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Light-matter interactions inside turbid medium can be controlled by tailoring the spatial distri-
bution of energy density throughout the system. Wavefront shaping allows selective coupling of
incident light to different transmission eigenchannels, producing dramatically different spatial inten-
sity profiles. In contrast to the density of transmission eigenvalues that is dictated by the universal
bimodal distribution, the spatial structures of the eigenchannels are not universal and depend on
the confinement geometry of the system. Here, we develop and verify a model for the transmission
eigenchannel with the corresponding eigenvalue close to unity. By projecting the original problem
of two-dimensional diffusion in a homogeneous scattering medium onto a one-dimensional inhomo-
geneous diffusion, we obtain an analytical expression relating the intensity profile to the shape of
the confining waveguide. Inverting this relationship enables the inverse design of the waveguide
shape to achieve the desired energy distribution for the perfectly transmitting eigenchannel. Our
approach also allows to predict the intensity profile of such channel in a disordered slab with open
boundaries, pointing to the possibility of controllable delivery of light to different depths with local
illumination.

PACS numbers: 42.25.Dd,42.25.Hz,73.23.-b

I. I. INTRODUCTION

Interference of scattered waves in random media gives
rise to well-known phenomena such as enhanced backscat-
tering, Anderson localization and universal conductance
fluctuation. These phenomena are general and occur
not only for electromagnetic waves, but also for acous-
tic, electronic and other kinds of waves1,2. Recently,
there has been a growing interest in another interference
effect – formation of perfectly transmitting channels3,4,
which can greatly enhance the total transmission through
opaque media 5–8. In addition, the perfectly transmit-
ting channels have energy density buildup deep inside
the medium7,9–11, opening the possibility of enhancing
linear and non-linear light-matter interactions inside tur-
bid media. Recent advances of optical wavefront shaping
techniques12–17 enabled direct coupling of incident light
to perfectly transmitting channels11, making the depth
profile of energy density dramatically different from the
typical decay in a diffusive medium. To unlock the full
potential of this approach for tailoring light-matter in-
teractions in turbid media, it becomes imperative to un-
derstand what determines the spatial structure of the
perfectly transmitting channels.

Recently two theoretical models have been put forward
to describe the spatial profile of the perfectly transmit-
ting channels in lossless diffusive media. Davy et al9 ap-
plied the supersymmetry theory to wave propagation in a
quasi-one-dimensional random system and related the in-
tensity profile to the return probability (RP) of diffusive
waves. Ojambati et all10,18 proposed that the perfectly
transmitting channel in a disordered slab is related to the
fundamental mode (FM) of the one-dimensional (1D) dif-
fusion equation. Although both models predict correctly
the depth of the maximum energy density7,9,11,19, they
disagree quantitatively in terms of the depth profile for

the perfectly transmitting channel. So far, both models
have been applied only to one-dimensional diffusion.

We have studied light transport in quasi-two-
dimensional disordered systems, and showed that the spa-
tial structure of transmission eigenchannels can be mod-
ified by the confinement geometry20. For example, by
adjusting the shape of the reflecting boundary of a disor-
dered waveguide, the depth at which the energy density
of a high transmission channel reaches the maximum can
be moved. This enables enhancing light-matter interac-
tion at different location inside the random medium. For
many applications, inverse design is needed, namely, to
design the confinement geometry to achieve the desired
depth profile of energy density inside a diffusive system.
This requires a prior knowledge of the relation between
the geometry of the system and the spatial structure of
the transmission channels. However, there is currently no
theoretical model capable of establishing such relation.

