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We investigate the effects of disorder in Floquet topological insulators (FTIs) occurring in semiconductor
quantum wells. Such FTIs are induced by resonantly driving a transition between the valence and conduction
band. We show that when disorder is added, the topological nature of such FTIs persists as long as there is a
mobility gap at the resonant quasi-energy. For strong enough disorder, this gap closes and all the states become
localized as the system undergoes a transition to a trivial insulator. Interestingly, the effects of disorder are not
necessarily adverse: we show that in the same quantum well, disorder can also induce a transition from a trivial
to a topological system, thereby establishing a Floquet Topological Anderson Insulator (FTAI). We identify the
conditions on the driving field necessary for observing such a transition.

I. INTRODUCTION

Application of a time-periodic drive provides a versatile
tool for inducing topological phenomena in condensed mat-
ter systems1–10. In addition to phenomena akin to topologi-
cal phases in static systems, periodically driven systems ex-
hibit unique topological phases that are only possible in the
time dependent setting,11–18 and recent works have focused
on classifying such phases19–28. Several experiments have
probed Floquet topological phase in solid-state29,30, optical31

and cold-atom32 based systems. In solid state systems, pe-
riodic driving applied via external electromagnetic field can
induce topological bandstructures for electrons in systems
which are topologically trivial absent the drive, thereby yield-
ing “Floquet topological insulators” (FTIs). Recent works
have explored transport in FTIs,33–37 and means to stabilize
topological features in their electronic steady states via cou-
pling to external baths38–40. A by and large outstanding ques-
tion, however, is the extent to which resonantly driven FTIs
are robust to disorder.

In time-independent systems, a topological bandstructure
(e.g., bands with non-zero Chern numbers), allows low-
dimensional systems to evade localization as long as they
exhibit a bulk mobility gap that separates between the topo-
logical bands41–46. Surprisingly, addition of disorder to a
topologically trivial system may in fact induce a topological
phase. Systems which undergo such a transition are referred to
as topological Anderson insulators (TAI). Theoretical works
showed that it is possible to induce such a transition in a va-
riety of systems, including semiconductor quantum wells47,48,
honeycomb lattices49 as well as in three dimensional semicon-
ductors50. Experimentally, the transition to a TAI is yet to be
observed since the strength of disorder is hard to control in
situ.

What are the effects of quenched disorder on topological,
periodically driven bandstructures? Could disorder give rise
to new topological phases in such systems? These are pre-
cisely the questions we consider in this manuscript. We con-
centrate on the semiconductor quantum well models for Flo-
quet topological insulators1. In this 2D model, the frequency

of the periodic drive is resonant with a transition between
the valence and conduction bands, which occurs on a ring in
momentum-space. This effectively induces a band-inversion
that leads to a topological phase. When disorder is present,
and momentum conservation is lost, the band inversion argu-
ment cannot be simply applied. In the first part of this work,
we demonstrate the robustness of quantum well FTIs when
disorder is added, including the persistence of the edge modes
in the quasi-energy gap. Additionally, we find that the tran-
sition to a trivial phase is similar to the quantum-Hall plateau
transition.

In the second part of this work, we study the possibility
to induce a transition to a topological phase by adding dis-
order to a periodically driven semiconductor quantum well.
Several previous works have explored the possibility of in-
ducing topological phases by adding disorder to periodically
driven systems12,13,18,51–55. A notable example in a two dimen-
sional system is the Anomalous Floquet Anderson Insulator
(AFAI)12, a phase unique to periodically driven systems which
exhibits non-adiabatic quantized pumping. Another possibil-
ity was explored in Ref. 56, where it was shown that addi-
tion of quenched disorder to a (topologically trivial) period-
ically driven honeycomb lattice system, induces a transition
to a Floquet topological Anderson insulator (FTAI). Such a
transition to the FTAI may be realized in an all optical system
constructed from helical waveguides in a honeycomb lattice31.

As we show in the second part of this manuscript, a transi-
tion to an FTAI phase can be induced in a periodically driven
semiconductor quantum well, thus providing a new route for
exploring the FTAI phase in electronic systems. The transition
to the FTAI phase induced in the quantum well model relies
on a different mechanism than the FTAI induced in the hon-
eycomb system. In the honeycomb lattice model, the disorder
simply renormalizes the parameters of the undriven effective
Hamiltonian in the vicinity of the Dirac points56. In contrast,
in the quantum well model, the disorder renormalizes the form
of the time-periodic drive. Therefore, even if the form of the
drive induces a topologically trivial Floquet gap in the quan-
tum well absent the disorder, the renormalized drive may pro-
duce a topological gap. We find this effect in two variants of
the model, which yield both time reversal symmetric FTAIs,



2

as well as FTAIs with broken time reversal symmetry.
The paper is organized as follows. In Sec. II, we review the

model for Floquet topological insulators in a semiconducting
quantum well induced by a time-periodic Zeeman field. In
Sec. III, we outline the various tools used throughout this pa-
per. We discuss how to obtain the localization length from
time-evolution of wavepackets, how to probe the localization
transition by studying the statistics of the quasi-energy lev-
els, and define the Bott indices for the quasi-energy bands. In
Sec. IV, we demonstrate the robustness of Floquet topological
insulators to disorder and the transition to a localized phase at
a critical disorder strength. In Sec. V, we provide a method for
realizing the FTAI in the semiconductor model introduced in
Sec. II. Finally, in Sec. VI, we show the existence of the FTAI
phase in a quantum well subjected to an elliptically polarized
light.

II. MODEL : FLOQUET TOPOLOGICAL INSULATORS

We start with a single block of the Bernevig-Hughes-Zhang
(BHZ)57 model of a two-dimensional, spin-orbit coupled,
semi-conducting quantum well in the presence of a periodic
drive1 ,

Hr(k, t) = d(k) ⋅σ +V ⋅σ cos(Ωt), (1)
≡H0 + V , (2)

where for quasi-momenta around the k = 0 point, we expand
d = (Akx,Aky,M −B(k2

x + k2
y)), kx and ky being the crys-

tal momentum along x and y directions. The system is driven
periodically at a frequency, Ω with V = (Vx, Vy, Vz). The
Pauli matrices σ = (σx, σy, σz) corresponds to pseudospin.
The full BHZ Hamiltonian can be described as a block diag-
onal 4 × 4 matrix acting on conduction (E1, ±1/2) and heavy
hole (H1, ±3/2) states. The Hamiltonian in Eq. (2) will be
taken as acting on the two dimensional subspace of positive
spins of the conduction (E1, +1/2) and heavy hole (H1, +3/2)
subbands. We label this pseudospin basis as {∣ ↑⟩, ∣ ↓⟩}. The
periodic drive, V may be physically obtained either from a
periodic Zeeman field, or an elliptically polarized radiation.
While in the presence of a periodically varying Zeeman field,
the components, Vx,y,z are constants, for an elliptically polar-
ized radiation, V is dependent on the crystal momentum, k.
We discuss the details of using elliptically polarized light in
section VI and appendix C.

The time-independent part of the Hamiltonian, H0, de-
scribes an insulator with spin-orbit coupling. While the full
4×4 BHZ Hamiltonian is time reversal symmetric, the Hamil-
tonian H0 in Eq. (2) which describes a single block, is not
time-reversal symmetric. Depending on the parameters, it ex-
hibits quantized Hall conductance which is proportional to the
Chern number (C), a bulk topological invariant. The Hamil-
tonian is topologically non-trivial when the Chern number is
non-zero. The Chern number is ±1, when 0 <M/2B < 2 and,
0 when M/2B < 0.

How can one classify time-dependent Hamiltonians such
as the one defined in Eq. (1)? Energy is no longer a well de-
fined quantum number, however, for a time-periodic Hamil-
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FIG. 1. The bandstructure for the model Hamiltonian (defined in
Eq. (1) ) in different parameter regimes. (a) The original time-
independent band-structure for the Hamiltonian for the parameter
regimes: A/M = 0.2, B/M = −0.2. The band is topologically
trivial. (b) The quasi-energy bandstructure in the presence of driving
for the same system parameters as (a), with V/M = (0,0,1) and
Ω/M = 3. This band-structure is clearly non-trivial with edge states
in the gap at the resonant quasi-energy, ε = Ω/2. They are done on a
lattice with periodic boundary conditions in the x direction and open
boundary conditions with L = 60 sites in the y direction.

tonian, it is possible to define an effective time-independent
Hamiltonian. This so-called Floquet Hamiltonian conserves
energy modulo the frequency of the drive, which we label as
quasienergy. This is a consequence of the Floquet-Bloch the-
orem. Periodically driven non-interacting Hamiltonians are
analogously classified on the basis of the the topology of the
gapped quasi-energy bandstructures. For the cases we study
here, Chern and Z2 invariants akin to the invariants used for
classifiying static systems are sufficient. More generally, Flo-
quet bandstructures are classified by a winding number11.

The Floquet Hamiltonian, HF
r is obtained from a Fourier

series in the driving frequency Ω,

(HF
r )

nm
≡ ⟨n∣HF

r (k)∣m⟩

= nΩδnm + ∫
2π
Ω

0
dt Hr(t) eiΩ(n−m)t. (3)

Here, −∞ < n,m <∞, are Floquet indices that indicate repli-
cas of the original Hilbert space. Essentially, the periodic
time-dependence of the Floquet states, {∣n⟩}, is determined
by the Floquet index, ⟨t∣n⟩ = einΩt. In this formulation, the
eigenvalues, ε, of HF are unbounded, but one can identify
ε → ε + nΩ. Therefore, the quasi-energies of the HF are
periodic consisting of blocks indexed by n. Throughout this
paper, we usem and n to refer to a given Floquet block. Using
Eqs. (1) and (3), we note that the time-independent part of the
Hamiltonian is diagonal in the Floquet indices while the driv-
ing term, acts as hopping between different blocks. Explicitly,
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the Floquet Hamiltonian has the following form,

HF
r =

⎛
⎜⎜⎜⎜⎜
⎝

⋱ ⋮
1
2
V ⋅σ d(k) ⋅σ −Ω 1

2
V ⋅σ ⋰

1
2
V ⋅σ d(k) ⋅σ 1

2
V ⋅σ

⋰ 1
2
V ⋅σ d(k) ⋅σ +Ω
⋮ ⋱

⎞
⎟⎟⎟⎟⎟
⎠

,

(4)
with each row and column corresponding to a particular Flo-
quet index. This matrix formally is infinite dimensional, so,
in order to obtain the quasi-energies numerically, we truncate
the matrix after NF blocks, with NF determined using con-
vergence tests.

