-
terized by a critical current Ic. As a two-terminal device,
the junction is entirely defined by the relation between
the current Ij and voltage V at its terminals. However,
given that the tunneling elements are highly nonlinear
and energy can be stored in both the capacitor and the
Josephson element, this relation is generally complex and
depends critically on whether Ej ≫ Ec or Ec & Ej .

4,19

It is necessary to differentiate between the source con-
ductance Gs, which can support a continous current
flow, and the junction conductance Gj , which represents

FIG. 1. Circuit diagram of a Josephson junction driven by a
current source.
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stochastic quasiparticle tunneling. The source conduc-
tance represents a Norton equivalent of a series isolation
resistor Rs = 1/Gs that must be much larger than the
resistance quantum RQ = RK/4 = h/4e2 to obtain the
quantum effects that lead to Bloch oscillations.3 The fol-
lowing analyses also require that the thermal energy kTj
of the junction electrons be much less than Ej for large-
area junctions and less than both Ej and Ec for nanoscale
junctions.
For junctions with Ej ≫ Ec, quantum calculations

simplify to yield the following relations between Ij and
V ,20,21

Ij = GjV + Cj
dV

dt
+ Ic sinφ, (1)

dφ

dt
=

2e

~
V , (2)

with the junction phase φ acting as a classical inter-
mediary. Although nonlinear, these equations are rel-
atively simple and valid for frequencies much less than
the energy-gap frequency fg = (∆a + ∆b)/h (where ∆a

and ∆b are the superconducting energy gaps of the junc-
tion electrodes). They suffice to describe the dynamics
of large-area junctions over a wide range of conditions.
For junctions with Ec & Ej , the voltage–current rela-

tion cannot be realistically modeled so simply. In this
case there is an interplay between the capacitor and
the Josephson element that must be handled quantum
mechanically.22 To develop this idea, we consider these
two elements as an isolated system.
Classically, the capacitor’s energy is a function of the

charge, Q2/(2Cj), while that of the Josephson element
is a function of the phase,

∫

IpV dt =
∫

Ej sinφdφ =
−Ej cosφ. Quantum mechanically, the Hamiltonian of
the system is,

H =
Q2

op

2Cj
− Ej cosφ , (3)

where the charge operatorQop is conjugate to the phase φ
and takes the form Qop = (2e/i)∂/∂φ. The Hamiltonian
thus becomes,

H = −4Ec
∂2

∂φ2
− Ej cosφ , (4)

which is an exact analog to the Hamiltonian for a par-
ticle in a sinusoidal potential, which in turn is a one-
dimensional model for conduction electrons in a crys-
talline solid.23 Thus, by solving the eigenvalue problem
Hψ = Eψ, we will find stationary quantum states of our
tunnel junction analogous to the Bloch states of a 1-D
crystal.
In the present case, the Bloch states take the form,

ψQ̃(φ) = PQ̃(φ) e
iφQ̃/2e , (5)

where PQ̃(φ) is a periodic function, PQ̃(φ+2π) = PQ̃(φ),

and Q̃ is an index of the eigenstate called the quasicharge

analogous to the quasimomentum of electrons in crystals.
By construction, ψQ̃(φ) is a state of definite quasicharge

but indefinite phase. Expanding PQ̃(φ) in a Fourier series
allows numerical evaluation of the eigenstates and the
corresponding eigenenergies E(Q̃).

The calculated eigenenergies in units of Ec depend only
on the ratio εj = Ej/Ec and are shown in Fig. 2(a)
for εj = 1. As seen here, the original energy parabola
Q2/(2Cj) of the capacitor is split into a series of energy
bands with a gap of Ej between the first and second
bands and smaller gaps between higher bands. The eigen-
states ψib(Q̃) and energies Eib (Q̃) are specified by a band

index ib and the quasicharge Q̃. Because E is 2e peri-
odic in Q̃, it is possible to restrict attention to the first
Brillouin zone, −e ≤ Q̃ ≤ e, although the extended zone
scheme is often useful.

The band structure of Fig. 2(a) is key to understand-
ing the dynamics of nanoscale junctions. As long as the
external forcing does not change too rapidly, the Joseph-
son element and capacitor taken together will be found in
an eigenstate with a definite band index ib, quasicharge
Q̃, and energy Eib(Q̃). Thus, ib and Q̃ are the classical
state variables of the combined Josephson-capacitor cir-
cuit element. The voltage of this element, which sets the
voltage V of the entire circuit, is simply the derivative of

FIG. 2. Energy (a) and voltage (b) as a function of qua-
sicharge for a nanoscale junction with εj = 1. Directed
lines indicate single-electron tunneling processes originating
at points 1 and 2 and Zener tunneling originating at points 3
and 4.
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E with respect to Q̃ (just as the voltage of a capacitor is
d(Q2/2C)/dQ),

V = Vib (Q̃) =
dEib(Q̃)

dQ̃
. (6)

Thus, the voltage is also fixed by the state variables ib
and Q̃ and is periodic in Q̃. Examples of the functions
Vib (Q̃) are plotted in Fig. 2(b).

A. Bloch Oscillations

Changes in ib and Q̃ derive from three sources: the cur-
rent Ij , single-electron tunneling associated with Gj , and
a process known as Zener tunneling. Both tunneling pro-
cesses change ib and Q̃ instantaneously and, perhaps sur-
prisingly, do not contribute directly to the current flowing
through the junction. We discuss these processes in the
following sections.
The effect of Ij is analogous to that of an electric

field acting on an electron in a crystalline solid, which
changes the electron’s quasimomentum without changing
the band index. The equivalent change in the quasicharge
for the Josephson system is simply,

dQ̃

dt
= Ij . (7)

Thus, a steady current Ij causes the quasicharge Q̃ to
increase uniformly in time, as might be expected for an
ordinary capacitor. However, considering the implied ad-
vance of Q̃ through the energy and voltage bands of Fig. 2
for say ib = 1, we conclude that both E and V will os-
cillate regularly with a period of 2e/(dQ̃/dt) = 2e/Ij.
These are the expected Bloch oscillations.
Equations (6) and (7) define the relation between Ij

and V for nanoscale junctions in the limit of slow mo-
tion, Ij ≪ e/(RKCj), when single-electron and Zener
tunneling are neglected. These equations can be viewed
as the dual of Eqs. (1) and (2) in that Eq. (6) expresses

V as a periodic function of the internal state variable Q̃
while Eq. (1) expresses Ij as a periodic function of the

internal state variable φ, and Eq. (7) equates dQ̃/dt to
Ij while Eq. (2) relates dφ/dt to V . That is, the rela-
tionships are exactly similar with the roles of Ij and V
reversed. Thus, it makes sense that nanoscale junctions
might lead to quantized currents just as large-area junc-
tions yield quantized voltages. However, while there are
no known corrections to Eq. (2), single-electron tunnel-

ing leads to sudden shifts in Q̃, not included in Eq. (7),
that compromise the precision of the equivalent current
standard.
We might envision a Bloch oscillation in the first band

as beginning with the high-energy state at Q̃ = −e and
proceeding until the applied current Ij > 0 raises the

quasicharge to Q̃ = e, where it reaches another high en-
ergy state. This picture would make sense if the junction

were simply a capacitor, except that V = 0 at both the
beginning and end of the process, and the process will
exactly repeat itself as Ij forces more charge through

the junction. At Q̃ = e, we can choose to say that
the system undergoes a Bloch reflection to the equiva-
lent quasicharge Q̃ = −e, suggesting that pair tunneling
discharges the junction at this point. However, no spe-
cial event actually occurs at Q̃ = e, and we could as
easily choose to say that the quasicharge continues to in-
crease beyond Q̃ = e. Nevertheless, it is clear that pair
tunneling occurs with certainty each time Q̃ increases by
2e. This process is known as coherent tunneling to dis-
tinguish it from the sudden, randomly timed character
of common tunneling events. The certainty of coherent
pair tunneling makes it especially attractive as the basis
for a quantum current standard.

B. Single-Electron Tunneling

In large-area junctions, the tunneling of a single elec-
tron changes the energy stored on Cj by an amount in-
significant compared to Ej , and single-electron tunnel-
ing is simply represented by a continuous normal current
flowing through Gj . In nanoscale junctions, by contrast,
the tunneling of a single electron changes the state vari-
able Q̃ by e and possibly the band index ib by ±1, which
typically produces a significant, instantaneous change in
the junction’s energy, Eib(Q̃). Thus, the tunneling of
one electron completely disrupts the otherwise continu-
ous Bloch oscillations.
Single-electron tunneling is a Poisson process with an

instantaneous rate given by,19

Γ =
Gj∆E/e

2

exp(∆E/kTj)− 1
, (8)

where ∆E is the difference in energy between the initial
and final states,

∆E = Ei′
b
(Q̃′)− Eib(Q̃). (9)

Here the final quasicharge can be taken as either Q̃′ =
Q̃+ e or Q̃− e as these states differ by 2e and are equiv-
alent. On the other hand, the final band index i′b is re-
stricted to being either 1 or 2 if ib = 1 (as indicated for
initial state 1 in Fig. 2(a)) or i′b = ib ± 1 if ib ≥ 2 (as
indicated for initial state 2 in Fig. 2(a)).19

Because single-electron tunneling shifts Q̃ by e, it in-
terrupts the ongoing Bloch oscillation, disrupting its pe-
riodicity and compromising the accuracy of the proposed
current standard. Minimizing the tunneling rate Γ by
lowering the junction temperature is advantageous in
this regard both because it helps eliminate thermally
activated tunneling and because it lowers Gj by freez-
ing out unpaired electrons. Indeed, theory suggests that
sufficiently low temperatures would virtually eliminate
single-electron tunneling.24 There may be limits to this
stratagem, however, as we discuss in section VII.