In this work, we consider a two-dimensional disordered
waveguide with an arbitrary shape, and develop a theo-
retical model to predict the spatial structure of the per-
fectly transmitting eigenchannel in the regime of diffusive
transport. We further employ a projection technique, de-
veloped in physical chemistry for the particle diffusion
in confined geometries21, to obtain an analytical relation
between the depth profile of the perfectly transmitting
eigenchannel and the geometry of the waveguide. With
this relation, we perform the inverse design of the waveg-
uide shape to realize the desired energy distribution for
the perfectly transmitting eigenchannel. Finally, we pre-
dict the depth profile for the perfectly transmitting eigen-
channel in an open slab geometry with local illumination,
by simulating the lateral beam spread in a waveguide of
expanding width. We find that the depth of the maxi-
mum of intensity increases with the size of the impinging
beam, which provides an insight into controlling the en-
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ergy distribution inside a diffusive slab with local illumi-
nation.

II. II. MODEL AND ITS SOLUTION

The transmission matrix, which connects the transmit-
ted fields to the incident fields, contains the complete in-
formation about wave transport through the disordered
system. Transmission eigenchannels are introduced via
singular value decomposition of the transmission matrix
t̂ = Û τ̂1/2V̂ †. Here τ̂ is the diagonal matrix of eigenval-
ues of t̂†t̂ that represent the transmittance of each eigen-
channel; V̂ is a unitary matrix that maps the incoming
modes onto the eigenchannels; and Û is a unitary matrix
that maps the eigenchannels onto the outgoing modes. In
the regime of diffusive transport, the transmission eigen-
values have a universal bimodal distribution, independent
of both the microscopical details of the disorder and the
boundary shape of the system. It consists of two peaks
at τ ∼ 0 and τ ∼ 1, which correspond respectively to
closed and open eigenchannels22–25.
Here, we consider a two-dimensional (2D) waveguide

with reflecting boundaries at y = ±W (z)/2. The
region 0 ≤ z ≤ L is filled with lossless scattering
medium characterized by the transport mean free path
ℓ ≪ L. The waveguide width W (z) can be either
larger or smaller than the length L, corresponding to
slab or quasi-1D geometry. Our aim is to predict the
depth profile (cross-section averaged intensity) of the
perfectly transmitting eigenchannel (PTE) with τ ≃ 1,

φ(z) ≡ W−1(z)
∫W (z)/2

−W (z)/2〈IPTE(r)〉dy, where IPTE(r) is

the intensity and 〈...〉 denotes the ensemble averaging.
IPTE(r) ≡ |EPTE(r)|2, and EPTE(r) is the solution of
the wave equation with the incident wave given by the
eigenvector (a column vector in V̂ ) corresponding to the
eigenvalue τ ≃ 1.
Diagrammatic theory was used9 to establish connec-

tion between the spatial profile of PTE and the diffusion
return probability to the cross-section in a rectangular
waveguide of constant width W ≪ L. To determine PTE
profile in the waveguides of an arbitrary cross-section and
without the width constraint, we propose a phenomeno-
logical model based on the solution of the diffusion equa-
tion with the additional ad-hoc self-action term on the
right-hand-side:

−∇2
r
G(r; r′) = [1 + αG(r; r′)] δ(z − z′)/W (z), (1)

where the diffusion coefficient D0 is absorbed in
the definition of G(r; r′). Cross-section average of

its solution G̃(z; z′) ≡ W−2(z)
∫ ∫

G(y, z; y′, z′)dydy′

gives the normalized depth profile of PTE φ(z) =

G̃(z; z)/max[G̃(z; z)]. For a rectangular waveguide in the
limit of W ≪ L with α ≡ 0, Eq. (1) reduces to the return
probability model of Ref.9.
The ad-hoc self-action term in Eq. (1) will be justified

in numerical simulations below, it is meant to account

for the effect of interference of waves that return after
multiple scattering. It reflects the fact that upon the re-
turn, the coherent sum of the fields leads to the cross
terms in the total intensity, similar to the weak local-
ization correction26. With the proper choice of α (to be
determined below), this equation can be solved inside the
disordered waveguide (0 ≤ z ≤ L, |y| ≤ W (z)/2) with
the open boundary conditions at the two ends (z = 0, L),
[z0∂G(r; r′)/∂z ∓G(r; r′)]z=0,L = 0, where z0 = (π/4)ℓ

is the 2D extrapolation length1. The solution can be
readily obtained numerically.
To obtain the analytical solution, we employ a projec-

tion technique that was developed in the study of diffu-
sion of electrolytes in nano-pores21. This technique re-
duces the process of solving 2D diffusion equation in a
complex geometry to a solution of the one-dimensional
diffusion equation (along z-axis) with an effective diffu-
sion coefficient that varies with z:

D(z) = W (z)/
[

1 + (W ′(z)/2)2
]1/3

, (2)

where the nominator accounts for the geometrical effect
of reduction of flux in a constriction, and the denomina-
tor is introduced to expand the applicability to systems
with larger width variation of upto W ′(z) ≃ 1, see Ref.21

for details. Eq. (1) is then transformed to yield G̃(z; z′)
directly

− ∂

∂z
D(z)

∂

∂z
G̃(z; z′) =

[

1 + αG̃(z, z′)
]

δ(z − z′), (3)

while the boundary conditions at z = 0, L remain the
same. This method suits our problem because we are
interested in the depth dependence of the cross-section-
averaged intensity profile.
We stress that the z-dependent diffusivity D(z) arises

from the varying width W (z) in a purely diffusive waveg-
uide where the localization corrections are negligible. In
the regime where localization corrections are significant,
the projection ansatz used to obtain Eq. (3) from Eq. (1)
is still applicable with the effective diffusion coefficient
D(z)×D(z)/D0, whereD(z) is the cross-section averaged
value of the position-dependent diffusion coefficient27–29

due to the localization-induced renormalization and D0

is its unrenormalized value.
Solution of Eq. (3) can be obtained in the closed form

φ(z)=
(1− α̃)F (z)

[1− α̃F (z)]
(4)

F (z)=

4

(

z0
D(0)

+

∫ z

0

dz′

D(z′)

)

(

z0
D(L)

+

∫ L

z

dz′

D(z′)

)

(

z0
D(0)

+
z0

D(L)
+

∫ L

0

dz′

D(z′)

)2

α̃ =
α

4

(

z0
D(0)

+
z0

D(L)
+

∫ L

0

dz′

D(z′)

)

. (5)

φ(z) has been normalized so that max[φ(z)] = 1 and
F (z) is an auxiliary function, which corresponds to the
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normalized solution of the same set of equations with
α = 0. The value of α (or α̃) can be found from the
waveguide with constant width.

III. III. VERIFICATION IN RECTANGULAR

GEOMETRY

To test the analytical solution, we compare it to the
numerical solution obtained by directly solving the wave
equation with KWANT simulation package30, see Ap-
pendix A for details. Figure 1a compares the profile of
PTE computed numerically to the predictions of the two
previously developed models9,18. Although RP-model de-
viates from the numerical solution, both models agree
well at z = 0, L. They give φ(RP )(0) = (8/π) × (ℓ/L) ≃
2.55 × (ℓ/L) and φ(FM)(0) = (π2/4) × (ℓ/L) ≃ 2.47 ×
(ℓ/L). The knowledge of φ(z) at one point is enough to
recover the value of the coefficient α̃. We find close val-
ues of α̃ = 1 − 8/π2 ≃ 0.19 and α̃ = 1 − π/4 ≃ 0.21
from the two models. Below, to be specific, we use the
former value. Importantly, we observe that α̃ is a non-
zero numerical constant independent of system parame-
ters, such as the transport mean free path and the system
dimension, underlining the universality of the self-action
term on the right-hand-side of Eqs. (1,3). The result of
Eqs. (4) is shown as dashed line in Fig. 1a, it agrees well
with the result of numerical simulations. Quantitatively,
the deviation (see Eq. (S1) in SI31) for RP-, FM-models
and our Eq. (4) are 5.6%, 0.4% and 0.4% respectively.
Furthermore, in Fig. 1b we verify that the same value of
α̃ applies to waveguides with varying cross-section. We
stress that the agreement between numerical simulations
and our model is achieved with no fitting parameters.