The Floquet topological phase is induced in a trivial BHZ
Hamiltonian (i.e. M/2B < 0) through a resonance in the
band-structure. Let us consider the case when the radiation
potential induces a single resonance in the bandstructure. This
happens when the driving frequency satisfies {M, W

2
} < Ω <

W , whereW is the bandwidth of the time-independent Hamil-
tonian,H0. The quasi-energy spectrum has a resonance when,

∣d(k)∣ = Ω/2, (5)

which corresponds to a circle in the Brilluoin zone. Intuitively,
in the perturbative limit, ∣V∣/Ω ≪ 1, the radiation potential
creates a quasi-energy gap at the resonance circle. This can
be understood from the schematic diagrams in Fig. 2. Con-
sider a system,H0 with energy bandstrucutre as shown in Fig.
2 (a). To obtain the quasi-energy spectrum for the driven sys-
tem [Eq. (1)], we first make copies of the bandstructure by
translating the original spectrum by Ω as shown in Fig. 2(b).
The resonant quasienergies are modified strongly by the radia-
tion potential, V ⋅σ, resulting in a quasi-energy gap. Then, the
quasienergy (ε) spectrum is obtained by studying the eigenval-
ues and eigenstates of HF

r in one Floquet zone, 0 < ε < Ω, as
shown in Fig. 2 (c).

Using the rotating wave approximation, the spectral proper-
ties of the Floquet Hamiltonian can be approximated by study-
ing an effective two band Hamiltonian of the form1,

HF
eff = Ω

2
1 + (∣d(k)∣ − Ω

2
) d̂(k) ⋅σ + 1

2
V⊥.σ, (6)

where

V⊥(k) =V − (V.d̂(k)) d̂(k). (7)

We denote the quasienergy bands (see Fig. 2) by {∣ψF± (k)⟩}.
These bands have a gap at the resonance circle, Vg = ∣V⊥(k)∣.

Next, we define the the Chern number (C), which gives the
topological invariant for these bands. The Chern number is
given in terms of the unit vector, n̂(k) = ⟨ψF− (k)∣σ∣ψF− (k)⟩,
with

C = ± 1

4π
∫ d2k n̂(k) ⋅ (∂kx n̂(k) × ∂ky n̂(k)) , (8)

where, kx and ky are integrated over the first Brilluoin zone.
A sufficient condition for the Chern number, C, to be non-
zero is for the unit vector, n̂(k), on the resonance circle to
wind around the north pole1. On the resonance circle,

n̂(k) =V⊥(k)/∣V⊥(k)∣. (9)
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FIG. 2. Figure shows the schematic for obtaining the quasi-energies
of the driven Hamiltonian. (a) shows example of a time-independent
bandstructure in momentum space. For clarity, we show a slice of
the spectrum only along a particular momentum direction. (b) shows
three replicas (labeled as n = −1, 0 and 1, representing three Floquet
blocks) of the bandstructure. The replicas are obtained by shifting
the time-independent bands by nΩ. This represents the spectrum
from the diagonal blocks of HF

r as shown in Eq. (4). Adjacent Flo-
quet blocks have resonant quasienergies. (c) shows the approximate
quasi-energy bandstructure for the Floquet Hamiltonian, obtained by
projecting to quasienergies (ε) in the range 0 < ε < Ω. Clearly, the
quasienergy bands correspond to the two resonant bands (Blue and
Green) in (b). The radiation potential opens up a gap at the reso-
nance, with the gap proportional to ∣V⊥∣ (see Eq. 7).

As a consequence, when n̂(k) has zero winding along the res-
onance circle, the induced phase is trivial. Therefore, in the
presence of driving, it is possible to obtain trivial Floquet in-
sulators. For, example, when the radiation potential is along z
direction, i.e. V = Vz ẑ, the driven phase is always topologi-
cal. In contrast, for V = Vxx̂, the driven system is trivial.

We obtain the eigenvalues of the Floquet Hamiltonian, de-
fined in Eq.(4), in a cylindrical geometry. The spectrum for an
example system is shown in Fig. 1. Fig 1 (a) shows the time-
independent bandstructure in the system absent the drive. Fig
1 (b) shows the quasi-energy bandstructure obtained using a
resonant drive aligned along z direction, V/M = 1ẑ. The
presence of chiral edge-modes in the quasi-energy band-gap
confirms the non-trivial topology in the driven system.

We emphasize that so far, we have described the presence
of a topological phase in the presence of translation symmetry.
In order to study the possible phases in the presence of disor-
der, we study this model in the presence of quenched disorder
on the on-site energies. The disorder potential is chosen to be
on-site and δ-correlated,

Vdis = U1, (10)
H =Hr + Vdis (11)

where U is a uniformly distributed random number between
[−U0/2, U0/2]. The variance of the distribution is σ2

d =
U2

0 /12.
The form of the time-periodic Hamiltonians considered in

Eq, (1) may be realized in several ways in solid-state sys-
tems. Let us discuss two possible ways to obtain a non-zero
V . The first method relies on a Zeeman coupling in the pres-
ence of a periodically modulated magnetic field. To be con-
crete, a magnetic field, B = B0 cos(Ωt)ẑ, results in a driv-
ing term, V = ẑ(gE − gH)µBB0, where gE,H is the Zee-
man coupling for E1 and H1 pseudospin bands, and µB is
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the Bohr magneton. Another method to generate this term
would be through a periodically modulated planar electric
field, that is introduced through a spatially uniform gauge po-
tential, A = (Ax sin(Ωt),Ay cos(Ωt)). In Appendix C we
provide details of this model. In this case, V is dependent on
the momentum vector, k. As a consequence, the topological
phase has a Chern number, C = 2 with co-propagating edge-
modes.

Finally, we note that within the full four band model, the
Floquet bandstucture obtained when the system is subjected
to a time-periodic Zeeman field is time-reversal symmetric.
Therefore, a topological Floquet spectrum induced by the
drive is classified by the same invariant used in the quantum
spin hall effect1. When subjected to a circularily polarized
light, the Floquet spectrum of the full four band model is
not time reversal symmetric. Therefore in the latter case, it
exhibits bands whose topological properties are captured by
Chern numbers, which for the present model can take the val-
ues ±2, depending on the chirality of the polarization.

III. DIAGNOSTICS FOR DRIVE AND DISORDER
INDUCED TOPOLOGICAL TRANSITIONS

In this section, we will outline the numerical methods used
to analyze the driven-disordered systems. First, we use an
approximate real time-evolution of wave packets to obtain the
single-particle transport properties in the presence of disorder.
Second, we obtain the exact Floquet quasi-energy eigenstates
by diagonalizing the stroboscopic time-evolution operator in-
tegrated over a single time-period, T . The topological na-
ture of these disordered bands are investigated by computing
the Bott index58, which is equivalent to the Chern invariant in
the presence of disorder. The localization-delocalization tran-
sition is also further examined by computing the eigenvalue
statistics to identify the transitions in these systems.

A. Time evolution

This method is used to numerically obtain the disorder-
averaged transmission probability at a particular quasi-energy.
For a given disorder realization, we employ a numerically ex-
act time evolution to determine the sample-dependent propa-
gator as a function of disorder and quasi-energy. The sample
averaging is then done by repeating the procedure over many
realizations.

We initialize the system with a δ-function wavepacket in
real space and study how this wavepacket spreads in real
space. The bulk or edge properties are determined accord-
ing to the choice of the initial position of the wavepacket and
boundary conditions. While the bulk Green’s function is ob-
tained from the Hamiltonian in a torus geometry with peri-
odic boundary conditions in both the x and y directions, the
edge Green’s function is obtained in a cylindrical geometry
with open boundary conditions along y. In our simulations
we always initialize with the up pseudospin, at position x,
∣x, ↑⟩, where σz ∣ ↑⟩ = ∣ ↑⟩. The time evolution operator is

U(t,0) = T exp(−i ∫
t

0 H(t′)dt′), where H(t) is defined in
Eqs. (1) and (11) . The time-evolution operator is obtained
numerically using a split operator decomposition. The exact
details of the numerical procedure is provided in Appendix
B. The time-evolution of a δ-function wavepacket for N time
periods, gives us the wavefunction in real space, which is also
the propagator,

G(x,x′,NT ) = ⟨x′ ↑ ∣U(NT,0)∣x ↑⟩. (12)

In order to explore the effect of disorder and quasi-energy,
we must average the Fourier transform F [G(x,x′,NT )] ≡
GN(x,x′, ε), over a number of disorder configurations. Let
us define, x ≡ (x, y) x′ ≡ (x′, y′). The average transmission
probability along x direction as a function of x′ is,

gN(x,x′, ε) =∑
y′

∣GN(x,x′, ε)∣2, (13)

where (⋯) denotes disorder averaging, and the subscript, N
is related to the total time of evolution, Ttot = NT . The prop-
erties of gN are used to identify a localization transition in
this system. We extract the decay length scale, ΛN(ε), of the
transmission from the inverse participation ratio of gN . The
details of the exact definition is provided in Appendix B. The
mobility-gap in the spectrum is identified by states satisfy-
ing ΛN(ε)/L ≪ 1, where L is the system size. Clearly, ΛN
depends on the total time of evolution, Ttot. Therefore, the
time-dependence of the length scale, ΛN(ε), is obtained by
computing ΛN from Eqs. (12) and (13), for different number
of time-periods, N .