4

C. Zener Tunneling

The final element to be considered in the dynamics
of nanoscale junctions is Zener tunneling, a process in
which the junction state changes abruptly without the
transport of charge. In particular, Zener tunneling occurs
when the system jumps from the energy maximum of one
band to the energy minimum of the next higher band or
vice versa as it passes through the maximum or minimum
point. As indicated in Fig. 2(a), this might result in an
upward leap from point 3 to point 4 or a downward leap
from point 4 to point 3.
The probability of Zener tunneling from band ib to

band ib + 1 or vice versa at the point of minimum sepa-
ration between the bands is,19

PZ = exp

[

−
πe(∆E)2

4~Ecib|Ij |

]

, (10)

where ∆E is the difference in energy between the initial
and final states,

∆E = Eib+1(Q̃)− Eib (Q̃), (11)

and Q̃ = e or 0, depending on whether ib is odd or even.
Even though Zener tunneling does not directly inter-

fere with Bloch oscillations, the higher energy of the up-
per bands increases the probability of single-electron tun-
neling. Considering the rate of single-electron tunneling
from band 2 to band 1 (∆E < 0) in the limit of low tem-
peratures, we have Γ = −Gj∆E/e

2, making such events
generally more likely than those within the first band,
where |∆E| is smaller. Thus Bloch oscillations will be
interrupted less often if the gap Ej between the first and
second bands is as large as possible, minimizing PZ and
keeping Bloch oscillations within the lower band. On the
other hand, if Ej is much larger than Ec, the junction
will not obey the rules of nanoscale junctions and Bloch
oscillations will disappear. While the optimum compro-
mise between large and small Ej is unknown, it is likely
to occur for Ej ≃ Ec or εj ≃ 1.

III. MONTE CARLO SIMULATION

The dynamical behavior of a nanoscale junction is
specified by Eqs. (6)–(11). When these are combined
with equations for the current source,

I = I0 + I1 sin(2πft), (12)

= Ij +GsVib(Q̃), (13)

which includes a dc bias I0 and a microwave bias of ampli-
tude I1 and frequency f , we obtain the complete circuit
model to be considered here. Our goal is to calculate
the average voltage 〈V 〉 and its derivative d〈V 〉/dI0 as
a function of I0. However, the random nature of single-
electron and Zener tunneling imply that the differential

equation relating V and I is stochastic, in contrast to the
deterministic Eqs. (1) and (2) for large-area junctions.
The most direct approach to computing the average

voltage in nanoscale junctions19 is simply to follow the
state (ib, Q̃) of the junction over a long period of time as
it is driven by Ij according to Eq. (7) and experiences
sudden random changes according to the probabilities
specified by Eqs. (8) and (10). Such a Monte Carlo sim-
ulation is relatively easy to program, but an accurate
evaluation of 〈V 〉 requires tracking the system for a large
number of drive cycles, and the evaluation of d〈V 〉/dI0
by taking numerical differences is problematic. Nonethe-
less, the Monte Carlo approach provides valuable insight
into the behavior of nanoscale junctions.
Before considering a specific example, it is useful to

rewrite the equations of motion in terms of dimension-
less variables and parameters. If we generically adopt di-
mensionless variables for current i = I/(e/RjCj), voltage

v = V/(e/Cj), energy ε = E/Ec, quasicharge q = Q̃/e,
tunneling rate γ = ΓRjCj , and time τ = t/(RjCj), then
the equations of motion become,

v = vib (q) =
1

2

dεib(q)

dq
, (14)

dq

dτ
= ij = i0 + i1 sin(ωτ)− gsvib(q), (15)

γ =
∆ε/2

exp(∆ε/tj)− 1
, (16)

PZ = exp

[

−
(∆ε)2

4αib|ij |

]

, (17)

where it is understood that ∆ε = εi′
b
(q′) − εib(q) in

Eqs. (16) and (17) is the energy difference between the
final and initial states appropriate to single-electron and
Zener tunneling, respectively. The system modeled by
Eqs. (14)–(17) is specified by seven dimensionless param-
eters:

εj = Ej/Ec, (18)

gs = Gs/Gj , (19)

tj = kBTj/Ec, (20)

α = RK/(π
2Rj), (21)

i0 = I0/(e/RjCj), (22)

i1 = I1/(e/RjCj), (23)

ω = 2πfRjCj . (24)

Throughout the remainder of this paper, we explore
the voltage–current characteristics of nanoscale junctions
within this parameter space. Note that even though α in
GS19 is defined in relation to Rj as given by Eq. (21), in
our model we treat it as a free parameter that controls
the Zener tunneling strength. It is set to zero (α = 0)
whenever Zener tunneling needs to be omitted. Note
also that the quasiparticle conductance Gj depends on
the density of quasiparticles and is highly temperature
dependent according to the BCS theory. Because we are
only interested in fixed temperatures, we will assume that
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FIG. 3. Average voltage as a function of dc bias in the pres-
ence of single-electron tunneling and in the absence of Zener
tunneling for εj = 0.2, tj = 0, α = 0, gs = 0.02, and i1 = 0,
computed by Monte Carlo simulation with an averaging time
of 4× 106RjCj . Parameters are chosen to match Fig. 8 from
GS.19

Gj is a nonzero constant, and following GS, extend this
to the limit of zero temperature, where BCS predicts that
Gj = 0. A nonzero Gj at Tj = 0 makes physical sense
when a non-equilibrium quasiparticle density is present
at low temperature, as reported experimentally by sev-
eral observers.25–33

In the current section, we demonstrate that by using
the Monte Carlo technique for a simple case, with tj =
α = 0, we are able to reproduce results from GS Fig. 8.19

With these restrictions, motion is confined to the first
energy band, as there is no thermal energy to allow single-
electron tunneling to higher bands and Zener tunneling
is prohibited.

A. dc Bias

We begin with the simplest case: the 〈v〉–i0 curve for
zero temperature, no Zener tunneling, and dc bias only.
Choosing εj = 0.2 and gs = 0.02 as the only non-zero
parameters, we obtain the result shown in Fig. 3. This
curve is almost identical to that in Fig. 8 of GS at dc
biases above about i0 = 0.05, but the sharp resonance
near zero bias is absent from the GS calculation. It may
well be that GS simply did not investigate small enough
bias currents to discover this resonance.

To understand the nature of the motion represented
in this 〈v〉–i0 curve, it is useful to examine the detailed
behavior of the quasicharge as a function of time. This is
revealed in Fig. 4, where we plot Q̃ versus τ for the five
bias points indicated by open circles in Fig. 3. The key to
understanding these plots is the simple form assumed by

the single-electron tunneling rate at zero temperature.

γ =

{

|∆ε|/2 ∆ε ≤ 0
0 ∆ε > 0

(tj = 0) (25)

In this case, tunneling is possible only when the energy
ε1(Q̃) of the initial state is higher than that ε1(Q̃ ± e)
of the final state, and inspection of Fig. 2(a) reveals that
this results only for initial states with quasicharge in the
range e/2 < |Q̃| ≤ e. Conversely, single-electron tunnel-

ing is forbidden when |Q̃| ≤ e/2.
In these calculations, the quasicharge q is updated dur-

ing a given time step, say from τ to τ + ∆τ , using a
fixed-step fourth-order Runge–Kutta algorithm to inte-
grate Eq. (15). Simultaneously, we integrate γ to de-
termine the probability Pe of single-electron tunneling
during the interval, according to

Pe = 1− exp
[

−
∫ τ+∆τ

τ
γdτ

]

. (26)

We then select a random number r, uniformly distributed
on the interval (0, 1), and if r > Pe, we assume that tun-
neling did not occur and proceed to the next integration
step. But if Pe ≥ r, we assume that tunneling occurred
and add ±1 to q before continuing.
Consider first the result for i0 = 0.004, shown in

