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The Effect of Magnetic Fields on Spin Glass Dynamics
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The effects of a magnetic field on spin glass dynamics are explored for a Cu0.887Mn0.113 thin film of
thickness L = 20 nm in a multilayer configuration. A new experimental protocol removes uncertain-
ties associated with the time dependence of the field cooled magnetization, MFC(t, T ). Activated
dynamics are exhibited after the spin glass correlation length ξ(t, T ) has reached L, creating a quasi-
equilibrium state. The activation energy depends upon the strength of the magnetic field H . The
magnitude of the activation energy diminishes as H2, the coefficient of which is proportional to the
number of correlated spins. A quantitative fit requires a “pancake-like” correlated region, associated
with the T = 0 phase transition for a spin glass in D = 2 dimensions.

PACS numbers: 71.23.Cq, 75.10.Nr, 75.40.Gb, 75.50.Lk

I. INTRODUCTION

The effect of a magnetic field on spin glass dynamics
has been an issue of dispute for nearly thirty years. The
Parisi mean-field solution1 of the infinite range Sherring-
Kirkpatrick model2 predicts a phase transition at a “glass
temperature” Tg(H) that depends upon the magnitude of
the magnetic field3. The “droplet model”, formulated by
Fisher and Huse, finds “...the ordered phase is unstable to
a uniform (or random) magnetic field and no long-range
spin-glass ordering occurs in the presence of a magnetic
field.”4 An explicit test of these divergent perspectives
was performed by Lefloch et al.5. They measured the
properties of the CdCr1.7In0.3S4 spin glass in a magnetic
field. Their experiments displayed a field-temperature
phase diagram “...reminiscent of the mean field result for
the infinite range model with finite anisotropy....” Their
study concluded with the observation: “Thus, even if the
spin glass does not exist in a magnetic field, at least it
looks the same as in zero field, as far as we experimen-
talists can see.”
The purpose of this paper is to explore the effects of

magnetic fields on the dynamics of the canonical spin
glass CuMn. Previous work reported similar experiments
on an amorphous GeMn thin film6. The present inves-
tigation extends their study to a more conventional spin
glass, and provides a quantitative analysis of the nature
of the correlated region (see below). In addition, it ex-
tends the experimental protocol of6 to the case where the
field-cooled magnetization,MFC(t, T ), is time dependent,
as it is for CuMn thin films.
The concept of the growth of a spin glass correlation

function with time t at temperature T , ξ(t, T ), is common
to both of the conflicting models for spin glass dynamics.
It is assumed that the spin glass is quenched from a tem-
perature above the spin glass transition temperature, Tg,
to a temperature T < Tg. Upon the quench, spin glass
order is nucleated at a given site, and grows with time.
Numerical simulations7 find a power law growth,

ξ(t, T ) = c1a0

(

t

τ0

)c2(T/Tg)

, (1)

where c1 and c2 are constants of order unity and 0.1,
respectively, a0 is an average distance between the mo-
ments making up the spin glass material, and τ0 is an
exchange time of the order of ~/kBTg. As ξ(t, T ) grows,
there are ever increasing free energy barriers encountered,
with heights ∆(t, T ) given by8,

∆(t, T )

kBTg
=

1

c2

[
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(
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)

− ln c1

]

. (2)

The droplet model4 assumes activated growth and finds,

ξ(t, T ) = αa0

[(

T

Tg

)

ln

(

t

τ0

)]1/ψ

, (3)

where α is a constant of order unity, and ψ is a critical
exponent. Similar to power law growth, there are ever
increasing free energy barriers encountered, with height,

∆(t, T )

kBTg
=

(

ξ(t, T )

αa0

)ψ

. (4)