B. Floquet-spectrum

The quasi-energy spectrum can be numerically obtained
from the unitary time evolution operator, U(T,0) for a sin-
gle time- period. Let the infinitesimal time-evolution operator
for a time step, δt be, U(pδt, (p−1)δt), where p is an integer.
The time-evolution operator for a full time-period through a
time ordered product,

U(T,0) =
Ndiv

∏
p=1

U(pδt, (p− 1)δt), with, δt = T /Ndiv. (14)

We provide the details of the calculation of the time evolu-
tion operator in Appendix B. Now, the Floquet quasi-energy
spectrum, and eigenvectors are obtained by diagonalizing,
HF = i

T
log(U(T,0)). Here, the branch cut of the logarithm

is chosen such that, −i log eiεT = εT for all εT ∈ [0,2π)
. For our purposes, it is convenient to rewrite the disorder
potential in the momentum space and obtain the eigenvectors
in this space. To characterize the topological of the Floquet
Hamiltonian, we compute the Chern number of the quasi-
energy bands, by calculating the Bott index from its eigen-
vectors.
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1. Bott Index

The Bott index is a topological invariant that has been de-
fined by Loring and Hastings58 for disordered two dimen-
sional systems with no additional symmetries except for par-
ticle number conservation. For time-independent Hamiltoni-
ans, it has also been shown that this index is equivalent to the
Hall conductivity of the sample, which in turn is given the
Chern number59.

We define an analogous Bott index for a time periodic
Hamiltonian using the eigenstates of the Floquet Hamilto-
nian. Consider a projector P (εl, εh) on a band of Floquet
states of a two dimensional system with periodic boundary
conditions, where the band is bounded by εl < ε < εh.
We define two unitary matrices, UX = exp(i2πX/Lx) and,
UY = exp(i2πY /Ly), where X and Y are diagonal matri-
ces indicating the x and y coordinate respectively. The Bott
index is an integer which measures of commutativity of the
projected unitary matrices ŨX = PUXP and ŨX = PUXP ,
and is is given by59

Cb(εl, εh) =
1

2π
Im [Tr{log (ŨY ŨX Ũ

†
Y Ũ

†
X)}] . (15)

.
The Bott index Cb(εl, εh) is an integer. As shown in

Ref. 59, for time-independent Hamiltonians Cb is equivalent
to the quantized Hall conductance obtained by filling the band
associated with the projector P , and thereby, it is equivalent
to the Chern number60 associated with the projector P . A
direct consequence is that the Bott index can be related the
difference between the number of chiral edge states above
and below the band. In a disk geometry , defining nedge(εh)
to be the total number of right moving chiral edge states at
εh (in a translation invariant system, nedge(εh) is the num-
ber of right moving edge states minus the number of left
moving edge states at εh), and similarity defining nedge(εl),
the Bott index is related to the number of edge states by11

Cb(εl, εh) = nedge(εh) − nedge(εl) .
Having set εh and εl, the average Bott Cb for a given dis-

order strength is obtained by averaging this index over dif-
ferent disorder configurations. While the index Cb(εl, εh) is
an integer for every particular disorder configuration, there is
no such requirement for the average Bott index. For a given
system size, upon increasing disorder and crossing a topologi-
cal phase transition, the average index smoothly changes from
one integer to another58. This smooth transition is expected to
be sharp in the thermodynamic limit.

2. Level spacing statistics.

The statistics of the eigenvalues of the Floquet Hamil-
tonian can be used to study the localization-delocalization
transition61. Generically, extended eigenstates experience
level repulsion, localized states with vanishing overlap can be
arbitrarily close to each other in quasi-energy. This leads to
different behaviors in the distribution of the spacings of the

quasienergies for regions in the spectrum corresponding to lo-
calized and extended states

Below, we outline the characteristic features of the level-
spacing distributions for extended and localized states. The
level-spacing, sn, is defined as the difference of adjacent
quasi-energies, sn = εn+1 − εn. Let the average level spac-
ing over all quasienergies and disorder realizations be δ. We
now define level-spacing at a given quasi-energy, measured
in units of δ, s(ε) = 1

δ ∑∣εn−ε∣≤dε sn, where we choose the
window of quasi-energy such that dε ≫ sn. The probability
distribution of the level-spacings, P (s), is universal and de-
termined completely by their symmetry classification. Given
a Hamiltonian with broken time-reversal symmetry, it corre-
sponds to the Unitary class. Extended eigenstates must have
level-repulsion and, so, the level spacing distribution at this
quasi-energy, P (s), corresponds to the Gaussian Unitary En-
semble (GUE)62,

PGUE(s) =
32

π2
s2 exp(− 4

π
s2) . (16)

For Floquet systems, the correct ensemble corresponds to the
Circular Unitary Ensemble (CUE), since the eigenvalues are
defined on a compact manifold. The distributions for CUE
and GUE are expected to converge to the same distribution in
the thermodynamic limit63. In contrast, for localized states,
the level-spacings must follow Poisson statistics,

Ploc(s) = exp(−s). (17)

We note that the variance of the GUE distribution
σ2(PGUE(s)) = ∫ s2PGUE(s)ds − (∫ sPGUE(s)ds)

2 ∼
0.178 differs from the variance of the Poisson distribution,
σ2(Ploc(s)) ∼ 1.

IV. LOCALIZATION TRANSITION IN DISORDERED FTIS

In this section, we study the effect of adding on-site
quenched disorder to the periodically driven system given in
Eq. (1). We choose the system parameters such that the Flo-
quet spectrum is topological. In this section, we consider
the radiation potential to be of the form V = (0,0, Vz), see
Eq. (1). In the following, we focus on a single 2 × 2 block
of the full time-reversal invariant 4 × 4 Hamiltonian. As dis-
cussed in Section II, the driving frequency is chosen to induce
only a single resonance, such that the Floquet bands have a
non-trivial Chern number, ∣C ∣ = 1. In the following, we show
that the topological phase is robust to disorder, with gapless
edge states, for disorder strengths σd ≪ Vg , where Vg is the
quasienergy gap of the clean system. At sufficiently strong
disorder, σd ≫ Vg , the mobility gap closes and all eigenstates
are completely localized.

A. Analytical discussion of perturbative corrections

The correction to the Floquet density of states is obtained
perturbatively in the disorder potential. The effect of the disor-
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der potential is to renormalize the parameters of the Hamilto-
nian. To lowest order in the disorder potential, the self-energy
corrections to the single particle Floquet Green’s function is
obtained in the Born approximation, the details of which are
provided in Appendix A. As discussed in Section II, the quasi-
energy gap at resonance is determined to lowest order by the
radiation potential, V⊥ [see Eq. (7)]. We define the self-
energy correction to V as ΣV . In the Born approximation,
we consider the dominant contribution to the self-energy cor-
rection to the radiation potential, ΣV . These corrections yield
a renormalization of the density of states at resonance.

As we show in detail in appendix A, in the Born approxi-
mation ΣV is proportional to −U2σz , where U2 = σ2

d is the
variance of the distribution of the disorder potential. There-
fore, this term renormalizes (negatively) the magnitude of V
indicating that the quasienergy gap must close with disorder.
Thus qualitatively, the Born approximation captures the tran-
sition from topological to trivial insulator as a result of closing
of the quasi-energy gap. The Born-approximation, however,
fails to capture the transition to an Anderson localized insula-
tor as the gap closes. The details of the Born-approximation
calculation are provided in the Appendix A.

B. Numerical Analysis

We study the quasi-energy spectrum numerically. The nu-
merical simulations were done for Hamiltonian with the pa-
rameters A/M = 0.2 and B/M = −0.2 on a torus with di-
mensions Lx ×Ly . We now summarize the numerical results,
and elaborate on them below. First, we examine the mobility
gap in the quasi-energy spectrum: the spectral region around
quasienergy Ω/2 containing localized states. The average bulk
localization length, ΛN as a function of disorder and quasi-
energy is shown in Fig. 3 (a). Clearly, with increasing disor-
der the mobility gap centered at quasi-energy Ω/2 vanishes.
Next, we identify the point where the mobility gap closes as a
topological-to-trivial phase transition. We calculate the topo-
logical invariant for all states below the resonant quasi-energy.
The average value of the invariant changes as a function of
disorder, as shown in Fig. 3 (b). Finally, we study the level-
spacing statistics. At weak disorder, the level-spacing statis-
tics for states inside the quasi-energy bands corresponds to
the value attained for extended states (indicating that the lo-
calization length is larger then the system size studied). How-
ever, at strong disorder after the mobility gap closes, the level-
spacing statistics of all Floquet eigenstates correspond to lo-
calized states. This transition to localized states is shown in
Fig. 4. This transition is in line to a localization tranition in
the quantum Hall universality class, where the phase transition
corresponds to a vanishing mobility gap in the spectrum.