Fig. 4(a). As with all of the curves in Fig. 4, the state

of the system at τ = 0 is assumed to be (ib, Q̃) = (1, 0).
With time, the bias current begins to charge the junction
capacitance Cj , initially raising its voltage V rapidly then
ever more slowly as the current V/Rs is diverted through
the source resistance Rs. As a result, V asymptotically
approaches 〈V 〉 = RsI0 and (assuming V ≃ Q̃/Cj for

|Q̃| . e/2) the quasicharge approaches Q̃ = RsCjI0, both
with a time constant RsCj . In terms of dimensionless
quantities, the quasicharge q approaches its approximate
asymptote i0/gs = 0.2 with a time constant of 1/gs = 50.
Because q is always less than 0.5, single-electron tunnel-
ing does not occur, and the nanoscale junction behaves
as a simple capacitor. And from the asymptotic relation
〈v〉 = i0/gs, we see that the initial slope of the 〈v〉–i0
curve in Fig. 3 is 1/gs.
When i0 is increased to 0.01 the asymptotic qua-

sicharge reaches q ≃ i0/gs = 0.5, and higher bias levels
are sure to produce single-electron tunneling. Thus, at
i0 = 0.0102, after the quasicharge exceeds q = 0.5 and
ε1(q) > ε1(q− 1), single electron tunneling becomes pos-
sible, and the quasicharge is likely to jump suddenly from
a value slightly greater than 0.5 to a value slightly greater
than −0.5, as shown in Fig. 4(b). When Cj is discharged
by such a tunneling event, the bias current immediately
begins charging it again, and the process repeats at irreg-
ular intervals that reflect the random, Poisson character
of the tunneling process. Despite the quantum nature
of these oscillations, they are analogous to those of a
classical relaxation oscillator. Finally, with the capaci-
tor repeatedly discharged in this way, the average volt-
age drops from its peak of 〈v〉 ≃ 0.5 at i0 ≃ 0.01 to
〈v〉 = 0.355 at i0 = 0.0102.
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With increasing bias above i0 = 0.0102, the capaci-
tor charges more rapidly and the asymptotic voltage and
quasicharge generally increase. However, for εj = 0.2
the voltage in the first band reaches a maximum of
vmax = 0.804 at q = 0.874 (see Fig. 2(b)). As a result, for
i0 > gsvmax = 0.0161, there is no longer an asymptotic
value of v for which dq/dτ = i0 − gsv = 0, and q can
in principle increase indefinitely. For the case i0 = 0.02
shown in Fig. 4(c), however, the quasicharge simply os-
cillates between minimum values in the range (−0.5, 0.5)
and maximum values in the range (0.5, 1). These relax-
ation oscillations are relatively rapid because the charg-

FIG. 4. Quasicharge as a function of time at five dc bias points
chosen from the 〈v〉–i0 curve of Fig. 3: (a) i0 = 0.004, (b)
i0 = 0.0102, (c) i0 = 0.02, (d) i0 = 0.08, and (e) i0 = 0.2. In
each instance, the system is initialized in the first band with
zero quasicharge (ib, q) = (1, 0). Single-electron tunneling
events are shown by narrow vertical lines with a dot at each
end, and Bloch reflections by dashed vertical lines with an
open circle at each end.

ing rate is high and because the tunneling rate increases
as q approaches 1. (Note the change of time scale in the
final frames of Fig. 4.) In fact, the tunneling rate is high
enough that, while q could increase beyond 1, tunneling
is overwhelmingly likely to occur first.
At yet higher dc bias and faster charging rates, how-

ever, q exceeds 1 on a regular basis. If we choose to
restrict q to the first Brillouin zone (−1 ≤ q ≤ 1), then
when q reaches 1, we immediately reset q to −1, an equiv-
alent point in the energy band. In this case we say that
the quasicharge has undergone a Bloch reflection and as-
sociate the event with coherent pair tunneling. In the
extended zone scheme, on the other hand, q is allowed
to exceed 1, and nothing of special significance occurs at
q = 1. In Fig. 4, we have chosen to restrict q to the first
Brillouin zone, and in frame (d) for i0 = 0.08, we find
Bloch reflections at three points. At these points, when
q reaches 1, it is instantly reset to −1 before integration
proceeds, and the jump is indicated by a dashed verti-
cal line. In two of these cases, for τ near 80 and 202,
the Bloch reflection is closely followed by single-electron
tunneling from q slightly greater than −1 to q slightly
greater than 0. Single-electron tunneling is allowed here
because ε1(q) > ε1(q + 1) for q in the range (−1,−0.5).
The average voltage increases between points (c) and

(d) in Fig. 3 because the relaxation oscillations gradually
shift to higher quasicharge as the charging rate increases
with i0. However, 〈v〉 reaches a peak at (d) due to the on-
set of Bloch reflections, which force the system to spend
more time in negative charge states. Thus, the rounded
peak in average voltage at (d) is usually referred to as the
“Bloch nose”. As the bias increases above that at (d),
Bloch reflection becomes more frequent, and the average
voltage falls as negative charge states are visited more
often. This effect is apparent in Fig. 4(e) for i0 = 0.2

B. rf Bias

When an rf bias is included in our example system, we
obtain the voltage–current curve shown in Fig. 5 for i1 =
0.4 and ω = π/2. This curve is in good agreement with
that for the same parameter set shown in Fig. 8 of GS,
although GS does not include points at small enough dc
bias to reveal the spike near i0 = 0. In particular, we find
the same sharp step at i0 = 0.25, corresponding to I0 =
ef , and the same broad step at i0 = 0.5, corresponding
to I0 = 2ef , that were observed in GS. These steps reveal
the tendency of Bloch oscillations to phase lock with the
applied rf bias and are the basis for the proposed current
standard.
The step at i0 = 0.5 represents synchronized motion in

which one Bloch oscillation occurs during each rf cycle,
while for that at i0 = 0.25 a Bloch oscillation is com-
pleted only after two rf cycles. The former is an example
of harmonic phase lock in which n Bloch oscillations are
completed during m = 1 drive cycles, while the latter
is a case of subharmonic phase lock, in which n oscil-
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lations are completed during m ≥ 2 drive cycles. In
either case, the step nominally occurs at I0 = (n/m)2ef
and defines an approximate quantized current. However,
we are naturally led to ask why the harmonic step with
n/m = 1/1 is so much wider than the subharmonic steps
with n/m = 1/4, 1/2, 2/3, 3/4, and 3/2.
Before attempting to answer this question, we explore

the nature of the motion at each of the five bias points
marked by open circles in Fig. 5. Consider first the case
shown in Fig. 6(a) for i0 = 0.002. Here q is always less
than 0.5, so q ≃ v, and in the sinusoidal steady state we
expect

q ≃ v = i0/gs + i1 sin(ωτ + φ)/
√

g2s + ω2. (27)

Thus, as shown, Q̃ oscillates with an amplitude of 0.255 e
about an average value of 0.1 e, uninterrupted by single-
electron tunneling.
If Eq. (27) is applied to the case of i0 = 0.013 in

Fig. 6(b), it implies a steady state with an average qua-

sicharge of 〈Q̃〉 = 0.65 e, which exceeds the thresh-
old for single-electron tunneling, and a peak voltage of
v = 0.905, which exceeds the threshold of vmax = 0.804
for Bloch reflection. Thus Q̃ fails to assume a steady
state in Fig. 6(b) and instead displays roughly sinusoidal
behavior interrupted at intervals by single-electron tun-
neling and very occasional Bloch reflections (the latter
do not appear in Fig. 6(b)). At yet higher dc bias, Bloch
reflections become more frequent (cf. Fig. 6(c)) and lead
to the Bloch nose at bias point (c) in Fig. 5.
The final bias points, (d) and (e) in Fig. 5, are cen-

tered on the steps at I0 = ef and I0 = 2ef . As
expected for subharmonic and harmonic phase locking
with n/m = 1/2 and n/m = 1/1, the corresponding

FIG. 5. Average voltage as a function of dc bias for the same
set of parameters as Fig. 3 with an RF bias included (εj = 0.2,
tj = 0, α = 0, gs = 0.02, i1 = 0.4, and ω = π/2), computed
by Monte Carlo simulation with an averaging time of 106 rf
drive cycles. Arrows labeled n

m
mark current steps at which

m Bloch oscillations are nominally completed during n drive
cycles.

quasicharge curves in Fig. 6 reveal significant intervals
during which Bloch reflections occur periodically, with
a period of two drive cycles in (d) and one drive cy-
cle in (e). In both cases, however, these patterns are
interrupted at irregular intervals by single-electron tun-
neling. When tunneling occurs for initial quasicharge in
the range e/2 < Q̃ < e the time between Bloch reflec-
tions is lengthened, while for initial quasicharge in the
range −e < Q̃ < −e/2 the time between reflections is
shortened. Because the relative proportions of these com-
peting events and the resulting average voltages change
gradually with dc bias, there is no signature in the 〈v〉–i0

FIG. 6. Quasicharge as a function of time at five dc bias
points chosen from the 〈v〉–i0 curve of Fig. 5: (a) i0 = 0.002,
(b) i0 = 0.013, (c) i0 = 0.08, (d) i0 = 0.252, and (e) i0 = 0.5.
In each instance, the equation of motion is integrated for at
least 200 drive cycles to eliminate transients before plotting
20 cycles of representative motion. Single-electron tunneling
events are shown by narrow vertical lines with a dot at each
end, and Bloch reflections by dashed vertical lines with an
open circle at each end.
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FIG. 7. Average voltage as a function of dc bias in the absence
of single-electron and Zener tunneling (γ = 0, εj = 0.2, tj =
0, α = 0, gs = 0.02, i1 = 0.4, and ω = π/2), computed
by Monte Carlo simulation with an averaging time of 105 rf
drive cycles. Arrows labeled n

m
mark current steps at which

m Bloch oscillations are nominally completed during n drive
cycles.

curve that identifies the exact dc bias at which I0 = ef
or 2ef .