For experiments on bulk samples, ξ(t, T ) grows indef-
initely, so that any measurement over a time interval is
“chasing” an ever increasing correlation length, and con-
comitantly, ever increasing free energy barrier heights.
The beauty of working with thin films at the “mesoscale”
is that the growth of ξ(t, T ) perpendicular to the film
thickness stops when ξ⊥(t, T ) = L. At this point in time,
the spin glass system crosses over from D = 3 to D = 2
dimensions. As known theoretically9 and shown experi-
mentally10, the lower critical dimension for spin glasses,
2 < dℓ < 3 (a recent theoretical values11 finds dℓ = 2.5).
This results in Tg = 0 for the spin glass, with critical
fluctuations at temperature T leading to an equilibrium
D = 2 parallel correlation length of ξ‖ ≈ a0T

−ν2d . Re-

cent calculations12 for Ising spin glasses have established
ν2d = 3.53. Previously, Kawamura and Yonehara13 found
for a Heisenberg spin glass ν2d = 0.9 ± 0.2 for the spin
correlation length, and ν2d = 2.1± 0.3 for the chiral cor-
relation length. While CuMn normally is regarded as
a Heisenberg spin glass, sufficient anistropy can mimic
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Ising-like behavior14. It will turn out(see below) that
our final result will be relatively insensitive to the pre-
cise value of ν2d.

It would be tempting to set quantitatively an equilib-
rium value for ξ‖ = a0(Tg/T )

ν2d . However, this would
ignore the spin glass correlations that have been built up
while ξ(t, T ) has been growing to reach L. One can intu-
itively think of a “renormalization” of the length scale for
the correlated spins from a0 to L. This would then lead
to a multiplicative relationship for the equilibrium value
of the parallel correlation length, ξ‖(t, T ), first suggested

by Young15 and amplified by Martin-Mayor16, changing
ξ‖ = a0(Tg/T )

ν2d to,

ξ‖(T ) = k(T )L = b

(

Tg
T

)ν2d

L , (5)

where b is a scaling coefficient of order unity. An un-
resolved issue is the time dependence of the growth of
ξ‖(t, T ) to its equilibrium value. We have no way of as-
sessing this time scale, but the magnetic field effect on
the dynamics when ξ⊥(t, T ) has reachedL (see below) ap-
pears to be independent of time. This suggests that the
growth of ξ‖(t, T ) is sufficiently rapid that it has reached
its equilibrium value when ξ⊥(t, T ) has reached L.
With these assumptions, we can define a “crossover

time”, tco, by the relationship,

ξ⊥(tco.T ) = L . (6)

Both models then suggest that there is a maximum free
energy barrier height, ∆max(L), that govern the dynam-
ics for t > tco. It is tempting to extract the maximum free
energy barrier from Eqs. (2) and (4) by simply substitut-
ing L for ξ(tco, T ) in the respective equations. However,
both are derived assuming a spherical correlated volume
which, as we shall show below, is not the case given that
ξ‖(T ) > ξ⊥(tco, T ). In our subsequent analysis, we shall
extract the value of ∆max(L) as a function of magnetic
field H from the time decay of the measured magnetiza-
tions. The proportionality will turn out to depend upon
H2. The coefficient ofH2 will be the number of spins cor-
related in the spin glass state for times greater than tco,
times the measured susceptibility per spin. Experiments
will favor their containment in a “pancake-like” volume
of perpendicular height L and parallel radius ξ‖(T ).

The effects of magnetic fields on spin glass dynamics
will be outlined in the next Section. The sample prepara-
tion and experimental protocol will be described in Sec-
tion III. The latter will be different from that used in our
previous investigation6,17, because the field-cooled mag-
netization in CuMn thin films is time dependent, as noted
in previous work18, complicating the extraction of the ir-
reversible magnetization. The experimental results will
be presented in Section IV, and their analysis in Section
V. Section VI contains the summary and conclusions, and
Section VII the acknowledgments.