1. Results from bulk localization length.

We study the time-evolution of a localized wave-packet
under the Hamiltonian defined in Eq. (11). The initial
wavepacket is chosen to be a δ-function in real space, peaked

at position x, and corresponding to a positive eigenvalue of
σz . We denote this state by ∣x ↑⟩. The numerical simula-
tions are done with periodic boundary conditions along both
x and y directions. This allows us to probe the bulk Floquet
states. The average transmission probability from x to x′,
given by gN(x,x′, ε), is obtained from Eq. (13). We define
the bulk localization length, ΛN , as the inverse participation
ratio (IPR) of g, the details of which are provided in Appendix
B. Fig 3 (a) shows ΛN /(2Ly) as a function of quasi-energy
and disorder. At small disorder (U0/M < 0.6), near the res-
onance, ε ∼ Ω/2, the transmission decays with a localization
length ΛN /Ly ≪ 1. We identify the spectral region around
quasi-energy Ω/2 with ΛN /Ly ≪ 1 as a ’mobility gap’. In
contrast, the eigenstates in the bands, for quasi-energies well
away from resonance exhibit a localization length which is on
the order or larger then the system size. This is in line with
what we expect from quasi-energy bands with non-zero Chern
numbers. A band exhibiting a non-zero Chern number neces-
sarily exhibits at least one delocalized state, and a diverging
localization length at quasi-energies approaching the quasi-
energy of this state. In the finite sizes that we examine nu-
merically, the localization length exceeds the system size for
most of the states in the bulk band, and therefore, the entire
band seems to be delocalized. It is clear that with increasing
disorder strength, the mobility gap vanishes. The localization
length, ΛN(ε) is also a function of the total time of evolution
(Ttot = NT ), as discussed in section III A. The bulk local-
ization length for a typical sample at a given quasi-energy ε,
appears to be diffusive for short times, Λ2

N ∼ DN where D
is the diffusion constant. At long times,the localization length
saturates, limN→∞ ΛN → Λsat, either to the system size or the
true localization length at that quasi-energy. We provide nu-
merical evidence for the time-dependence of ΛN in Appendix
B.

2. Bott index of Floquet bands.

The clean Hamiltonian is topologically non-trivial with a
quasi-energy band-structure shown in Fig. 1 (b). As long as
a mobility gap exists, the topological phase remains robust
to disorder. This is confirmed by measuring the disorder-
averaged topological invariant, Cb(εl, εh) (Bott index) of a
quasienergy band of states defined by εl < ε < εh, as shown
in Fig 3 (b). In the numerical computation, we set εl = 0.
For weak disorder strength, the average index at the quasi-
energy εh = Ω/2, is Cb(0,Ω/2) = 1, indicating a topological
phase. After the mobility gap closes the index smoothly goes
to zero. This indicates a transition from a topological to a
trivial phase which is expected to be sharp in the thermody-
namic limit. In analogy to disordered integer quantum Hall
systems, each quasi-energy band necessarily exhibits a criti-
cal quasi-energy whose corresponding (bulk) eigenstate is ex-
tended. This extended state carries the non-zero topological
invariant of the band. To probe this critical energy, we plot
the index as a function of quasi-energy in Fig 3(c). We see a
smooth transition from topological to trivial as a function of
quasi-energy. This transition as a function of the quasi-energy
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FIG. 3. (a) The average localization length ΛN/(2Ly) as a function
of Quasi-energy and disorder strength. This figure shows transition
in which the mobility gap closes at U0/M ≈ 1. Simulations were
done for system sizes Lx×Ly = 400×50, and evolved forN = 2500
time periods. (b) shows the topological phase transition accompa-
nied by the mobility gap closing. We plot the disorder-averaged
Bott index, Cb(0,Ω/2) for states between εl = 0 and εh = Ω/2.
At small disorder the system is topological with a Bott index, 1. At
U0/M ≈ 1, the mobility gap closes and the system becomes trivial
with the index going to 0. (c) Disorder averaged Bott index as a func-
tion quasienergy, Cb(0, ε), for disorder strength, U0/M = 0.6. The
index takes the value Cb(0, ε) ≈ 1 for ε = Ω/2 and smoothly goes to
zero for quasi-energy ε away from ε = Ω/2. We plot for two different
system sizes, Lx = 20, 40.

is expected to happen at the critical quasi-energy. However,
the system sizes we consider are not sufficient to reveal the
critical energy in the quasi-energy bands.

3. Level-spacing statistics.

We analyze the level spacing statistics to probe the na-
ture of the localization transition in these driven Hamiltoni-
ans. The Floquet Hamiltonian, HF , corresponding to a sin-
gle 2 × 2 block, as defined in Eq. (4),is not time-reversal
symmetric. In the topological phase, the quasi-energy bands
have non-zero Chern invariant. We therefore expect that in-
dicates that the localization-delocalization transition must be
of the quantum-Hall universality class. We confirm this by
studying the level spacing statistics as a function of quasi-
energy for different disorder strengths as shown in Fig. 4.
At weak disorder [Fig. 4 (a)], the states have level-spacing
statistics identical to the GUE ensemble, PGUE as shown in
Fig. 4 (d). This is an indication that the localization length of
states in the quasi-energy bands is much larger than the sys-
tem sizes we studied numerically. This is expected for bands
with non-zero Chern numbers in the presence of weak disor-
der, as discussed in Sec. IV B 1. At U0/M ≈ 1, the mobility
gap is closed as shown in Fig. 4 (b). At much stronger dis-
order, U0/M ≈ 2, we notice that the Floquet bands are com-
pletely localized and obey Poisson statistics as shown in Fig. 4
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FIG. 4. Level spacing statistics for the Floquet eigenvalues at dif-
ferent disorder strengths. The extended Floquet states must have
level repulsion, with level statistics following the GUE ensem-
ble, in which case, the variance of the level spacing distribution,
σ2(P (s)) = 0.178. This is in contrast to localized states which
have σ2(P (s)) ∼ 1. The level spacing s = ∆ε/δ is measured
in units of average level-spacing, δ, as defined in Section III. Figs.
(a), (b) and (c) compare the density of states of the Hamiltonian
(in red) with the variance of P (s) (in black) for disorder strengths,
U0/M = 0.3, 1, and 2 respectively. Panel (a) shows data which
corresponds to two quasi-energy bands with extended states (indicat-
ing that the localization length is larger than the system size). The
two bands are separated by a band-gap. In (b) the band gap is no
longer visible while the level statistics of states in the middle of the
quasi-energy zone still corresponds to extended states, and in (c) all
the Floquet eigenstates are localized. (d) shows the level spacing
distribution, P (s), at a given quasi-energy, ε/Ω = 0.43 and disor-
der strength U0/M = 0.3. It exactly fits with the GUE distribution.
(e) shows P (s) for ε/Ω = 0.25, at disorder strength U0/M = 2.
This distribution has better agreement with poisson statistics, indi-
cating localized states. All the simulations were done for systems
sizes Lx ×Ly = 40 × 40.

(e). This is in agreement with our expectation that the quasi-
energy bands exhibit non-zero Chern numbers and therefore
delocalized states, which persist as long as the mobility-gap
around quasi-energy Ω/2 exists.

V. DISORDER-INDUCED TOPOLOGICAL PHASE: THE
FTAI

We now discuss the realization of a disorder-induced topo-
logical phase in a driven but topologically trivial quantum-
well. This phase is a driven analog to Topological Ander-
son Insulators (TAI), predicted numerically47 first in quantum
wells. Floquet Topological Anderson insulators (FTAI) are
the analogous disorder induced topological phase and have
been predicted in the driven honeycomb lattice models56. In
the following, we first review the prescription for realizing
Topological Anderson insulators in quantum-well structures.
Then, we propose a method for realizing an FTAI in the driven
quantum well system, as well as numerical evidence support-
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FIG. 5. (a) Bandstructure of the driven system for Vz/M = 2,
Vx/Vz = 0.15 in the trivial phase. The other parameters of the
Hamiltonian is same as Fig. 1. (b) shows the typical phase dia-
gram for the Floquet topological phase as a function of Vx and Vy .
For Vx,y < Vc, the phase is topological and otherwise trivial. The
clean system phase for obtaining the FTAI phase is chosen such that
Vx > Vc, with Vy = 0. The initial point of the trivial driven system is
schematically represented as the point (blue square) in this diagram.

ing the realization of FTAI using our proposal. We note that
The FTAI realized in the quantum well model is time-reversal
invariant, in contrast to the one realized in the honeycomb lat-
tice models.

A. Review: TAI and FTAI.

Disorder counter intuitively may induce topological phases
in a clean trivial system and such phases have been labeled
as Topological Anderson insulators (TAI). As an explicit ex-
ample we consider a trivial semiconducting quantum well de-
scribed by the BHZ model, as shown in Eq. (1) (with V = 0).
In this case, the clean system is trivial, i.e. M/2B < 0. In
contrast with trivial Anderson insulators which localize for
any finite disorder strength, these models with spin-orbit cou-
pling, on-site disorder in the chemical potential gives rise to
the possibility of a localization transition at a finite disorder
strength. Before the onset of localization, disorder primarily
renormalizes the parameters of the Hamiltonian modifying the
single particle density of states. Notably, this renormalization
of the mass, M , leads to an induced topological phase.

At weak disorder strength, sufficiently smaller than the crit-
ical disorder for the localization transition, there must exist a
region of extended states in the band-structure. To lowest or-
der in the disorder potential, the density of states of the dis-
ordered Hamiltonian is given by the self-consistent Born ap-
proximation of the disorder-averaged Green’s functions. In
this approximation, the self-energy correction to the average
Green’s function48,

Σ(EF ) = U2 ∫ dk
1

EF −H0(k) −Σ

= ΣI1 +Σxσx +Σyσy +Σzσz. (18)

Here, U2 = σ2
d, is second moment of the disorder poten-

tial, and EF is the fermi-energy. Note that this renormal-

ization is present even if the average value of the disorder
potential vanishes, U = 0. For uniformly random disorder,
[−U0/2, U0/2], an analytical formula is obtained using the
Born approximation48. The renormalized parameters of the
model [see eq (1)] are

Ã = A, B̃ = B, ẼF = EF ,

M̃(EF ) =M + U2
0

48π

1

B
log ∣ Bπ4

E2
F −M2

∣ , (19)

where, in general, the renormalized parameters are functions
of the fermi-energy, EF , since the self energy correction due
to disorder is, in general, a function of all the variables, Σ ≡
Σ(EF ,A,B,M). In the trivial phase, M > 0, and B < 0, the
contribution due to disorder is negative, and when M̃ < 0, the
phase becomes topological. We note that this phase transition
is independent of the localization transition at strong disorder.