A qualitative difference between the steps at (d) and
(e) in Fig. 5 is evident in the slope of the 〈v〉–i0 curve in
the two cases, with d〈v〉/di0 = 50 or d〈V 〉/dI0 = Rs at
(d) and d〈v〉/di0 ≃ 0.8 or d〈V 〉/dI0 ≃ 0.8Rj at (e). This
approximate correspondence between the slopes of the
two steps and the resistances Rs and Rj suggests that the
feedback mechanism that creates phase lock is distinctly
different for subharmonic and harmonic steps. Further
insight into this possibility results from examining the
〈v〉–i0 curve for the same parameters as Fig. 5 but with
single-electron tunneling completely suppressed. Results
for this case are shown in Figs. 7 and 8.

As seen in Fig. 7, in the absence of single-electron tun-
neling the Bloch nose is eliminated from the voltage–
current curve, and harmonic phase lock at i0 = 0.5 gives
rise to the same sharp step as previously observed for sub-
harmonic steps. The steady-state motion for n/m = 1/2
and 1/1 is shown in frames (a) and (b) of Fig. 8, where
we see phase lock uninterrupted by tunneling. Compar-
ing these plots with frames (d) and (e) of Fig. 6 reveals
what might be a critical difference between subharmonic
and harmonic phase locking in the presence of tunnel-
ing. For n/m = 1/2, we see in Fig. 6(d) that tunnel-
ing shifts q by ±1, but because the drive repeats itself
twice between Bloch reflections, this shift allows the os-
cillation pattern to immediately resume the steady-state
motion of Fig. 8(a). In this case, Bloch reflection is ad-
vanced or delayed by tunneling, but tunneling doesn’t
upset the pattern of phase lock. On this subharmonic
step, regardless of the presence or absence of tunneling,
lock results from feedback through Rs, and the system

relaxes to locked motion with a characteristic time of
RsCj = 12.5 drive cycles.

In contrast, for the harmonic step at i0 = 0.5 we find
that single-electron tunneling completely upsets the pat-
tern of phase lock found in the absence of tunneling. This
disruption becomes evident if we focus on an inflection
point in the q versus τ curve that in the absence of tun-
neling occurs at q = 0, as seen in Fig. 8(b). This is the ex-
pected location of the inflection point when phase lock is
established by feedback through the source resistance Rs.
Examining q versus τ with tunneling present, as shown
in Fig. 6(e), however, we find that the inflection point
alternates irregularly between q ≃ 0.24 and q ≃ −0.76,
as the junction is buffeted by tunneling events. (Over
longer periods of time, the inflection point can be found
at any value of quasicharge in the range −1 < q < 1.)
This erratic behavior results because there is only one
drive cycle between Bloch reflections on the n/m = 1/1
step, so when tunneling shifts q by ±1, the quasi charge
jumps to a value that would otherwise occur a half drive
cycle later. Thus, rather than jumping a full drive cycle
as on the 1/2 step, a shift in q by ±1 has the effect of
jumping a half drive cycle on the 1/1 step. Such a half-
cycle jump puts the system far from the phase-lock state
associated with feedback through Rs, and because the re-
laxation time required to regain lock by this mechanism
(12.5 drive cycles) is far longer than the time between
tunneling events, feedback through Rs is not effective in
maintaining lock on the 1/1 step.

These arguments lead to the conclusion that phase
lock on the harmonic step probably results from feed-
back through the junction resistance Rj , in spite of the
fact that the current through this element is the shot

FIG. 8. Quasicharge as a function of time at two dc bias
points chosen from the 〈v〉–i0 curve of Fig. 7: (a) i0 = 0.25
and (b) i0 = 0.5. In each instance, the equation of motion is
integrated for at least 200 drive cycles to eliminate transients
before plotting 20 cycles of steady-state motion. Bloch reflec-
tions are represented by dashed vertical lines with an open
circle at each end.
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noise of single-electron tunneling. That is, much like elec-
tronic systems that use impulsive feedback as a means of
control, phase lock on the 1/1 step is apparently main-
tained by single-electron tunneling. This conclusion is
confirmed by three observations. First, the rate of single-
electron tunneling is a strong function of q, so tunneling
is not entirely random and is capable of providing feed-
back. Second, the slope of the 1/1 step is of order Rj ,

19

as expected if Rj provides the feedback to create the
step. Third, when the 〈v〉–i0 curve is computed without
a source resistance (gs = 0), the narrow subharmonic
steps in Fig. 5 are eliminated, while the Bloch nose and
the broad harmonic step at I0 = 2ef are retained. As
will be seen later, the higher-order harmonic n/1 steps
at I0 = 2nef also have slopes of order Rj and are also
created by the feedback from single-electron tunneling.
Thus, in any system with non-zero single-electron tunnel-
ing, the principal Bloch steps at I0 = 2nef , the epitome
of coherent pair tunneling, ironically owe their existence
to single-electron tunneling, the very process that intro-
duces errors into the quantization implied by I0 = 2nef .

IV. ENSEMBLE SIMULATION

In a Monte Carlo calculation, the state (ib, q) of a sin-
gle junction is tracked over a long period of time, and 〈v〉
is evaluated as a time average. However, we can also con-
sider an ensemble of identical systems with random ini-
tial conditions and calculate the steady-state probability
density ρib(q) derived from a Langevin equation. In this
case 〈v〉 is computed as an ensemble average over ib and
q and a time average over one drive cycle. The ensem-
ble approach has the advantage of computational speed,
because averaging over long time periods is not required,
but it is less efficient in cases where the probability dis-
tribution is limited to a narrow range of quasicharge.
Rather than begin with an equation of motion for

ρib(q), we will instead simply describe how our computer
program works based on Eqs. (14)–(17). This will af-
ford a more definite and perhaps clearer picture of ex-
actly how the system is modeled. To begin, we note
that while ρib(q) is nominally a continuous function of
q and ρib(q)dq is the probability of finding the system
in band ib with a quasicharge between q and q + dq, a
practical program results when we break the quasicharge
into a finite number of bins and consider only the prob-
abilities of finding the system in the various bins. The
indexing scheme for the quasicharge bins of one band is
shown in Fig. 9. Here, a bin with index iq is associated
with the quasicharge at the center of the bin according to
Q̃(iq) = eq(iq) = e(2iq/nq−1), where nq is the number of
bins allocated to each band, and we allow a maximum of
nb bands. Our program focuses on computing the prob-
ability Ps(ib, iq) of finding the system in bin iq of band
ib, and these bin and band indices completely define the
state of the system within the resolution of the calcula-
tion.

FIG. 9. Quasicharge bin index as a function of quasicharge
for a typical band. The number nq of bins per band is taken
to be even, so the bin with index iq = nq/2 is centered at

Q̃ = 0. Bin 0 at Q̃ = −e is equivalent to bin nq at Q̃ = e and
is omitted from the count.

The dynamics of this discrete-quasicharge approxima-
tion to the system is most easily expressed by introducing
an index is,

is = nq(ib − 1) + iq, (ib ≤ nb, iq ≤ nq) (28)

which combines ib and iq to specify one of the nbnq states.
The probabilities Ps(is) for occupying the states is evolve
in time according to the master equation,

dPs(is)

dτ
=

nbnq
∑

i′s=1

A(is, i
′
s)Ps(i

′
s), (29)

where the matrix A(is, i
′
s) specifies the rate at which

probability in state i′s is transferred to state is per unit
probability in state i′s, as determined by Eqs. (15)–(17).
While by far the majority of the (nbnq)

2 elements of
the rate matrix A are zero, precisely specifying all of the
nonzero elements is an exercise in conditional statements
best left to a computer program. However, we will ex-
amine the general nature of the terms contributed by the
three processes specified by Eqs. (15)–(17). Before doing
so, it is useful to introduce the notation,

A(ib, iq; i
′
b, i

′
q) = A(nq(ib − 1)+ iq, nq(i

′
b − 1)+ i′q), (30)

which allows elements of the rate matrix to be identified
by the physically relevant band and quasicharge indices.
Equation (15) tells us that a junction current ij > 0

has the effect of shifting probability from bin i′q to the
adjacent bin iq = i′q + 1 within the same band. More
specifically, since each bin has a width ∆q = 2/nq, the
time ∆τ required to shift all of the probability in one bin
to an adjacent bin is ∆τ = ∆q/|ij| = 2/nj|ij |, and the
rate per unity probability is 1/∆τ = nj|ij |/2. That is,

A(i′b, i
′
q + 1; i′b, i

′
q) =

nj

2
|ij|, (31)

where,

ij = i0 + i1 sin(ωτ)− gsvi′
b
[q(i′q)]. (32)