0

0.2

0.4

0.6

0.8

1

φ
(z
)

(a)

L

y

W

z

0

0

0.2

0.4

0.6

0.8

1

φ
(z
)

(b)

(iii)

(i)

(ii)

(ii) (iii)

(i)

0 0.2 0.4 0.6 0.8 1
z/L

0.8

0.9

1

1.1
w
(z
)

( )

FIG. 1. (Color online) Comparison of previous models to ours
in predicting the perfectly transmitting eigenchannels (PTEs)
in the diffusive waveguides. (a) The cross-section integrated
intensity φ(z) of the PTE in a constant width waveguide, com-
puted numerically (bold solid line) and predicted by the RP-
model (dash-dotted line), the FM-model (dotted line), and
our model Eq. (4) (dashed line). The inset is 2D intensity dis-
tribution of the PTE, computed numerically, throughout this
waveguide with L/ℓ = W/ℓ ≃ 18.3. (b) φ(z) for the PTEs in
three waveguides of varying cross-section. Blue color: expand-
ing waveguide, green color: lantern waveguide, purple color:
bow-tie waveguide. Solid lines: numerical simulation, dashed
lines: our model Eq. (4). The inset are the numerically cal-
culated 2D intensity distribution for the PTEs in the three
waveguides. The waveguide length and width at the widest
point are identical to those of the waveguide shown in (a).
The width at the narrowest point is equal to a half of that at
the widest point. (c) The waveguide width w0(z) obtained by
inverting (via Eq. (13)) the depth profile φ0(z) predicted in
the rectangle geometry by the RP-model (dash-dotted line),
the FM-model (dotted line), constant width (dashed line) is
shown for reference. z0 ≪ L is assumed for clarity. The FM
model shows less deviation from a constant width than the
RP-model, but only our model produces the consistent result
of constant width.
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IV. IV. ARBITRARY GEOMETRY: INVERSE

DESIGN

The closed-form analytical solution given in Eq. (4) es-
tablishes the relation between the shape of the diffusive
waveguide and the depth profile of the PTE, thus en-
abling the inverse design. By introducing a normalized

width function w(z) = [W (z)/L] ×
∫ L

0 dz′/W (z′), the

dimensionless conductance g = kℓ/
[

2
∫ L

0
dz′/W (z′)

]

32,

and neglecting the extrapolation length z0, we obtain
an expression for waveguide boundary function w0(z) in
terms of the depth profile φ0(z)

w0(z)/

[

1 +
( g

kℓ
w′

0(z)
)2
]1/3

= (6)

[

(1− α̃)(1 − α̃(1 − φ0(z)))
3(1− φ0(z))/φ

′2
0 (z)

]1/2
,

where k = 2π/λ is wave number and φ0(z) satisfies the
boundary condition φ0(z = 0, L) = 0. The extrapolation
length at the boundary z = 0, L can be accounted for by
the following scaling

φ0(z) → φ(z) = φ0 ((z + z0)/(L+ 2z0)) (7)

w0(z) → w(z) = w0 ((z + z0)/(L+ 2z0)) . (8)

In Appendix B, we present a table of φ(z) for the waveg-
uide geometries w(z) shown in Fig. 1b.

The relation between w(z) and φ(z) allows us to infer
the shape of the waveguide from the depth profile of the
PTE. For the depth profile of PTE predicted by the RP-
and FM-models for the rectangle waveguide, c.f. Fig. 1c,
we derive the corresponding waveguide shape, as shown
in Figs. 1c. The shape predicted by the RP model corre-
sponds to a waveguide with the width variation of up to
20%. In contrast, FM-model is more accurate. However,
in other waveguide geometries, as shown in the SI31, the
PTE profiles predicted by the FM-model are inconsistent
with the results of the numerical simulations.