A disorder induced topological phases have been shown to
exist in the periodically driven honeycomb lattice models56.
The phase in this driven system was labeled as the Floquet
Topological Anderson Insulator (FTAI). The FTAI phase is
a unique topological phase because it requires the presence
of both the drive and disorder to exist. Circularly polar-
ized light2,3 opens gaps at the Dirac points of the honeycomb
model, akin to the gap in the Haldane model for the anomalous
quantum Hall effect64. Perturbations which break inversion
symmetry compete with this topological gap, and if strong
enough, may result in a topologically trivial bandstructure.
The effect of disorder is to renormalize the gaps at the Dirac
nodes in such a manner which induces a topological phase.

B. Realizing FTAI in quantum wells.

We now discuss how the FTAI can be realized in the semi-
conductor quantum-wells. For simplicity, we consider the
case of generalized Zeeman field, with the components, Vx,y,z
are constants. We take the Hamiltonian in Eq. (1) and restrict
ourselves to the case with a single resonance, {M, W

2
} < Ω <

W . We choose the form of the drive (see below for the specific
choice of V ) so that the quasi-energy spectrum is topologi-
cally trivial, and add on-site uniformly random on-site disor-
der. In the following, we show that at finite disorder strength a
transition to a topological quasi-energy spectrum occurs. We
refer to this phase as the Floquet topological Anderson in-
sulator. As we show below, the mechanism underlying the
disorder-induced transition into the Floquet topological phase
is different from the one underlying the TAI phase discussed
in Sec. V A.

In the discussion below, we consider the Hamiltonian given
by Eq. (2), corresponding to only one 2 × 2 block of the full
BHZ model. It is natural to ask what type of topological phase
can be induced by disorder in the full BHZ model driven by
a generalized Zeeman field. The disorder-induced topological
phase of this block exhibits a non-zero Chern number, Cu =
1. A similar analysis carries over to the time-reversed 2 × 2
block, for which the induced topological phase will exhibit
a Chern number Cl = −1 . The Floquet spectrum of the full
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FIG. 6. Disorder-averaged Bott index, Cb(0,Ω/2) as a function of
disorder strength U0/M . The clean system starts of as trivial, as ev-
idenced by the band-structure (see Fig. 5(a)) and the fact that the
Bott index, Cb is 0 a small disorder. At finite disorder strength, the
Hamiltonian acquires a non-zero average Bott index indicating the
presence of a topological phase.The dimensions of the system con-
sidered are Lx ×Ly = 40 × 40.

BHZ model, driven with a generalized Zeeman field, is time
reversal symmetric1, and from the above considerations, we
conclude that it will exhibit a disorder induced time-reversal
invariant topological phase exhibiting a non-zeroZ2 invariant.

The phase of the driven model is always trivial for a large
enough Vx or Vy . This is in contrast to the topological phase
induced when V = (0,0, Vz), as shown in Fig. (1). As
discussed in section II, the quasi-energy gap at resonance
(ε = Ω/2), is topological as long as the map defined by the
vector n̂ [see eq. (9)] has a non-trivial Chern number. This
condition is satisfied for,

Vx,y

V
< Vc (20)

where Vc = ∣
√
V 2
x + V 2

y ∣ is such that ∃ k̃ in the Brilluoin zone,
for which ∣V⊥(k̃)∣ = 0. Intuitively, ∣V⊥∣ [defined in Eq.(7)]
is the magnitude of the gap that opens at resonance, ε = Ω/2,
and therefore, at the critical condition, Vx or Vy = Vc, this
gap closes. The schematic phase diagram for the topological
phase in the presence of a radiation field, V, as a function of
Vx and Vy is shown in Fig. 5 (b).

Now consider the case where we choose the radiation po-
tential, V = (Vx,0, Vz), such that it lies in the trivial phase.For
example, Fig. 5 (a) shows the band-structure with Vx/Vz =
0.15 and Vy = 0, in a cylindrical geometry. The bulk bands are
gapped with no edge states crossing the gap, and this clearly
indicates a trivial phase. Disorder renormalizes the parame-
ters of the Floquet Hamiltonian. The gaps at the resonance
are renormalized in a way to induce a topological phase. In
the following section we show numerically, that a topological
phase is obtained for sufficiently strong disorder, due to the
renormalization of the radiation potential. We note that it is
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FIG. 7. The time-evolution of a δ-function wavepacket for disorder
strength U0/M = 0.7. Figures (I) and (II) show gN(ε = Ω/2, r, r′)
for different choice of initial position r. (I) shows the presence of an
extended edge mode at quasienergy, ε = Ω/2. (II) on the other hand,
shows that choosing the starting wave-packet in the bulk, continues
to remain localized in the bulk. All simulations were carried out on
a lattice of size Lx × Ly = 40 × 200 and for a total number of time
periods, N = 5000.

essential to choose the parameters close to the phase transi-
tion. This is because, for a large enough, Vx ≫ Vc, the bands
localize before a topological phase is induced. We also note
that at the critical disorder strength at which the FTAI is in-
duced, the static part of the model remains trivial. At this
disorder strength, the renormalized mass parameter M̃ does
not change sign. Therefore, in contrast to the TAI phase, the
FTAI phase is not induced due to renormalization of the mass
parameter M .

C. Numerical Results

We numerically examine the Bott index Cb(0,Ω/2) as a
function of disorder. The parameters of the radiation poten-
tial is chosen to be in the trivial phase, with Vx/Vz = 0.15
and Vy/Vz = 0, and Vz/M = 2. The ’particle-hole’ symme-
try around the resonance, ε = Ω/2, ensures that the trivial-
to-topological transition must occur at the resonance quasi-
energy. Fig. 6 shows the Bott index, Cb(0,Ω/2) as a function
of the disorder strength. At small disorder, the index is 0 in-
dicating a trivial phase. At intermediate disorder strength, the
index Cb ∼ 1 implying that a topological phase is induced
at this disorder strength. Strong disorder leads to localiza-
tion of all Floquet eigenstates which is again topologically
trivial indicated by Cb → 0. The topological nature of the
induced phase may also be detected from the emergence of
non-trivial edge states. In the FTAI phase, this can be veri-
fied by an exact time-evolution of wave-packets on the edge
as discussed in section III A. In Fig. 7, we obtain the average
transmission probability at quasi-energy, ε = Ω/2, for disor-
der strength U0/M = 0.7. For the clean system, this quasi-
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energy corresponds to the trivial-gap in the spectrum and has
no bulk or edge states. In the disordered system, Case I in Fig
7 shows that there exists extended states on the edge, which
was obtained when the initial wave-packet was chosen on the
edge. On the other hand, case II shows that choosing the ini-
tial wavepacket in the bulk keeps the state localized around the
initial state. This confirms that the state observed is indeed a
topological state.

VI. REALIZING THE FTAI USING ELLIPTICALLY
POLARIZED LIGHT

In this section we outline a proposal for realizing the
Floquet topological Anderson Insulator phase by irradiat-
ing semiconductor quantum wells using elliptically polarized
light. In the preceding section, we introduced the FTAI phase
using an idealized model of a generalized Zeeman field. We
now show that by driving the system with elliptically polar-
ized light, it is possible to induce a topological phase at finite
disorder strength. Experimentally, it is easier to tune the po-
larization of light than controlling the impurity concentration.
We show that it is possible to detect the presence of the FTAI
phase by tuning the polarization of light illuminating a disor-
dered sample.

Ref. 1 showed that semiconductor quantum wells subjected
to circularly polarized light exhibit a Floquet spectrum akin to
a Chern insulator, with a Chern number, C = 2. In the follow-
ing, we focus on the Floquet spectrum of a single 2 × 2 block
of the BHZ model in the presence of circularly polarized light.
On changing the ellipticity of the incident light, it is possible
to tune the Floquet spectrum of this driven model from a topo-
logical to a trivial phase (See Appendix C for details). Since
we are irradiating with elliptically polarized light, this model
breaks time-reversal symmetry explicitly. This provides an
ideal starting point to realize an analogous FTAI phase with
broken time-reversal symmetry. By choosing a polarization
such that the incident light induces a trivial phase, the FTAI
phase can be obtained by adding disorder. As discussed in
Section V, the disorder renormalizes the various components
of the drive,. In this case, disorder renormalizes the ellipticity
of the radiation, thereby inducing a topological phase at finite
disorder strength which is the FTAI phase.

An elliptically polarized light is introduced into the quan-
tum well model, H0 [see Eq. (1)] through a time-varying
gauge field, ∣A∣ = (Ax sin(Ωt),Ay cos(Ωt)). The magni-
tude of Ax and Ay determine the ellipticity of the light. In
the following, we always choose the magnitude of ∣A∣ =√
A2
x +A2

y = 1, and the ellipticity is determined by θ =
arctan(Ay/Ax). In the perturbative regime, the Hamiltonian
can be written in a generalized form analogous to that defined
in Eq. (1). In fact, it can be shown that the unit vector, n̂
defined in Eq. (9) winds around the sphere twice resulting in
a topological phase with Chern number, C = 2. The details
of the derivation of the quasi-energy gap and winding for this
model are provided in the Appendix C.