Here it is understood that ±nq is added to the final qua-
sicharge index iq as required to keep it within the range
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1 ≤ iq ≤ nq. Thus for an initial quasicharge i′q = nq

in Eq. (31), the final quasicharge is iq = 1 rather than
nq+1. An equation similar to Eq. (31) results for ij < 0,
except that probability is shifted to an adjacent bin of
lower rather than higher quasicharge: iq = i′q − 1.
The rate of single-electron tunneling given by Eq. (16)

translates directly into elements of the rate matrix that
generally connect a bin i′q in a given band i′b to a bin
iq = i′q ± nq/2 in another band either just above or just
below the given band, ib = i′b ± 1, although tunneling
can also occur within band 1. The shift in i′q by ±nq/2

assures that the quasicharge Q̃ changes by ±e. Single-
electron tunneling to the next higher band is governed
by a matrix element of the form,

A(i′b + 1, i′q ± nq/2; i
′
b, i

′
q) =

∆ε/2

exp(∆ε/tj)− 1
, (33)

where the difference in energy ∆ε between the final and
initial states is

∆ε = εi′
b
+1

[

q(i′q ± nq/2)
]

− εi′
b

[

q(i′q)
]

, (34)

and similar formulas result for other possibilities.
Finally, we need to account for Zener tunneling be-

tween bands, which can occur when the quasicharge
passes through an energy maximum or minimum that
brings it close to a second band, either at Q̃ = 0 or e.
Consider, for example, the possibility of Zener tunneling
from band 1 to band 2 at Q̃ = e with dQ̃/dt = Ij > 0.
According to Eq. (17) this will occur with probability

PZ,1↔2 = exp

[

−
(∆ε)2

4α|ij |

]

, (35)

where ∆ε is the energy gap between the first and second
bands,

∆ε = ε2[q(nq)]− ε1[q(nq)]. (36)

To incorporate this tunneling event into the rate matrix,
we assume that it occurs as probability is shifted by the
drive current ij > 0 from bin i′q = nq − 1 of band i′b =
1, with the probability ending up either in bin iq = nq

of band ib = 2 with probability PZ,1↔2 or in bin iq =
nq of band ib = 1 with probability 1 − PZ,1↔2. Thus,
Zener tunneling can be included by replacing the matrix
element A(1, nj ; 1, nj−1) given by Eq. (31) with the pair
of matrix elements,

A(1, nq; 1, nq − 1) = (1− PZ,1↔2)
nq|ij |

2
, (37)

A(2, nq; 1, nq − 1) = PZ,1↔2

nq|ij|

2
, (38)

where the current ij is

ij = i0 + i1 sin(ωτ)− gsv1[q(nq − 1)]. (39)

Matrix elements for other Zener tunneling events occur-
ring at iq = nq/2, from higher to lower bands, or with
negative ij , can be constructed in a similar fashion.

All of the matrix elements A(is, i
′
s) discussed above

define the positive rate at which probability flows from
state i′s to another state is. However, in order to conserve
probability, we must deduct this probability flow from the
state of origin i′s. Thus, the diagonal elements of the rate
matrix are given by,

A(i′s, i
′
s) = −

nbnq
∑

is=1
is 6=i′s

A(is, i
′
s), (40)

and this formula completes our explication of the rate
matrix.

A. dc Bias

As an example of the ensemble approach to calculating
〈v〉–i0 curves, we turn again to the case considered in
Fig. 3 for dc bias only. Without an rf bias, the system
is expected to approach a steady state in which the bin
probabilities are independent of time and dPs(is)/dτ =
0 for all quasicharge bins. According to Eq. (29), this
steady state is defined by

nbnq
∑

i′s=1

A(is, i
′
s)Ps(i

′
s) = 0, (41)

which provides a system of nbnq linear equations for the
nbnq bin probabilities Ps(i

′
s). However, conservation of

probability, Eq. (40), implies that any one of these equa-
tions is a linear combination of the other nbnq − 1 equa-
tions. To obtain a full set of nbnq independent equations,
we replace one equation of the above set with the nor-
malization condition,

nbnq
∑

i′s=1

Ps(i
′
s) = 1. (42)

When combined, Eqs. (41) and (42) allow a direct calcu-
lation of the bin probabilities in the case of dc bias only.
The average voltage can then be evaluated according to,

〈v〉 =

nbnq
∑

is=1

Ps(is)v(is), (43)

where it is understood that v(is) is the voltage vib(iq) of
the band ib and bin iq corresponding to the state is.
As shown in Fig. 10, the 〈v〉–i0 curve from our ensem-

ble calculation closely matches that of Fig. 3, calculated
by a Monte Carlo methods. Actually, Fig. 10 includes
data from two types of calculation. For i0 > 0.015 a
calculation based on Eqs. (41) and (42) is efficient and
accurate, but for i0 < 0.015, where we find a spike in
〈v〉, this direct method often produces spurious results.
Thus, for low bias, we have instead returned to Eq. (29)
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and, beginning with an initially uniform probability dis-
tribution, simply allowed the system to evolve in time
until the distribution reaches a steady state. While this
relaxation approach is less efficient than solving Eqs. (41)
and (42), it converges relatively quickly (usually within
a few RjCj times) to an accurate distribution.

To better understand the nature of ensemble calcula-
tions, we examine the probability density ρ as a func-
tion of quasicharge, plotted in Fig. 11 for five bias points
selected from Fig. 10. These are the same bias points
for which quasicharge is plotted as a function of time in
Fig. 4, and it’s not difficult to predict ρ(Q̃) from Q̃(τ). At
bias point (a), for example, the steady-state quasicharge

is fixed at Q̃ ≃ 0.2 e, so we expect the corresponding ρ(Q̃)
to include a delta-function at 0.2 e. This expectation is
fulfilled in Fig. 11(a), where ρ is off scale at 0.2 e, and
the raw data reveal two adjacent bins near 0.2 e that in-
clude 99 % of the probability. Similarly, the quasicharge
waveform in Fig. 4(b) shows that the system lingers near

Q̃ = 0.5 e but occasionally dips to roughly −0.5 e, so
we’re not surprised to find a peak in ρ near Q̃ = 0.5 e
and a probability tail that extends down to about −0.5 e,
as shown in Fig. 11(b). At yet higher dc biases, Bloch
reflection becomes possible and the probability density is
spread over the full range of quasicharge, from −e to e,
as in Figs. 11(d) and (e).

In these ensemble calculations, the number of qua-
sicharge bins was chosen to be nq = 1000, which al-

lows sufficient resolution in Q̃ that the delta function
in probability near Q̃ = 0.2 e in Fig. 11(a) is well re-
solved. However, in the absence of such sharp structure,
as in Figs. 11(d) and (e), fewer bins are required, and the

FIG. 10. Average voltage as a function of dc bias for εj = 0.2,
tj = 0, α = 0, gs = 0.02, and i1 = 0 (the same set of parame-
ters as the Monte Carlo calculations in Fig. 3), computed as
an ensemble average over nq = 1000 quasicharge bins. For
i0 ≤ 0.015, bin probabilities were evaluated by allowing the
system to relax to a steady state using Eq. (29), while for
i0 > 0.015 probabilities were obtained directly by solving a
system of linear equations, Eqs. (41) and (42).

FIG. 11. Steady-state probability density as a function of
quasicharge at five dc bias points selected from the 〈v〉–i0
curve of Fig. 10: (a) i0 = 0.004, (b) i0 = 0.0102, (c) i0 = 0.02,
(d) i0 = 0.08, and (e) i0 = 0.2. These distributions can
be compared directly with the corresponding Monte Carlo
quasicharge versus time plots of Fig. 4.

probability distribution is usually represented accurately
using just 100 bins per band. In later simulations, we
typically use this smaller number of bins.

B. rf Bias

While it may seem unlikely, the ensemble approach is
also useful in the presence of an rf bias. In this case, the
rate matrixA is time dependent, and Eq. (41) is no longer
applicable, but the relaxation approach remains viable.
This approach depends on the assumption that the prob-
ability density will relax to a steady-state function with
the same periodicity as the rf drive. This assumption
is confirmed by numerical simulations in which the nbnq

coupled probabilities Ps(is) are calculated from Eq. (29)
using a fourth-order Runge-Kutta algorithm. Because
the probabilities typically converge to a periodic solution
within a few rf drive cycles, the relaxation approach of-
fers a practical method of computing 〈v〉–i0 curves. In
this case, 〈v〉 is an average over the ensemble and over
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FIG. 12. Average voltage as a function of dc bias for εj = 0.2,
tj = 0, α = 0, gs = 0.02, i1 = 0.4, and ω = π/2 (the same
set of parameters as the Monte Carlo calculations in Fig. 5),
computed as an ensemble average over nq = 1000 quasicharge
bins.