To demonstrate the power of inverse design, we change
the universal profile of PTE in constant-width waveg-
uides to a highly unusual profile of a triangle. Accord-
ing to Eq. (13), to have φ0(z) increase linearly with z,
we find the waveguide width w(z) ∝ √

z in the lead-
ing order of α̃. This allows us to design waveguides
that support PTE with a triangular profile, as shown
in Fig. 2. The waveguide boundary is described by
W (z) = Wc + ∆W

√

|z − zc|/zc, where zc denotes the
depth at which the width is the narrowest. It also closely
corresponds to the maximum of the intensity profile of
the PTE. The results in Fig. 2, obtained for two different
values of zc/L = 1/2 and 2/3, show that it is possible
to obtain waveguide geometries that have maximum con-
centration of energy at the desired depth.
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FIG. 2. (Color online) Design of waveguide shape to achieve
the desired depth profile of PTE. The cross-section averaged
intensity φ(z) showing an abnormal triangular dependence on
the depth is obtained by the inverse design of the waveguide
width w(z) by Eq. (13). Bold solid lines are the result of
numerical simulation, and dashed lines are the prediction by
our model. The two waveguides, shown in the inset, have the
PTE intensity maximum at the depth zc/L = 1/2 (blue line)
and 2/3 (red line). The 2D intensity distribution of PTE are
plotted in insets.

Finally, the inverse design introduced above provides
an insight to controlling the depth profile of light in-
tensity inside a disordered slab with local illumination.
Such a geometry is common in optical experiments, and
it is different from the waveguide geometry because the
light will diffuse laterally as it penetrates deeper into the
slab. A waveguide expanding linearly at 45◦ angle can
be used as a proxy for studying the lateral diffusion in
the slab geometry with local illumination32. In particular
we consider a waveguide with expanding width W (z) =
W1 + (W2 −W1)× (z/L), and the tapering angle of the
waveguide boundary is θ = arctan[(W2 −W1)/2L] = 45◦,
to mimic the lateral diffusion in the slab. Substituting
this expression into Eq. (4) leads to an important result
– the profile of PTE depends on the aspect ratio of the
waveguide W1/L, see Fig. 3. It implies that in the slab
geometry, the ratio between the impinging beam size and
the thickness of the slab can be used to control the en-
ergy penetration. An analytical expression of the depth
profile is given in Appendix B, here, we only present the
formula for the depth of the maximum of the intensity

zmax ≃ L/
[

1 +
√

1 + 2L/W1

]

. (9)

As expected, for W1 ≫ L we recover known result
zmax → L/2. As W1/L decreases, the maximum of the
energy profile is displaced towards the front surface. This
result has practical applications as it offers a mechanism
to scan the intensity maximum of PTE in the longitudi-
nal direction of a disordered slab by varying the incident
beam size.
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FIG. 3. (Color online) Prediction of PTE depth profile in
an open slab with local illumination by approximating the
lateral beam spreading with an expanding waveguide. The
cross-section averaged intensity φ(z) for the linearly expand-
ing waveguides W (z) = W1 + 2 × z with different values of
W1 and fixed L/ℓ ≃ 18.3. Gray area represents the region
where φ(z) is greater than 1/2 of its maximum value. The
position of the maximum zmax depends on W1/L, which is
well described by Eq. (9), bold dashed line.

V. V. CONCLUSIONS

In conclusion, we proposed a model for the perfectly
transmitting eigenchannel (PTE) in the two-dimensional
(2D) random system with an arbitrary shape. A self-
action term was incorporated into the 2D diffusion equa-
tion for the return probability, to account for the inter-
ference effect. We employed a projection technique to
reduce the 2D problem to 1D, and obtained an analyt-
ical expression relating the depth profile of the PTE to
the boundary shape of the waveguide. This relation en-
abled the inverse design, namely, finding the waveguide
shape to achieve the desired depth profile of the PTE.
As an example, we predicted and verified numerically
a specific shape of the waveguide in which PTE has a
triangular profile. Such a profile, distinct from the uni-
versal parabolic-like profile of the PTE in the rectangle-
shaped waveguide 4,7,9,18, yields a tighter energy distribu-
tion, that can enhance the local light-matter interaction
inside the diffusive medium.
Approximating the lateral beam spreading with an ex-

panding waveguide, we predict the depth profile for the
PTE in an open slab with local illumination. The depth
for the maximum intensity increases with the size of the
impinging beam. Our model can be further extended to
include the effect of mismatched boundary conditions33