We numerically compute the Bott index from the Floquet
spectrum of this model. The undriven system is chosen with
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FIG. 8. (a) Comparison of the Bott index, Cb(0,Ω/2) for as a func-
tion of the polarization angle, θ for the clean sample and disorder
strength, U0/M = 1. Clearly, the region where the system is topo-
logical, Cb(0,Ω/2) = 2, is larger in case of the disordered system,
indicating the presence of a disorder-induced topological phase. (b)
Bott index as a function of disorder strength when the initial polar-
ization is θ = 0.1π

4
. A topological phase, with Cb(0,Ω/2) = 2,

is induced as a function of disorder. The simulations were run for
system sizes, Lx ×Ly = 20 × 20.

the following parameters, A/M = 1, B/M = −0.2, and the
driving frequency is Ω/M = 3.1. The time-dependent gauge
field is also chosen such that, ∣A∣/M = 1 with varying θ. The
topological nature of the Floquet bands is determined by the
angle θ. Fig.8 (a) shows the Bott index as a function of θ.
The Chern number of the band of the clean system is shown
in red. Clearly, the clean system is trivial for θ = 0.1π/4.
We choose this angle as the starting point for obtaining the
FTAI. As shown in Fig 8 (b), at finite disorder, for this po-
larization angle, θ = 0.1π/4, a topological phase is induced,
which we identify as the FTAI. Fig 8 (a) also shows the de-
pendence of the disorder averaged Bott index at a disorder
strength, U0/M = 1 on the angle θ. A consequence of a dis-
order induced topological phase is that a larger fraction of the
polarization angles, θ, are topological. The existence of this
phase may be detected experimentally by comparing a disor-
dered and clean sample by tuning the polarization of incident
light.

So far, we have discussed a disorder induced Chern insu-
lator phase in the Floquet spectrum of a single 2 × 2 upper-
block of the full BHZ model. The non-driven Hamiltonian of
this model, corresponding to H0(k) in Eq. (1), has no time-
reversal symmetry. One possible way to experimentally ob-
serve the disorder induced topological phase is to isolate the
bands of each block in the full BHZ model using a Zeeman
coupling to a constant magnetic field. We now discuss the
behavior of the full 4 × 4 BHZ model in the presence of ellip-
tically polarized light and disorder, which is more subtle. Let
us define the Chern numbers for the upper and lower blocks of
the BHZ model as Cu and Cl respectively. The lower block is
the time-reversed counterpart of H0, H∗

0 (−k). It has a Chern
number, Cl = −2 when the polarization angle, 0 < θ < π

2
.

As a result, when we consider the clean system, at θ = 0.1π
4

,
the bands of the full BHZ Hamiltonian are topological with a
Chern number C = Cl + Cu = −2. Now, when a FTAI phase
with Cu = 2 is induced at finite disorder in the upper block,
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for θ = 0.1π/4, the lower block is still robust, and has a Chern
number, Cl = −2 = −Cu. This means that counterpropagating
edge modes exist at quasi-energies around Ω/2. There is no
symmetry to prevent scattering between these counterpropa-
gating states. So, an infinitesimal coupling between the two
sets of counterpropagating edge modes is going to gap them
out. Therefore, the system with the upper-band FTAI phase is
actually a trivial insulator. The induced topological phase in
the upper block manifests as a topological to trivial transition
for the full BHZ model.

VII. CONCLUSIONS

In this paper we studied the effects of quenched disorder on
the quasi-energy spectrum of Floquet topological insulators
realized within the semiconductor quantum well model. In
this model, the driving frequency is resonant with a transition
between the valence and conduction band. In the first part of
the paper, we examined the robustness of the topological prop-
erties of the Flouqet spectrum when quenched, on site disor-
der is added. We showed that these topological properties re-
main robust as long as there exists a mobility gap in the quasi-
energy spectrum, centered around the resonance (which in our
conventions occurs at quasi-energy Ω/2). This behaviour can
be understood by recalling that quasi-energy bands with non-
zero Chern numbers exhibit a delocalized state. Consequently,
the topological phase is robust so long as there is a finite mo-
bility gap between these two delocalized states. Such a lo-
calization transition is analogous to that occurring in quantum
hall systems and Chern insulators.

In the second part of the paper we showed that periodi-
cally driven semiconductor quantum wells can host disorder
induced topological phases. Such Floquet topological Ander-
son insulators (FTAIs) are topological only in the presence
of both periodic driving and sufficiently strong disorder. Ab-
sent the disorder, the driven system is topologically trivial: the
parameters of the drive are chosen to induce a trivial quasi-

energy gap. When sufficiently strong disorder is introduced,
it renormalizes the parameters of the drive and induces a tran-
sition to a topological phase.
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APPENDIX

Appendix A: Born Approximation

The correction to the density of states of the quasi-energy
band-structure in the presence of dilute disorder is obtained
perturbatively in the Born approximation. We generalize
the method used for time-independent systems to the driven
Hamiltonian by obtaining the self energy correction to the
Floquet Green’s function as a result of disorder. In the follow-
ing, we first describe the formalism to obtain Floquet Green’s
functions as an expansion in the the radiation potential ∣V ∣.
Next, we calculate the self energy correction to the Green’s
function in the presence of disorder.

1. Floquet Green’s function

The Green’s function is defined for the clean Floquet
Hamiltonian, HF

r (see Eq. (4)),

GFr (ε,k) = 1

ε −HF
r (k)

(A1)

This is formally an infinite dimensional matrix. In the extended zone scheme, the Floquet Green function is written as,

GFr =

⎛
⎜⎜⎜⎜⎜
⎝

⋱ ⋱ ⋮
G−1(ε +Ω,k) G0(ε +Ω,k) G1(ε +Ω,k) ⋰

G−1(ε,k) G0(ε,k) G1(ε,k)
⋰ G−1(ε −Ω,k) G0(ε −Ω,k) G1(ε −Ω,k)

⋮ ⋱

⎞
⎟⎟⎟⎟⎟
⎠

, (A2)

where the different components Gn(ε,k) is obtained in the
perturbative regime with the radiation potential, V = V ⋅ σ/2
with ∣V ∣/Ω ≪ 1. In the following, we write the components
of GFr , order by order in the radiation potential. Let us start

by defining the matrix elements of the bare Floquet Green’s
functions in terms of the the time-independent Hamiltonian,
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H0 as,

[GF0 (ε,k)]mn =
δmn

ε −H0 − nΩ
(A3)

≡ δmnG−n
0 (ε,k), (A4)

where GF0 is exactly the Floquet Green’s function to zeroth
order (setting V = 0). The different components of the Floquet
Green function can be written down as a continued fraction65.
Let us define two operators,

Fn+ (ε) = 1

(Gn0 (ε))−1 − V 1

(Gn+1
0 (ε))−1−⋮

V
for n > 0 (A5)

Fn− (ε) = 1

(Gn0 (ε))−1 − V 1

(Gn−1
0 (ε))−1−⋮

V
for n < 0, (A6)

where, we omitted the explicit functional dependence on k.
Now, we can write down all the components of the Green
functions,

G0 (ε) = 1

ε −H0 − Veff
(A7)

Veff = V F−1
− (ε)V + V F1

+ (ε)V (A8)

Gn (ε) = {F
n
+ (ε)V⋯F1

+ (ε)V G0 (ε) , for n > 0

Fn− (ε)V⋯F−1
− (ε)V G0 (ε) , for n < 0

(A9)

As shown in Section III, we consider parameter ranges which
induces only one resonance in the bandstructure, and there-
fore, are concerned with the effect of disorder at quasi-
energies near the resonance. A weak resonant drive only
mixes adjacent Floquet bands appreciably, and therefore it is
sufficient to consider only the n = 0 and n = 1 components
of the Green function, Gn(ε,k). In order to make analytical
progress, we truncate the continued fraction expressions for
F+ and F− given in Eq. (A5) and (A6), at the zeroth order to
obtain,

F1
+ (ε) = G1

0 (ε) , (A10)
F−1
− (ε) = G−1

0 (ε) , (A11)

G0 (ε) = 1

ε −H0 − Veff
, (A12)

G−1 (ε) = F−1
− (ε)V G0 (ε) . (A13)

The different components of the Floquet Green function is
represented using Feynman diagrams shown in Fig. 9. We
note, that in this truncation scheme, we are dropping all terms
involving Gn0 , ∣n∣ > 1. This is valid when only processes in-
volving single photon are relevant. In the BHZ model we have
considered, we assume that the drive induces only one reso-
nance in the band-structure.

2. Floquet Born approximation

The disorder potential can now be treated perturbatively us-
ing the Born approximation. The disorder-averaged Floquet
Green’s function is,

GFr (k, ε) = 1

ε −HF
r −ΣF

, (A14)

U

GG

G =

(a)

(b)

(c)

UU

UU

-1
0

V

V

-1

0

G0 G0

FIG. 9. This figure illustrates the diagramatic representation of the
Floquet Green function and the renormalization due to disorder. The
thin line represents the bare propagator defined in Eq. (A4). The
thick line represents the propagator in the presence of the drive, G0,
defined in Eq. (A12). (a) The n = −1 component, G−1 as defined
in Eq. (A13). (b) The renormalization due to disorder of G0. This
corresponds to renormalization of the bare parameters of the time-
independent part of the Hamiltonian. (c) The self energy correction
due to disorder to the radiation potential. The change of the density
of states near the Floquet gap at resonance is due to the renormaliza-
tion of the radiation potential.

where, ΣF is the self-energy correction due to disorder and
(⋯) indicates disorder averaging. In the Born approximation,
the self energy is,

ΣF = U2 ∫
FBZ

dk GFr (ε,k). (A15)

The contribution of the self energy can be split into differ-
ent Floquet blocks, similar to the Floquet Green’s function as
shown in Eq. (A2),

ΣF =
⎛
⎜⎜⎜
⎝

⋱ ⋱
⋱ ΣF0 ΣFV

ΣF †
V ΣF1 ⋱

⋱ ⋱

⎞
⎟⎟⎟
⎠
, (A16)

where ΣF renormalizes the Hamiltonian, HF
r . The terms

ΣFn renormalizes the time-independent Hamiltonian, H0, and
ΣFV renormalizes V . Therefore, the effect of disorder on the
single-particle Green’s function is two fold. First, it renormal-
izes the parameters of the bare, time-independent Hamiltonian
H0, M → M̃ , and B → B̃. This is due to the diagonal terms
in the self energy, ΣFn . Note that, at lowest order, this correc-
tion is identical to that from disorder-averaging the Green’s
function of the time-independent Hamiltonian [see Fig. 9 (d)].
This renormalization of the parameters is not important to the
modification of the quasi-energy density of states near the res-
onance (ε ∼ Ω/2). We assume that this effect can be neglected.
The second effect is to renormalize the radiation potential,
V → Ṽ. Since the magnitude of the Floquet band-gap, Vg ,
of the Hamiltonian is proportional to ∣V∣, we will primarily
be interested in this particular renormalization.