time,

〈v〉 =

nbnq
∑

is=1

1

τp

∫ τp

0

Ps(is)v(is)dτ, (44)

where τp = 2π/ω is the period of the rf drive. One pre-
caution that must be taken in integrating Eq. (29) is
choosing a time step ∆τ small enough that probability
is never driven by ij beyond the adjacent bin — that is,
∆τ < 2/nq|ij |.
A voltage–current curve for an rf-biased junction com-

puted by the ensemble approach is shown in Fig. 12 for
the same case as evaluated by Monte Carlo simulation
in Fig. 5. The striking difference between these curves is
the degree to which the prominent subharmonic steps in
Fig. 5 are suppressed in Fig. 12. This loss of fine struc-
ture in the 〈v〉–i0 curve is typical of ensemble calculations
and probably derives from replacing the continuous qua-
sicharge variable with discrete quasicharge bins. On the
other hand, there is excellent agreement between the two
calculations with regard to the Bloch nose at i0 ≃ 0.08
and the first harmonic step at i0 = 0.5. Thus, ensemble
calculations offer an efficient alternative to Monte Carlo
simulations if fine structure, such as subharmonic steps,
is not of special interest.
An idea of the inner workings of an ensemble calcu-

lation in the presence of an rf drive is given by plots of
the probability density, shown in Figs. 13 and 14 for the
bias points (a) and (b) identified in Fig. 12. Consider
first bias point (a) centered on the n/m = 1/2 step. The
probability density for this case is plotted in Fig. 13 at
five times during one rf drive cycle, τ/τp = 0, 1/4, 1/2,

3/4, and 1, with ρ(Q̃) being identical at the beginning
and end of the drive cycle. First one notes that the cor-
responding Q̃(τ) curve plotted in Fig. 6(d) shows regions

where the quasicharge repeatedly lingers for an extended
period near both Q̃ = −e/2 and near e/2. This behav-
ior explains why the probability distribution includes two
peaks typically near these values of quasicharge. We can
also see from Fig. 6(d) that single-electron tunneling of-
ten leads to repetitions of the plateau near e/2 but not
the plateau near −e/2, and this explains why the proba-
bility peak near e/2 is larger. However, the distribution
for τ = τp/4 violates these expectations. This anomaly
is explained, however, when we consider the effect of the
junction current, which shifts the entire distribution at a
rate proportional to ij . Between τ = 0 and τp/2, the rf
bias adds to the dc bias, and ij reaches a peak of about
i0 + i1 = 0.65 near τ = τp/4. As a result, both prob-
ability peaks are shifted by roughly +e during this half
cycle, with the larger peak turning into the smaller peak
in the process. On the second half cycle, by contrast, the
rf bias is negative, largely cancelling the positive dc bias,
so the probability distribution is basically not shifted in
quasicharge between τ = τp/2 and τp. Thus, the changes

in ρ(Q̃) that occur over a drive cycle make sense in terms

of the Q̃(τ) behavior shown in Fig. 6(d) and the shifts in
quasicharge imparted by ij.

The behaviour of the probability distribution for bias

FIG. 13. Steady-state probability density as a function of
quasicharge at five times during the rf drive cycle for bias
point (a), i0 = 0.252, of the 〈v〉–i0 curve in Fig. 12. These
distributions can be compared with the corresponding Monte
Carlo quasicharge versus time plot of Fig. 6(d).
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FIG. 14. Steady-state probability density as a function of
quasicharge at five times during the rf drive cycle for bias
point (b), i0 = 0.5, of the 〈v〉–i0 curve in Fig. 12. These
distributions can be compared with the corresponding Monte
Carlo quasicharge versus time plot of Fig. 6(e).

point (b) on the n/m = 1/1 step, plotted in Fig. 14, is
comparatively easy to understand. Here we find a single
broad peak in ρ(Q̃) that gradually shifts in quasicharge
by 2e over the course of one drive cycle. Because dq/dτ =
ij ≃ i0 + i1 sin(ωτ), we again expect this shift to be
divided into a larger fraction that occurs during the first
half cycle and a lesser fraction during the second half
cycle, as seen in Fig. 14.
In the remainder of this paper, ensemble simulations

based on relaxation to a periodic probability density be-
come our primary tool for investigating Bloch steps in
the rf-biased junction.

V. PARAMETER SPACE

Within the model considered here, the junction voltage
is a function of the seven parameters listed in Eqs. (18)–
(24). To gain a broader perspective on the nature and
range of Bloch steps, we now examine voltage–current
curves for a range of rf amplitudes and frequencies, i1
and ω, and normalized Josephson coupling energies εj,
while setting the remaining parameters, gs, tj , and α,
to zero. Assuming the latter parameters are zero allows
us to examine harmonic Bloch steps under ideal condi-

tions. In particular, gs = 0 implies that the junction is
perfectly isolated from its electromagnetic environment,
tj = 0 eliminates thermally activated single-electron tun-
neling, and α = 0 eliminates Zener tunneling, forcing the
junction to remain in the first energy band. However, all
of the processes omitted here will be important in the fol-
lowing section, where we attempt to model experimental
voltage–current curves.

Each of the six frames in Fig. 15 shows a collection of
voltage–current curves corresponding to five different rf
amplitudes. Because we have chosen gs = 0, none of the
curves show subharmonic steps, but harmonic steps at
bias currents I0 = 2nef for n = 1, 2, and 3 are well rep-
resented, with higher-order steps appearing at higher rf
amplitudes. As expected from our earlier example, how-
ever, all of these “constant-current” steps have a finite
slope on the order of Rj or less. This slope is in con-
trast to the constant-voltage steps of Josephson voltage
standards in which deviations from the quantized voltage
are experimentally undetectable over the central region
of each step. Thus, while Bloch oscillations can be syn-
chronized to some extent with an external rf bias, for the
parameters considered here the resulting steps would not
be useful as the basis of a precision current standard.

For the purpose of demonstrating the existence of
Bloch oscillations, regardless of their utility as a current
standard, Fig. 15 provides a guide to the selection of
suitable parameters. For example, consider the drive fre-
quency ω = 2πfRjCj . As Figs. 15(a) and (d) suggest, if
ω is too small then adjacent Bloch steps begin to over-
lap, so it is best to keep the separation between steps
2ef greater than the step width, which is on the of order
the characteristic voltage e/Cj divided by the slope Rj .
When numerical factors on the order 1 are eliminated,
this condition reduces to ω & 1. On the other hand,
Figs. 15(c) and (f) reveal that step amplitudes gener-
ally decrease with increasing frequency, so ω should not
be too large. A second factor also sets an upper limit
on ω, namely the condition Ij ≪ e/RKCj , required to
insure that the system is always in a quasicharge eigen-
state. Given that the current on the nth harmonic step
is Ij = 2nef , this condition reduces to ω ≪ πRj/(nRK).
Thus, the largest step amplitudes are expected to result
for ω somewhat larger than 1 but not too large.

Figure 15 does not, however, provide significant clues
about what ratio εj = Ej/Ec of Josephson to charging
energy might optimise the amplitude of Bloch steps. The
steps for εj = 0.2 and 1 shown here are not dramatically
different. Instead, the optimum εj is suggested by other
constraints. In particular, our analysis is predicated on
the condition that εj . 1 in order that charge rather
than phase be the dominant quantum variable. While it
is not possible to specify a particular εj beyond which the
analysis breaks down, this parameter clearly should not
be very much larger than 1. At the same time, εj must
not be too small if the probability of Zener tunneling
between the first and second band is to be minimized.
At a bias point on the first harmonic step (Ij = 2ef) for
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FIG. 15. Average voltage as a function of dc bias in the case of an ideal current source, in the presence of single-electron
tunneling and in the absence of Zener tunneling, for various values of Josephson coupling energy εj , rf freqency ω, and rf
amplitude i1: (εj , ω) = (a) (1, π/4); (b) (1, π/2); (c) (1, π); (d) (0.2, π/4); (e) (0.2, π/2); (f) (0.2, π). All curves derive from
ensemble calculations with nq = 100 and tj = α = gs = 0. Vertical lines indicate the location of the first three harmonic Bloch
steps at I0 = 2ef , 4ef , and 6ef .

this case (∆ε = εj and ib = 1), the tunneling probability
can be written as PZ = exp[−(π/16)(Ic/ef)εj]. Thus,
unwanted Zener processes can be suppressed only if εj ≫
(16/π)(ef/Ic). As a result, the optimum εj is usually on
the order of 1 and neither very much smaller nor very
much larger than 1.
Given that nonzero values of gs, tj , and α compromise

the existence of Bloch steps and that ω and εj are near
their optimum values in Fig. 15, we conclude that the
steps shown here are typical of the strongest Bloch steps
that can possibly be observed in a nanoscale Josephson
junction.

VI. EXPERIMENTAL COMPARISON

Having explored the inner workings of the model of
nanoscale Josephson junctions introduced by GS,19 we
now apply this model to the experimental results of
Kuzmin et al.16 In particular, we consider the experi-
mental results for the junction N1 shown in their Fig. 3
and reproduced here in Fig. 16. Junction N1 is an
Al/AlOx/AlPbAu tunnel junction of area 0.01 µm2 and

is isolated from the surrounding electromagnetic envi-
ronment by thin-film Cr resistors that are 0.1 µm by
6 nm in cross section and 10 µm in length. As shown in
Fig. 16, when cooled to a nominal temperature of 60 mK
and driven by 4-GHz microwaves, this junction revealed
strong evidence of Bloch steps at I = 2ef = 1.28 nA that
is especially clear in the dV/dI curves of Fig. 16(b).