II. EFFECTS OF A MAGNETIC FIELD ON

SPIN GLASS DYNAMICS

Earlier work6,8,19,20 has shown that an applied mag-
netic field reduces the barrier heights in a spin glass ac-
cording to the strength of the Zeeman interaction upon
the correlated states, EZ . Simply stated,

∆max(H,L) → ∆max(L)− EZ . (7)

There is a dispute in the literature about the magnitude
for EZ , and its dependence upon magnetic field strength.
A “trap model”19 postulates the reduction of the depth
of an effective trap by a Zeeman energy arising from fluc-
tuations in the number of correlated spins, proportional
to

√
Nc and linear in H , where Nc is the number of cor-

related spins. A barrier model8 takes the Zeeman en-
ergy to be equal to the magnetic susceptibility per spin,
MFC/Ns, times Nc andH

2, whereMFC is the field cooled
magnetization of the sample, and Ns the total number of
spins in the sample. Ref.6 shows that, for the strengths
of magnetic fields used in these experiments, the latter
dominates the former by almost two orders of magnitude.
For that reason, we set,

EZ = NcχFCH
2 , (8)

where χFC is the measured magnetic susceptibility per
spin. As will be discussed in Sec. V, there is also a
contribution from the diamagnetism of the Cu in the
multilayer sample. This is shown to be two orders of
magnitude smaller than the contribution from the Mn
moments in the spin glass state.
Experimentally, if upon quenching the temperature to

T < Tg, one waits for times greater than tco, the corre-
lation lengths will be pinned at ξ⊥ = L and ξ‖(T ) from
Eq. (5). The dynamics are determined by the largest
barrier height in both models, so that, with the corre-
lation length pinned, ∆max(L) in Eq. (7) is a constant.
This leads to activated dynamics, with the activation en-
ergy now a function of magnetic field as a consequence
of Eq. (7) and (8). Thus, by observing activated magne-
tization dynamics for t > tco as a function of magnetic
field, one can extract EZ and hence both the power of H
and its coefficient. The latter will be proportional to the
number of correlated spins, Nc, allowing a quantitative
estimate for EZ from Eqs. (5) and (6).

III. SAMPLE PREPARATION AND

EXPERIMENTAL PROTOCOL

The CuMn thin film multilayer sample was prepared
at the University of Minnesota by dc sputtering 99.9%
CuMn/99.999% Cu multilayers at an argon pressure of 2
mTorr. The multilayers have an alternating structure of
20 nm CuMn and 60 nm Cu, in order to achieve amplifi-
cation of the signal magnitude, and to decouple the spin
glass moments between layers. Two 1-µm thick CuMn
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FIG. 1: (a∼c) The measured magnetizations, MTRM(t, T ) and MZFC(t, T ), plotted against time for a 20 nm CuMn
multilayer thin film at representative fields. Initially, for very short times, MTRM (t, T ) does decay as it would
normally in a bulk material. However, because of the growth of MFC(t, T ) with time, MTRM (t, T ) increases for
times beyond the short initial decay time. This can be seen if one looks closely near the zero of time in the (a)∼(c)
plots. (d∼f) 2MIRR =MTRM(t, T )−MZFC(t, T ) and its fit to activated dynamics. (a)(d) at 42 K in 40 Oe, (b)(e) at
41 K in 100 Oe, and (c)(f) at 40 K in 141 Oe.

films from separate targets were synthesized, yielding a
“bulk” glass transition temperature Tg, of 54 ± 1 and
52± 1 K, respectively. The nominal Mn concentration of
the CuMn target was 13.5 at.%. Scaling with respect to
Tg

21,22 translates the Mn concentration in the multilayers
to ≈ 11.7 at.%.
The measurements of the zero-field cooled magneti-

zation, MZFC(t, T ), for the 20.0 nm CuMn multilayer
would normally have followed the protocol6 developed in
a previous paper. The introduction of a protocol differ-
ent from conventional measurements of MZFC(t, T ) is a
consequence of the time dependence of the field cooled
magnetization, MFC(t, T ), for mesoscale CuMn films.
Whereas in bulk,MFC(t, T ) varies little, and if anything,
slightly diminishes with increasing measurement time23,
at mesoscale, it increases rather substantially with in-
creasing measurement time17. We believe this is a con-
sequence of glassy dynamics. As shown previously, irre-
versibility sets in below a freezing temperature, Tf , for
thin film spin glasses well below the bulk spin glass tran-
sition temperature Tg. As shown in17, this is because
of a largest barrier height ∆max(L) in mesoscopic spin
glasses. A finite experimental time scale, τexp sets Tf by
the relationship,