(via an appropriate choice of z0), and to describe three-
dimensional geometries, see Appendix C. In the latter
case, the projection to one-dimension Eq. (2) shall be
modified as well21. The results presented here are appli-

cable to electromagnetic, acoustic, electronic and other
types of waves. In optics, in particular, controllable de-
livery of light to different depths may lead to non-invasive
imaging, sensing and therapeutic applications such as e.g.
2-photon fluorescence, second harmonic generation mi-
croscopy.
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VII. APPENDIX A: NUMERICAL

SIMULATIONS

We numerically obtain the perfectly transmitting eigen-
channel (PTE) by the direct solution of the wave equa-
tion using KWANT simulation package11,30. It allows to
conveniently compute the transmission matrix t̂ relating
the incoming and outgoing wave amplitudes. The simu-
lated system is a two-dimensional disordered waveguide
0 ≤ z ≤ L, |y| ≤ W (z)/2. In KWANT it is defined as a
collection of coupled lattice sites in the two-dimensional
rectangular grid described by a tight-binding Hamilto-
nian. Lack of bonds at the terminal sites at the sidewalls
naturally introduces the reflecting boundary conditions.
To model a passive random medium we introduce dis-
order by adding a random on-site potential δEii to the
diagonal elements as Hii = E0 + δEii, while keeping the
nearest neighbor couplings at constant value of 1. The
scattering region 0 ≤ z ≤ L is connected to the leads at
z < 0 and z > L where δEii = 0. This model is well
suited to describe wave scattering phenomena as long as
kℓ ≫ 134 where k is the wave number and ℓ is transport
mean free path.
The transmission matrix t̂ relates the amplitudes of

the propagating modes incident from the left lead φa

to those of the outgoing modes in the right lead φb.
Representing t†t = V̂ τ̂ V̂ † gives the diagonal matrix
of eigenvalues τn and the corresponding eigenchannels
Van. After computing t̂, we construct the input field
vector φa = Van to couple exclusively into a specific
eigenchannel n. With τn arranged in the decreasing
order, n = 1 corresponds to the maximum transmission
eigenchannel11. The parameters of the waveguides are
chosen to be in the regime of a well-developed diffusive
propagation L/ℓ,W/ℓ ≫ 1. In this regime, the universal
bimodal distribution of the eigenvalues τn yields the
maximum at τ ≃ 1. In each disorder realization we
select eigenchannel with n = 1 and retain it only if
1 − ǫ < τn=1 < 1 with ǫ = 0.03. Then we compute its
intensity IPTE(r) and average over the ensemble of 1000
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random realizations of disorder to obtain 〈IPTE(r)〉. φ(z)
is obtained by averaging 〈IPTE(r)〉 over the cross-section
of the waveguide.

VIII. APPENDIX B: PTE PROFILES FOR

SELECT GEOMETRIES

In Sec. IV we outlined the procedure to find the depth
profile of PTE φ(z) for a given shape of disordered waveg-
uide w(z), Eqs. (2,4), or other way around, to find w(z)
from φ(z), Eq. (13). In this appendix we present the
pairs w(z), φ(z) for a select group of waveguide geome-
tries studied in this work.
1. Rectangular waveguide:

w(z) ≡ 1

φ(z) =
4(1− α̃)ζ(1 − ζ)

1− 4α̃ζ(1− ζ)

ζ = (z + z0)/(L+ 2z0).