The question to be considered now is the extent to
which the GS model might explain the experimental re-
sults of Kuzmin et al. Because the experimental parame-
ters are not known with certainty, however, we attempt to
make only a semi-quantitative comparison between the-
ory and experiment, and simulation parameters were cho-
sen to be representative rather than to produce a detailed
fit to experiment. As Kuzmin et al. discuss, one experi-
mental uncertainty is the junction temperature Tj . While
the base temperature of their refrigerator is 60 mK, the
power dissipated in the isolation resistors in the presence
of dc and rf biases is likely to raise Tj well above 60 mK.
In particular, they estimate that the junction temper-
ature may be as high as 300 mK for a bias current of
1.3 nA. In the following we assume that Tj is indepen-
dent of bias, which in itself precludes the possibility of a
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FIG. 16. Experimental voltage–current curves (a) and their derivatives (b) at various rf power levels recorded by Kuzmin et
al. for the nanoscale Josephson junction N1.16 The junction was nominally cooled to 60 mK and driven by 4 GHz rf power.
(Reproduced with the permission of Elsevier.)

detailed fit to experiment.

Parameters of the experiment and simulation are listed
in Table I. On the experimental side, the junction ca-
pacitance Cj was estimated from the junction area, and
the energy-gap voltage Vg, Bloch-nose voltage Vb, and
normal-state resistance Rn were read from the voltage–
current characteristic. The critical current was then es-
timated from the BCS relation Ic = πVg/4Rn. Because
Bloch steps occur at voltages less than 1 mV and much
less than Vg, the junction resistance Rj relevant to Bloch
oscillation is the sub-gap resistance. Typically the sub-
gap resistance is much greater than Rn, but Zener tun-
neling in this low-voltage region prevents readingRj from
the voltage–current characteristic, and this parameter
eludes experimental evaluation.

Finally, we note that the experiment falls within the
“classical” assumption of the GS model in that the ap-
plied current meets the condition Ij ≪ e/(RKCj) re-
quired for the system to always occupy an eigenstate
characterized by a band index ib and quasicharge Q̃. For
the Chalmers experiment, we have e/(RKCj) = 12 nA,
while the applied current does not exceed 4 nA, so the
“classical” limit nominally applies. The corresponding
“quantum” regime has been explored elsewhere.34–36

A. Model Parameters

The five dimensionless parameters that enter into the
GS model are listed at the bottom of Table I. Because
the experimental Bloch steps show no sign of the sharp
structures associated with a finite source conductance, we
have chosen to set gs = 0. Also, while Kuzmin et al. esti-
mate εj at 0.6, we have arbitrarily stepped it down to 0.5.
The remaining three parameters were chosen as follows,
based on matching the experimental dc voltage–current
characteristic. The simulated dc 〈v〉–i0 curve for εj = 0.5
and tj = α = 0 is shown by the dashed line in Fig. 17. Us-
ing the experimental value of Cj , the Bloch-nose voltage
for this curve is Vb = evb/Cj = 74 µV, or almost twice
the experimental value. This voltage can be adjusted
downward by increasing the temperature, and by trial
and error we find that tj = 0.3 reduces Vb to 43 µV, as
indicated by the dotted curve in Fig. 17. Similarly, by in-
creasing the Zener tunneling parameter α from 0 to 0.05,
we can create a broad minimum in the 〈v〉–i0 character-
istic (solid curve in Fig. 17) that mimics the minimum
in the experimental characteristic of Fig. 16(a). Finally,
noting that the first Bloch step occurs experimentally
near this voltage minimum, we choose the dimensionless
frequency parameter ω to place the first step at i0 = 0.4
in Fig. 17, so that ω = πi0 = 2π/5.
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TABLE I. The experimental parameters for sample N1 of Kuzmin et al.16 and the corresponding parameters adopted in our
simulation. Formulas in parentheses to the right of numerical entries indicate the method of evaluation.

Parameter Experiment Simulation

Junction area µm2 0.01 —
Junction capacitance, Cj fF 0.5 0.5
Charging Energy, Ec = e2/2Cj µeV 160 160
Energy-gap voltage, Vg = (∆a +∆b)/e µV 450 —
Normal-state resistance, Rn kΩ 7 —
Junction critical current, Ic nA 50 (πVg/4Rn) 39 (2eεjEc/~)
Josephson coupling energy, Ej µeV 100 (~Ic/2e) 80 (εjEc)
Bloch-nose voltage, Vb µV 40 43 (vbe/Cj)
Subgap junction resistance, Rj kΩ — 100 (ω/2πfCj)
Source resistance, Rs kΩ 130 ∞ (Rj/gs)
Drive frequency, f GHz 4 4
Junction temperature, Tj mK 60–300 560 (tjEc/k)
εj = Ej/Ec 0.6 0.5
tj = kTj/Ec 0.03–0.16 0.3
α = RK/π2Rj — 0.05
gs = Rj/Rs — 0
ω = 2πRjCjf — 2π/5

The dimensioned parameters implied by our chosen set
of dimensionless parameters are also listed in Table I.
Here we have adopted the experimental values for Cj ,
Ec, and f and combined them with the dimensionless
parameters of the model according to the formulas in
parentheses to fill in the remaining dimensioned quanti-
ties. In general, these derived quantities are in reasonable
agreement with experimental values. However, the junc-
tion temperature of 560 mK assumed in the simulation is
almost twice the experimentally estimated temperature
on the first Bloch step. Also, the shunt resistor Rs of
our Norton equivalent drive circuit is nominally identi-
cal to the series isolation resistance of the experimental
circuit. By choosing gs = 0, we have made this isolation
resistance infinite, but the consequences should be mini-
mal. We additionally note that, while the Zener tunnel-
ing constant α has been taken as a free parameter here, it
is actually defined as a simple function of Rj . Inverting
this equation to solve for Rj , we find that α = 0.05 corre-

FIG. 17. Voltage–current curves computed by ensemble sim-
ulation for εj = 0.5, gs = 0, and variously with tj = α = 0
(dashed curve), tj = 0.3 and α = 0 (dotted curve), and
tj = 0.3 and α = 0.05 (solid curve). All computations are
for nb = 5 and nq = 100.

sponds to Rj = 52 kΩ, or about half the value indicated
in Table I.
One disturbing feature of the simulated dc 〈v〉–i0 char-

acteristic (solid curve in Fig. 17) in comparison with the
corresponding experimental curve of Fig. 16(a) is the rel-
atively slow initial rise of the simulated curve. This dis-
crepancy is probably explained by two assumptions that
we have made in applying the GS model. First, by as-
suming a fixed temperature, we ignore the fact that near
zero bias there is no significant dissipation in the isola-
tion resistors, so the junction temperature here will be
closer to 60 mK than 560 mK. If this lower tempera-
ture were taken into account, the initial slope would be
closer to that of the steeper dashed curve in Fig. 17 for
tj = 0 than the solid curve for tj = 0.3. Second, by
assuming gs = 0, we have eliminated the possibility of
an initial spike near i0 = 0, like that shown in Fig. 10,
which might also contribute to the rapid initial rise of
the experimental curve. Nevertheless, with the assump-
tions and parameters chosen for our GS model, we expect
that an rf bias will evoke simulated Bloch steps similar
to those observed experimentally.

B. Simulated Bloch Steps

This expectation is largely met by the simulated
voltage–current curves and corresponding derivative
curves shown in Fig. 18 for several microwave drive am-
plitudes. Frame (a) shows 〈v〉–i0 curves for both Monte
Carlo and ensemble calculations, indicated by black dots
and white lines outlined in black respectively. In these
curves, the first microwave induced Bloch step is sub-
tly apparent as a slight increase in slope near I0 = 2ef
or i0 = ω/π = 0.4, the expected location. Although
the Monte Carlo and ensemble results diverge somewhat
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at higher dc bias (probably due to the relatively small
number of quasicharge bins used in the ensemble calcu-
lations), they closely agree with regard to the general
appearance of the first step. Moreover, both calculations
are in qualitative agreement with the experimental re-
sults shown in Fig. 16(a), where the first step is also
apparent only on close inspection.

On the other hand, the derivative curves, dV/dI and
d〈v〉/di0, shown for the experiment in Fig. 16(b) and for
the ensemble simulation in Fig. 18(b), give dramatic evi-
dence for Bloch oscillations near the expected dc bias and
are in excellent qualitative agreement with one another.
In particular, we note that the simulated derivative curve
for i0 = 0.8 is much like the three experimental curves
at the highest rf power levels. In this case, experimental
and simulated curves show three points of strong agree-
ment. First, the peak at I = 0, prominent at lower rf
power, is almost entirely suppressed. Second, the peak
at I = 2ef is near its maximum amplitude. Third, the
width of the first peak is roughly ∆I = 0.4ef for both
the experimental and simulated curves. Similar agree-
ment is found at lower rf power between the simulated
derivative for i1 = 0.4 and the middle experimental curve
(the 6th curve counted either up from “rf off ” or down
from “rf max”). Here the peak at I = 0 and that at
I = 2ef are both well developed, with the amplitude of
the former being 2 to 3 times that of the latter. At yet
lower rf amplitudes, however, the simulated derivative at
I = 0 is much less than that observed experimentally.
As discussed previously, this discrepancy may result be-
cause the simulations assume a constant junction tem-
perature, while the experimental temperature probably
falls rapidly as the rf and dc levels approach zero.