The diagram shown in Fig. 9 (c) is the leading order contri-
bution to the self energy correction to the radiation potential.



13

V . Explicitly, in the Born approximation, using Eqs. (A13)
and (A15) we obtain,

ΣV = U2 ∫
FBZ

dk G−1(ε,k) (A17)

= U2 ∫
FBZ

dk F−1
− (ε)V G0 (ε) (A18)

= ΣIV 1 + ∑
i=x,y,z

ΣiV σ
i (A19)

where, U2 = σ2
d =

U2
0

12
, is the variance of the uniformly random

distribution. In Eq. (A18), we expand the 2 × 2 matrix, ΣV ,
in Pauli matrices. The components in the expansion, Σx,y,zV
determines the renormalization of the different components
of V ≡ (Vx, Vy, Vz).

Let us now use the form of the Hamiltonian, H0, defined
in Eq. (1). We have the following expressions for the bare

Green’s functions,

G0
0(ε,k) =

ε + d(k) ⋅σ
ε2 − d2

, (A20)

G−1
0 (ε,k) = (ε −Ω) + d(k) ⋅σ

(ε −Ω)2 − d2
, (A21)

where, d(k) ≡ (dx, dy, dz) = (A sinkx,A sinky,M −2B(2−
coskx − cosky) and d2 = d2

x + d2
y + d2

z .
Now, let us compute the correction due to the disorder

potential, when the radiation field is along the z direction,
V = (0,0,2Vz). We note that the static Hamiltonian, H0 (see
Eq. (2)) is particle-hole symmetric. Consequently, the time-
evolution operator for a single time-period and the Floquet
Hamiltonian inherit this symmetry. As a result, the density of
states is symmetric around the quasi-energy, ε = Ω/2, as is
obvious from the spectrum shown in Fig. 1 (b). Since the dis-
order potential has a zero mean, U = 0, the disorder-averaged
density of states must remain symmetric around ε = Ω/2.
Therefore, the quasi-energy gap must close at ε = Ω/2. This is
also confirmed numerically in Fig. 3 (a). Now, we can write
down the expression for the self energy at the quasi-energy
ε = Ω/2,

ΣzV (ε = Ω

2
) = U2

0

48π2 ∫ d2k
4Vz (+9Ω4 + 8Ω2 (4d2 − 9d2

z) − 16d2 (d2 − 2d2
z) + V 2

z (−32d2 + 24Ω2))
Q

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
I

σz (A22)

ΣIV (ε = Ω

2
) = U2

0

48π2 ∫ d2k
128ΩdzV

3
z

Q
I, (A23)

with, Q = 16 (4d2 − 9Ω2)d4
r + 16V 2

z (16d4
r − 16Ω2d2

r − 32d2
rd

2
z − 32Ω2 (Ω2

4
− d2

z)) − 256V 4
z d

2
r (A24)

and, d2
r = d2 −Ω2/4 (A25)

where, we introduced dr to make notations compact. We note
that at the resonance circle, dr = 0. Crucially, in this case
when Vx = Vy = 0 there is no contribution to ΣxV , ΣyV since the
integral vainshes by symmetry. This also means that disorder
does not generate x or y components of the radiation if it is
initially absent. We also note that the dominant contribution
in the limit of weak radiation potential, Vz/M → 0 is to Σz .
In order to make progress with the integration in Eq. (A22),
we note that the integrand, I, is sharply peaked around the
resonance circle, dr = 0. This is clearly seen in Fig. (10).
Therefore, we compute the integration using a saddle point
method by expanding the integrand around the maximum at
the resonance circle. The integration in Eq. (A22) gives us,

ΣzV = −U2
Vz
2

⎡⎢⎢⎢⎢⎣

Ω2

4
− d2

z + Ω2

4
V 2
z

V 2
z (Ω2

4
− d2

z)

⎤⎥⎥⎥⎥⎦
×
√

π

∣α∣
, (A26)

where ∣α∣ determines the width of the peak at the resonance
circle and can be estimated from the second derivative of the
integrand, α = ∂2I

∂k2 ∣d=Ω
2

. Clearly, at the resonance circle,

d2
x + d2

y + d2
z = Ω2/4, the sign of the correction is negative,

ΣzV < 0. This means the radiation potential which renormal-
izes to Ṽz = Vz + ΣzV , vanishes for large enough disorder.
Since the quasi-energy gap is proportional to ∣V∣, this agrees
with the fact that the gap closes as a function of disorder. This
expectation is verified by numerically performing the integra-
tion in Eq. (A22). The parameters chosen are Vz/M = 0.1,
A/M = 0.2, B/M = −0.2, Ω/M = 3, for which we obtain,
ΣzV ≈ −0.35U2. Note that the calculation done in this section
is valid only in the limit Vz/M → 0. Several steps rely on
this assumption, most notably the truncation of the continued
fraction in Eq. (A10-A13). The numerical simulations done
in the main text is outside the range of this calculation. Nev-
ertheless, we see effects qualitatively consistent with what we
see from the perturbative analysis, namely, the quasi-energy
gap is renormalized to zero as a function of disorder as seen in
Fig. 3 (a). This calculation can be made more precise by ob-
taining Σz in the self-consistent Born approximation, where
all the parameters in Eq. (A22), are the disorder renormalized
counterparts and not their bare values. A similar calculation



14

FIG. 10. We plot the σz component of the integrand, I, defined in
equation Eq. (A22) as a function of kx and ky . The parameters are
chosen with Vz/M = 0.1, A/M = 0.2, B/M = −0.2, Ω/M = 3.
Clearly, the integrand is sharply peaked at the resonance circle, dr =
d − Ω

2
= 0 (shown in red). The large negative value of the integrand

results in the negative sign for ΣzV . We confirm this by a numerical
integration the σz component over the entire Brilluoin zone.

can be done when the radiation potential is along the x direc-
tion, V = (2Vx,0,0). In this case, the disorder potential also
renormalizes the potential, Vx.

Appendix B: Numerical Methods

In this appendix, we provide details of the numerical meth-
ods implemented to study the disordered periodically driven
systems.

1. Real-time evolution

This method is used to numerically obtain the disorder-
averaged single-particle Green’s function to high accuracy,
which gives us the average transmission probability at a par-
ticular quasi-energy. The starting wave-packet is a δ-function
in real space, and we study the spreading of this wavepacket
in real space as a function of disorder and quasi-energy. The
bulk or edge properties are determined according to the choice
of the initial position of the wavepacket and boundary condi-
tions. While the bulk Green’s function is obtained from the
Hamiltonian in a torus geometry with periodic boundary con-
ditions in both the x and y directions, the edge Green’s func-
tion is obtained in a cylindrical geometry with open boundary
conditions along y. In our simulations we start in a particu-
lar pseudospin, at position x, ∣x, ↑⟩, where σz ∣ ↑⟩ = ∣ ↑⟩. The
Green’s function is given by

G(x,x′, t) = ⟨x′, ↑ ∣ exp(−i∫
t

0
H(t′)dt′)∣x, ↑⟩, (B1)

where H(t) is the full Hamiltonian including the disorder
potential and exp(−i ∫

t
0 H(t′)dt′) = U(t,0), is the time-

evolution operator.

The time-evolution operator is obtained numerically using
a split operator decomposition. We take advantage of the facts
that the Hamiltonian for the clean system, H0 is a 2×2 matrix
in the momentum space, and the disorder potential, Vdis is
diagonal in real-space. We have for an infinitesimal time-step,
dt, the time-evolution operator as,

U(dt,0) = exp (−iHdt)
= e−iH0dt/2e−iVdisdte−iH0dt/2 +O(dt3) (B2)

Since the exponentiation of a diagonal or a small matrix is
efficient, this method gives us an accurate way to obtain the
exact time-evolution operator efficiently.

In our numerical simulations, we evolve the initial
wavepacket for N time-periods. At integral time-periods,
the time-evolution operator is identical to that of the Floquet
Hamiltonian,

U(NT,0) = exp(∫
NT

0
Hdt′) ≡ e−iH

FNT , (B3)

where we note the fact that the Floquet Hamiltonian, HF , is
effectively ’time-independent’. Therefore, the time-evolution
of a δ-function wavepacket for N time periods, gives us the
Floquet Green’s function in real space.

G(x,x′,NT ) = ⟨x′ ↑ ∣U(NT,0)∣x ↑⟩ (B4)

GN(x,x′, ε) = ∫
NT

0
dt G(x,x′,NT )e−iεt

= ⟨x′ ↑ ∣(ε −HF )−1∣x ↑⟩, (B5)

where in Eq. (B5), we Fourier transformed in time to obtain
the Floquet Green’s function as a function of the quasi-energy.
The subscript N , in Eq. (B5) refers to the total time of evolu-
tion, Ttot = NT .