1

τexp
≈ 1

τ0
exp(−∆max/kBTf ) (9)

where τ0 is an exchange time of the order of ~/kBTg.
This relationship suggests that the longer the experi-
mental time scale, the lower the value of Tf . But for
T > Tf , the magnetization is increasing as T is lowered
(i.e. along the Curie-Weiss trajectory). Hence, at longer
measurement timescale, Tf is lower, and the irreversible
magnetization is larger at the lower temperature. But
the magnetizaiton at the onset of irreversibility is just
the field-cooled magnetizaiton MFC(t, T ). The increase
of MFC(t, T ) with time is not an intrinsic behavior, but
rather arises from the glassy dynamics of mesoscopic spin
glasses.

Because the irreversible magnetization is the difference
between between MZFC(t, T ) and MFC(t, T ), both must
be measured over the same time and temperature pro-
file when the latter is time dependent. Previous work
was performed at fixed magnetic field. Measuring the
magnetic field dependence of ∆max(H) requires multiple
measurements at different fields. The previous protocol
proved to be too cumbersome to be practical.

Instead, we developed a new protocol in which
MFC(t, T ) cancels out. Two symmetrical magnetization
decays, the zero-field cooled magnetization, MZFC(t, T ),
and the thermoremanent magnetization, MTRM(t, T ),
were performed in the presence of a magnetic field. The
irreversible magnetization is derived from both proce-
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dures:

MIRR(t, T ) =MFC(t, T )−MZFC(t, T ), (10)

a standard relationship. Also,

MIRR(t, T ) =MTRM(t, T )−MFC(t, T ), (11)

which is required if the decay takes place in a magnetic
field, where MFC(t, T ) is time dependent. The protocol
is as follows.
The “MZFC(t, T )” is measured by quenching the sam-

ple from above Tg to a temperature T in a magnetic
field H − δH . As soon as the temperature stabilizes,
the magnetic field is increased abruptly to H and the
“new” zero-field magnetization is measured as a function
of time. Concomitantly, the sample is warmed up above
Tg, and a magnetic field H + δH is applied. The sample
temperature is then quenched in the presence of this field
to a temperature T . After temperature stabilization, the
magnetic field is reduced to H and a “new” thermore-
manent magnetization is measured as a function of time.
The important point of these procedures is that both the
zero-field cooled and thermoremanent magnetizations are
measured in the same magnetic field H . From Eqs. (10)
and (11), this means thatMFC(t, T ) is the same for both
measurements. Hence, adding Eqs. (10) and (11) cancels
the time dependent field-cooled magnetization! We have,
therefore,

MIRR(t, T ) =
1
2

[

MTRM(t, T )−MZFC(t, T )
]

. (12)

We use this protocol in the following section to extract
the magnetic field dependence of the maximum barrier
height, ∆max(H,L).

IV. EXPERIMENTAL RESULTS

The protocol described in the previous Section was car-
ried out for the 20 nm CuMn multilayered sample de-
scribed therein. The incremental field, δH was set at 20
G, and measurement fields H were applied over a range
from 30 ≤ H ≤ 144 G. MIRR(t, T ), defined in Eq. (12),
was then measured over a large time range. The value
of ∆max(H,L) was extracted by measuring the slope of
the lnMIRR(t, T ) vs t for times t > tco. A difficulty arises
from the relationship between the crossover time, tco, and
the field dependent maximum barrier height ∆max(H,L):

tco = τ0 exp [∆max(H,L)/kBT ] . (13)

The variation of tco, as a consequence of the change in
∆max(H,T ) for different values of H , is sufficient to re-
quire that the extraction of MIRR(t, T ) be carried out at
different temperatures. Previous work6 has shown that
∆max(L) is independent of temperature.
Representative experimental data are exhibited in Fig.