Another point of qualitative agreement between the
simulated and experimental dV/dI curves is a tendency
for the peak associated with the first step to occur at a
dc bias that is 3 to 4% below 2ef . This effect is seen
consistently in simulations and also appears in several
experimental dV/dI curves.

While we have so far claimed only qualitative agree-
ment between simulation and experiment, it is important
to note that the scale factors that convert the dimension-
less voltage v and dc bias i0 to real voltages and currents
are e/Cj = 0.32 mV and e/RjCj = 3.2 nA. When these
are applied to the simulated 〈v〉–i0 curves of Fig. 18(a),
one finds that the ranges of voltage and current being
plotted are comparable to the experimental curves of
Fig. 16(a). Thus, the agreement between simulation and
experiment is in fact semi-quantitative. Although closer
quantitative agreement would require treating the depen-
dence of junction temperature on the power dissipated
in the isolation resistors, there seems little doubt that
the GS model implemented here explains the basic fea-
tures of the experimentally observed steps and in doing
so confirms and strengthens their interpretation in terms
of Bloch oscillations.

C. Zener and Thermally Assisted Tunneling

As a final note on our simulations, we examine in fur-
ther detail two processes, Zener tunneling and thermally
assisted single-electron tunneling, that were introduced
in Fig. 18 by nonzero values for α and tj and have not
been explored in previous cases. These processes allow
the system to access bands above the first energy band
and are important to the overall agreement between the
simulated and experimental voltage–current characteris-
tics.

A brief examination of Zener and thermally activated
tunneling is given in Fig. 19, which plots the time evolu-
tion of the energy and quasicharge generated by Monte
Carlo simulation. The plot displays behavior character-
istic of the bias point on the first Bloch step labeled a in
Fig. 18(b). At this bias point, the ensemble calculation
reveals that on average the junction spends 98.44% of its
time in the first energy band, 1.53% in the second band,
and 0.03% in the third. During the ten drive cycles shown
in Fig. 19, we see from the energy plot that the junction
leaves the first band only twice: for brief intervals dur-
ing the third and tenth drive cycles. As expected for a
bias point on the first Bloch step, however, the junction
spends most of its time experiencing a single Bloch oscil-
lation during each drive cycle, as in cycles 5 through 7.
Here, the dc and rf biases combine during the first half
of the drive cycle to push the quasicharge to e, where it
Bloch reflects to −e, while during the second half cycle
the dc and rf biases largely cancel and the quasicharge
merely oscillates around 0. Occasionally, however, this
process is flipped and the quasicharge oscillates around
±e during the second half of the cycle, as during drive
cycles 1 and 2.
The event of primary interest in Fig. 19, is the Zener

tunneling during drive cycle 3. In this case, when the
combined dc and rf biases push the quasicharge to e,
the junction Zener tunnels to the second band. The
probability of Zener tunneling between bands 1 and 2
is PZ = 0.29 when ij is near its maximum, so tunnel-
ing to the second band is not uncommon. After Zener
tunneling, however, the bias current pushes the junction
to the top of the second band and it Zener tunnels for a
second time to the third band. Because the gap between
the second and third bands is small, the tunneling prob-
ability is PZ = 0.94, and tunneling here is likely. The
junction remains in the third band only briefly, how-
ever, before single-electron tunneling returns it to the
bottom of the second band, and a short time later a sec-
ond single-electron tunneling returns the junction to the
bottom of the first band. This kind of brief excursion
into higher bands is relatively frequent at this bias point,
even though the junction spends most of its time in the
first band.

In contrast, the interband transition that occurs during
the tenth drive cycle is highly unusual. Here, the junction
jumps from the bottom of the first band to the bottom
of the second band by thermally activated single-electron
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FIG. 18. Simulated voltage–current curves (a) and their derivatives (b) for various rf amplitudes. Results are shown for
εj = 0.5, tj = 0.3, α = 0.05, gs = 0, and ω = 2π/5. In (a), black dots are for Monte Carlo simulations with an averaging time
of 106 drive cycles and white lines outlined in black are for ensemble calculations with nb = 5 and nq = 100. Frame (b) shows
the result of numerically differentiating the ensemble curves in (a). Vertical lines mark the expected locations, I0 = 2ef and
4ef , of the first and second Bloch steps.

tunneling. Because the change in energy ∆ε = 1.32 for
this jump is much larger than the thermal energy tj =
0.3, the tunneling rate is very small. Nonetheless, such
rare events are bound to occur from time to time.

VII. CONCLUSION

To summarize, we have calculated voltage–current
characteristics of nanoscale Josephson junctions whose
charging energy is greater than or comparable to the
Josephson energy using two separate approaches: Monte
Carlo and ensemble calculations. While Monte Carlo cal-
culations follow the dynamics of the quasicharge state of
a single junction in time, the ensemble approach looks at
the distribution of quasicharge states within an ensem-
ble of junctions as function of time. Although the two
approaches are equivalent in principle, each has its own
computational advantages, and numerical results some-
times differ slightly. By including the shot noise of quasi-
particle tunneling and the possibility of Zener tunnel-
ing to higher bands, these calculations demonstrate that
the originally proposed1–4 Bloch steps of fixed slope are
destroyed by these error processes. Using the ensem-
ble approach, we are able to create a parameter map
of the voltage–current characteristics and show how the
height and the width of the Bloch steps vary with differ-
ent junction parameters such as the ratio of Josephson to

charging energy, applied microwave power and frequency.
However, the Monte Carlo approach allows us to follow
the evolution of a junction’s quasicharge in time under
the influence of microwaves and understand the mecha-
nisms of phase locking. Based on this analysis, we can
explain the harmonic and subharmonic steps that occur
with a finite source resistance. In the end we show that
our calculations semi-quantitatively explain the experi-
mental results of Kuzmin et al.16

One of the important conclusions drawn from our cal-
culations is that, for a fixed sub-gap conductance Gj ,
even in the limiting case of zero temperature and the ab-
sence of Zener tunneling, where the junction state is con-
fined to the lowest energy band, quasiparticle tunneling
can still broaden the Bloch steps to such an extent that
it renders them unusable for a precise metrological cur-
rent standard. Our quasicharge versus time plots clearly
show that single-electron tunneling is the primary source
of disruption to the locking behavior required for Bloch
steps. Moreover, as revealed by bias points (d) and (e) of
Fig. 6, single-electron tunneling can be problematic for
both subharmonic and harmonic steps, regardless of how
steep they appear in the voltage–current characteristic.
Roughly speaking, a current standard with a precision
of say a part in 106 would correspond to one quasipar-
ticle tunneling event per 106 drive cycles. According to
the BCS theory, however, the density of quasiparticles is
expected to decay exponentially in the limit of low tem-
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FIG. 19. Monte Carlo results for the energy (a) and qua-
sicharge (b) as a function of time for bias point a in Fig. 18(b),
that is for εj = 0.5, tj = 0.3, α = 0.05, gs = 0, i0 = 0.4,
i1 = 0.6, and ω = 2π/5. Solid vertical lines indicate single-
electron tunneling, dashed vertical lines indicate Bloch re-
flections, and dotted vertical lines indicate Zener tunneling.
Horizontal lines mark the limits of the first three energy bands
in frame (a).

perature, nqp ∝ exp[−(∆a + ∆b)/2kTj)]. In this case
Gj would vanish at typical dilution refrigerator tempera-
tures (<100millikelvin), corresponding to single-electron
tunneling errors to levels that might permit metrology.
It must be noted, however, that the question of re-

ducing quasiparticle densities requires careful device en-
gineering. While thermal quasiparticles can, in princi-
ple, be eliminated by cooling to dilution refrigerator tem-
peratures, Joule heating in on-chip bias resistors will al-
ways provide a local source of heat. As Kuzmin et al.15

originally noted, the series isolation resistors in their ex-
periment posed a significant problem in achieving low
enough temperatures to exclude the presence of ther-
mal quasiparticles. Meanwhile there is overwhelming ev-
idence that a significant density of nonequilibrium quasi-
particles is universally present in ultra-small Josephson
junction devices such as qubits25–30 and Cooper pair
transistors31–33, although improvements in filtering and
shielding from stray infrared radiation have improved
this situation considerably. While it is conceivable that
nonequilibrium quasiparticle tunneling rates can be re-
duced to metrological levels, the problem of Joule heat-
ing and thermal quasiparticle generation will remain
in any scheme that seeks to generate nanoampere-level
currents sourced through on-chip bias resistors. Other
experiments37–39 have attempted to avoid the use of such
resistors by constructing so-called “superinductances” to
create a high-impedance environment while minimizing
power dissipation. In our view, a successful strategy will,
at the outset, identify the need to mitigate the inevitable
problem that quasiparticles pose.
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