2. Linearly expanding waveguide:

w(z) =

(

W1

W2 −W1
+

z

L

)

log
W2

W1

φ(z) =
4(1− α̃)ζ(1 − ζ)

1− 4α̃ζ(1 − ζ)

ζ =

z0
W1

+
L

W2 −W1
log

w(z)

w(0)

z0
W1

+
z0
W2

+
L

W2 −W1
log

w(L)

w(0)

.

Here W1,2 denote the widths at z = 0, L.
3. Bowtie/lantern waveguide:

w(z) =

(

W2

W1 −W2
+
∣

∣

∣
2
z

L
− 1
∣

∣

∣

)

log
W1

W2

φ(z) =
4(1− α̃)ζ(1 − ζ)

1− 4α̃ζ(1 − ζ)

ζ =

z0
W1

+
L/2

W2 −W1
log

w(z)

w(0)

z0
W1

+
z0
W2

+
L

W2 −W1
log

w(L)

w(0)

.

Here W1 denote the widths at z = 0, L, and W2 is the
width at the mid-point z = L/2 of the waveguide.

IX. APPENDIX C: GENERALIZATION TO 3D

In this Appendix we generalize our model Eqs. (1,2,3)
to three-dimensional systems. We consider axially sym-

metric waveguide of diameter W (z) where z is the axial
coordinate. This corresponds to cross-section A(z) =
πW 2(z)/4 which varies longitudinally. 3D version of
Eq. (1) with a planar source at z′ now reads

−∇2
r
G(r; r′) =

[

1 + α(3D)G(r; r′)
]

δ(z − z′)/A(z), (10)

where as in Eq. (1) the diffusion coefficient has been
absorbed in the definition of G(r; r′). Open boundary
conditions are to be applied at the two ends (z = 0, L),
[

z
(3D)
0 ∂G(r; r′)/∂z ∓G(r; r′)

]

z=0,L
= 0, where z

(3D)
0 =

(2/3)ℓ is the 3D extrapolation length. Projection from
the 3D waveguide geometry to 1D system with spatially-
varying diffusion coefficient can be accomplished analo-
gously21 to 2D case (compare to Eq. (2)), with

D(3D)(z) = A(z)/
[

1 + (W ′(z)/2)2
]1/2

, (11)

Eq. (10) is then transformed to yield G̃(z; z′) ≡
A−2(z)

∫ ∫

G(r; r′)dxdydx′dy′ directly

− ∂

∂z
D(3D)(z)

∂

∂z
G̃(z; z′) =

[

1 + α(3D)G̃(z, z′)
]

δ(z − z′),

(12)
while the boundary conditions at z = 0, L remain the
same as for Eq. (10).

The normalized depth profile of PTE φ(z) =

G̃(z; z)/max[G̃(z; z)] can be found in the analytical form
of Eqs. (4,5) with substitution of D(z) → D(3D)(z) and
α̃ → α̃(3D). The former is given by Eq. (11). The value
of the constant α̃(3D) can be established using the same
procedure as in Sec. III – comparing the result to the
waveguide with W (z) = const ≪ L in RP- or FM-model.
We find α̃(3D) = 1− 3/π ≃ 0.045 and 1− 3π2/32 ≃ 0.075
respectively.

Inversion of the solution can be made similar to
Eqs. (13,7,8). Introducing a normalized area function

a(z) = [A(z)/L] ×
∫ L

0 dz′/A(z′), and neglecting the ex-
trapolation length z0, we obtain an expression for waveg-
uide boundary function a0(z) in terms of the depth profile
φ0(z)

a0(z)/
[

1 + (W ′
0(z)/2)

2
]1/2

= (13)

[

(1− α̃)(1 − α̃(1− φ0(z)))
3(1− φ0(z))/φ

′2
0 (z)

]1/2
,

where subscript zero refers to z0 → 0 approximation,
which is relaxed using scaling procedure in Eqs. (13,8).
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