1. The crossover time is indicated by an arrow, and the
solid line a fit to activated decay with activation energy

TABLE I: ∆max(H,L)/kB extracted at different fields
for the 20 nm CuMn thin film.

H (Oe) T (K) ∆max(H,L)/kB (K)
30 42 1732 ± 21
40 42 1715± 8
55 42 1710 ± 10
80 41.5 1700 ± 30
100 41 1668 ± 17
122.5 41 1670 ± 24
144 40 1631 ± 18

∆max(H,L). Looking at the data, it may not seem ob-
vious where to identify the activated region. Noting the
dependence of tco on ∆max(H,L) from Eq. (13), one sees
that there is a coupling between tco and the slope. The
two are adjusted until they are consistent. This mini-
mizes the error in the evaluation of ∆max(H,L). The
values extracted in this manner are listed in Table I.
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FIG. 2: A plot of the extracted values for
∆max(H,L)/kB as a function of H2 and its least square
fit in the form of ∆max(H,L)/kB =
∆max(0,L)/kB − α H2, for α ≈ 4.61× 10−3.

Now that the values of ∆max(H,L) have been deter-
mined, they can be plotted against H2 to determine the
validity of Eq. (8). Fig. 2 is a plot of the data con-
tained in Table I, with a least squares fit line displaying
the proportionality to H2. One finds,

∆max(H,L)/kB = ∆max(0,L)/kB − αH2 , (14)

with α lying between 3.21× 10−3 and 6.02× 10−3, with
a most probable value of 4.61× 10−3. The magnitude of
α, proportional to the number of correlated spins, will be
examined in the next Section.
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V. V. ANALYSIS OF EXPERIMENTAL

RESULTS

The reduction of ∆max(H,L) in the presence of a mag-
netic field, as given in Eq. (14), has the form,

αH2 = NcχsH
2/kB , (15)

where Nc is the number of correlated spins (i.e. encased
in the correlated volume), and χs is the magnetic suscep-
tibility per spin. The total magnetization of the sample
is the sum of the Mn spin glass moment plus the diamag-
netic magnetization of the Cu, from both in the CuMn
films and in the intervening layers. Designating the com-
ponent from the Mn spin glass as Msg and that from the
Cu as MCu, we have,

χs =
Msg

HVℓλ/Vs
, (16)

where Vℓ is the volume of a given layer of CuMn, λ is the
number of CuMn layers, and Vs is the volume/spin. The
number of correlated spins Nc = Vc/Vs where Vc is the
volume containing the correlated spins. Then α is given
by,

α = Nsχs/kB =
Vc
Vs

Msg

(HVℓλ/Vs)kB
=

1

kB

Msg

H

Vc
Vℓλ

.

(17)
The measured magnetization is the sum ofMsg and that
from the Cu. The latter is given by24,

χCu = (−0.093 +
0.023

T
)× 10−6cm3g−1 . (18)

At our measuring temperature range, T ≈ 40 K, χCu =
−0.0824 × 10−6 cm3/g. The Cu magnetization is then
given by MCu = χCuVCuρH , where VCu is the total vol-
ume of Cu in the multilayer, and ρ is the Cu mass density.
The relative contributions of the Mn moments in the

spin glass state to that of the Cu are calculated for a mag-
netic field of H = 141 G. The cross-section dimension of
the multilayer is approximately 2.3 cm × 2.3 cm. Putting
in all the relevant dimensions, we calculate a total Cu
magnetization MCu = −1.70× 10−7 emu. The measured
magnetization is Mtot = 7.61×10−5 emu. Hence, the Cu
diamagnetism is two orders of magnitude smaller than
the measured magnetization.
We wish to find the correlated volume, Vc, in order to

find the number of correlated spins from the measured
magnetization using Eq. (16). There are two possibil-
ities: either a spherical volume (no further growth in
the parallel direction once the perpendicular correlation
length has reached L), or a “pancake-like” shape allowing
for an equilibrium multiplicative growth in the parallel
direction.
For a spherical correlated volume,

Vc =
4

3
π

(

L
2

)3

(19)

Putting in the quantities in Eq. (17), we find α =
3.9× 10−5, about two orders of magnitude less than the
measured value.
For the pancake shape, the correlated volume from

Eqs.(5) and (6) is given by,

Vc = πb2L3

(

Tg
T

)2ν2d

. (20)

Inserting this expression for Vc into Eq. (17), and using
the value of α = 4.61 × 10−3 from experiments (taking
Tg = 53 K), generates an expression for the scaling coef-
ficient b that depends upon the choice of exponent ν2d.
Using the values associated with Ising, Heisenberg spin
or chiral correlation lengths; we find b = 1.6 ∼ 3.45. For
a coefficient b “of order of unity” it would appear that
Ising-like growth is present, but clearly Heisenberg or
chiral correlation length growth cannot be ruled out. In
our case, it seems clear that our experimental results are
best satisfied with a pancake-like correlated structure as
a consequence of D = 2 spin glass dynamics.
As a final note, we have assumed compact growth for

the number Nc of correlated spins in Eqs. (19) and (20).
As pointed out in Ref.20, the correlated space is in fact
fractal, with a dimensionality exponent of ∼ 2.81 instead
of 3. This has the effect of replacing L3 in Eqs. (19)
and (20) by L2.81, thereby increasing b concomitantly for
the pancake-like correlated structure. For Ising, Heisen-
berg spin, or chiral correlation length growth, we find
b = 2.73, 5.71 or 4.08, respectively, again favoring Ising-
like growth, but with Heisenberg spin or chiral still a pos-
sibility. A direct test of compact vs fractal growth would
be a set of experiments similar to those contained in this
paper, but with differing thin film thicknesses. By vary-
ing L, and measuring the coefficient of the H2 reduction
in ∆max(H,L), one can uniquely detect the difference be-
tween compact and fractal growth through the measured
exponent of L in Eq. (20). The relatively small value of
the changes in ∆max(H,L)/kB exhibited in Table I make
this a somewhat daunting, but still possible task.

VI. SUMMARY AND CONCLUSIONS

We have measured the effects of magnetic fields upon
the dynamics of the canonical spin glass CuMn. By using
thin films of thickness 20 nm, contained in a multilayer
structure with intervening Cu layers for interlayer decou-
pling, we have been able to “freeze” the growth of the
spin glass correlation length ξ(t, T ). This has enabled
a direct measure of the reduction of the free energy bar-
rier heights with increasing magnetic field. We have been
able to extract a quantitative estimate of this effect, and
compared it with calculations of the number of correlated
spins participating in the dynamics.
Comparing the consequences of the growth of ξ(t, T ) in

the perpendicular and parallel directions, we have been
able to exhibit the importance of fluctuations associated
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with a T = 0 transition temperature for a spin glass in
D = 2. With a reasonable value for the scaling factor, we
have shown the stable shape of the correlated region to
have a “pancake-like” shape, with the perpendicular di-
mension L of the film thickness, and a parallel dimension
exhibiting a multiplicative correlation appropriate to the
equilibrium value of the D = 2 correlation function at
the measurement temperature.

Future measurements on CuMn films of different thick-
nesses will test further properties of the growth of ξ(t, T ).
For example, is the growth of the correlated regions com-
pact or fractal20? Now that the scaling factor b has been
fixed, it should be possible to compare the number of

correlated spins as a function of film thickness L, and in
that way determine the nature of the growth of ξ(t, T ).
It would also be interesting to explore other spin glass
systems to test for the universality of these results.
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