In order to study the effect of disorder, we must average
the Green’s function for a large number of disorder config-
urations. To the study the properties of the system, and the
transition to localization, we obtain the average transmission
probability in a strip geometry. Initializing at x ≡ (x, y),
we calculate the transmission probability to x′ ≡ (x′, y′) as
a function of disorder and quasi-energy,

g̃N(x,x′, ε) = ∣GN(x,x′, ε)∣2, (B6)
(B7)

where (⋯) denotes disorder averaging. We obtain the trans-
mission probability along the x direction, by summing over
the y direction,

gN(x, x′, ε) =∑
y′
g̃N(x,x′, ε). (B8)

The properties of the gN , are used to identify a localization
transition in this system. gN is first obtained for a strip geom-
etry of size Lx ×Ly , with Lx ≫ Ly . We define a localization
length along the x direction,

1

ΛN(ε)
= ∑x′ gN(x, x′, ε)2

(∑x′ gN(x, x′, ε))2
, (B9)
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FIG. 11. Typical localization length Λtyp
N /(2a) as a function of total

time of evolution, NT , where a = 1 is the lattice spacing. (a) shows
the typical bulk localization length at quasi-energy, ε = Ω/2, forLy =
10, and 12. The disorder strength is U0/M = 0.9. For small times,
the particle is diffusive, and at long times saturates to Λtyp

N = Λsat.
Λsat scales with Ly indicating that the state is extended.

where ΛN ≡ ΛN,Ly depends on the width of the strip Ly .
Analogously, we can define the localization length for a typi-
cal disordered sample,

1

Λtyp
N (ε)

= ∑x
′ g

typ
N (x, x′, ε)2

(∑x′ g
typ
N (x, x′, ε))2

, (B10)

with gtyp
N = exp [log (∑′yGN(x,x′, ε))], and (⋯) denotes

disorder averaging. In the following, we discuss the depen-
dence of the typical localization length, Λtyp

N as a function
of the width of the strip, Ly and time of evolution N . The
finite-size scaling of Λtyp

N,Ly
(ε) determines whether the partic-

ular eigenstate at quasi-energy ε is localized or extended. Ex-
tended states must scale with the system size with Λtyp

Ly
/Ly →

Λ0 (where Λ0 is a constant) in the thermodynamic limit,
Ly →∞. In contrast, localized states must have Λtyp

Ly
/Ly → 0

in the thermodynamic limit. In Fig. 11, we investigate the
states in the quasi-energy gap, ε = Ω/2. We pick a disorder
strength, U0/M = 0.9 for which it appears that the mobility
gap has closed. If the disorder strength corresponds to the crit-
ical disorder strength of the disorder-induced phase transition,
it is expected that these states are extended. With this expec-
tation, we examine the length scale, Λtyp

N at disorder strength
U0/M = 0.9 . Clearly for short times the length scale Λtyp

N

increases diffusively, Λtyp
N ∼

√
N . For long times, this length

scale saturates, and the saturation length increases on increas-
ing the width of the strip. The dependence of the saturation
length scale on the width of the strip is consistent with either
an extended state or a localization length that is much larger
than the width of the strip. Within the current numerical accu-
racy, this is an indication that the localization transition occurs
around this disorder strength.

2. Bott index

The Bott index is a topological invariant that has been de-
fined by Loring and Hastings58 for disordered systems with
broken time-reversal symmetry. For time-independent Hamil-
tonians, it has also been shown that this index is equivalent to
the Hall conductivity of the sample, i.e. the Chern number.
We generalize this definition to obtain the disorder-averaged
Bott index in periodically driven Hamiltonians. In this sec-
tion, we elaborate on the prescription to obtain the Bott index
for the system under consideration.

For driven systems, we start with the truncated Floquet
Hamiltonian, HF , defined on a lattice with periodic boundary
conditions (torus in real space) . The coordinates of the lattice
points allow us to define two diagonal matrices Xij = xδij
and Y = yδij , where, (i, j) represents two different sites
on the lattice. The two corresponding unitary matrices are,
UX = exp(i2πX/Lx) and, UY = exp(i2πY /Ly). The Bott
index for a given Floquet band is obtained from the wavefunc-
tions of the states in this band. Given the quasi-energies are
bounded, εl < ε < εh, the Bott index is an integer, that counts
the difference in the number of edge states at εl and εh. For
our purposes, we set εl = 0. The projector on to this band
of Floquet eigenstates, P , can be used to project the unitary
matrices, to give almost unitary matrices,

ŨX,Y = PUX,Y P. (B11)

It was shown by Loring and Hastings58, that these almost uni-
tary matrices, Ũ †

X,Y ŨX,Y ≈ 1, are also almost commuting.
For brevity, we skip the exact mathematical definitions of al-
most unitary and almost commuting matrices58. The Bott in-
dex is a measure of commutativity of these projected unitary
matrices, ŨX,Y , and is quantized to integers. Explicitly,

Cb =
1

2π
Im [Tr{log (ŨY ŨX Ũ

†
Y Ũ

†
X)}] . (B12)

This index has been shown to be equivalent to the Kubo for-
mula for the Hall conductivity. The disorder-averaged Bott
index at a given quasienergy is then obtained by averaging
this index over a large number of different disorder configura-
tion. While the index is an integer for every particular disor-
der configuration, there is no such requirement on the average
Bott index. In fact, through a topological phase transition due
to disorder, the average index smoothly changes from one in-
teger to another.

Appendix C: Quantum wells in circularly polarized light

In this section we provide details for the quantum-well
model in the presence of polarized radiation. We show that
in the presence of elliptically polarized light, it is possible
to induce insulating band structures with co-propagating edge
modes (Chern number = 2). In the following, we outline the
key steps to show that the quasi-energy bandstructure is non-
trivial.

In the presence of elliptically polarized light, the time re-
versal symmetry is explicitly broken. Through the rest of the
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section, we will only focus on only one block (upper) of the
BHZ model as defined in Eq. (1) (with V = 0). The results
can be generalized to the lower block by an appropriate time-
reversal operation on the lower block. Let us introduce polar-
ized light through a Peierls substitution of a time-dependent
gauge field A ≡ (φx, φy) = (Ax sin(Ωt),Ay cos(Ωt)),

kx → kx − φx, (C1)
ky → ky − φy. (C2)

The Hamiltonian transforms under this substitution, d(k) ⋅
σ → d(k −A) ⋅ σ ≡ d̃ ⋅ σ, and the individual components
of the vector, d̃ ≡ (d̃x, d̃y, d̃z), are,

d̃x = A [sinkx cosφx − coskx sinφx]
d̃y = A [sinky cosφy − cosky sinφy] (C3)

d̃z =M − 2B[2 − (coskx cosφx + sinkx sinφx

+ cosky cosφy + sinky sinφy)]

In the numerical simulations, we define d̃(k) as shown in
(C3). The stroboscopic time-evolution operator, U(T ), is ob-
tained explicitly through a time-ordered integration of the in-
finitesimal time-evolution operator,which in turn is obtained
from exponentiating the time-dependent Hamiltonian given
by d̃(t) ⋅σ.

Let us consider the perturbative limit for the radiation field
to make progress analytically. Setting, cos(φx,y) ≈ 1 and
sin(φx,y) ≈ φx,y , the gauge-potential as a perturbation to the
original Hamiltonian becomes,

H = d ⋅σ + V ⋅σeiΩt + V† ⋅σe−iΩt, (C4)

where we have defined,

V = ( iAAx
2

coskx,−
AAy

2
cosky,B(Ay sinky − iAx sinkx))

(C5)

As discussed in section II, the quasi-energy gap at resonance
is governed by the matrix element, ∣⟨ψ+∣V ⋅σ∣ψ−⟩∣, where
∣ψ±⟩ are the eigenstates of the unperturbed Hamiltonian. In
the original basis, the eigenstates are,

∣ψ+⟩ = cos
θ

2
∣ ↑⟩ + sin

θ

2
eiφ∣ ↓⟩, (C6)

∣ψ−⟩ = sin
θ

2
∣ ↑⟩ − cos

θ

2
eiφ∣ ↓⟩, (C7)

where d(k) ≡ ∣d∣(sin θ cosφ, sin θ sinφ, cos θ), and the orig-
inal basis is defined as, {∣ ↑⟩, ∣ ↓⟩}. The winding around the
north pole, V⊥ (see Eq. 7) is necessarily related to the Chern
number of the Floquet bands. In the original basis, V⊥ is de-
fined as,

V⊥ ⋅σ ≡ ⟨ψ+∣V ⋅σ∣ψ−⟩∣ψ+⟩⟨ψ−∣ + h.c. (C8)

In order to obtain V⊥ from V , we make use of the following
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FIG. 12. Winding of V⊥(k) on the unit sphere [See Eqs. (C13-C15)]
as the momentum vector, k varies along the resonance circle [defined
in Eq.(5)]. The black point indicates the north pole, (0,0,1) and the
red point indicates V̂⊥(k0) with k0 = (1,0).

identities,

∣ψ+⟩⟨ψ−∣ = (cos θ
2

sin θ
2

− cos2 θ
2
e−iφ

sin2 θ
2
eiφ − cos θ

2
sin θ

2

) , (C9)

⟨ψ+∣σx∣ψ−⟩ = − cos θ cosφ − i sinφ, (C10)
⟨ψ+∣σy ∣ψ−⟩ = − cos θ sinφ + i cosφ, (C11)
⟨ψ+∣σz ∣ψ−⟩ = sin θ. (C12)

Using the above identities in Eq. (C8), and rewriting the
vector, ⟨ψ+∣V ∣ψ−⟩ = VR + iVI ,

V⊥ = VR(− cos θ cosφ,− cos θ sinφ, sin θ)
+VI(− sinφ, cosφ,0), (C13)

with,

VR = AAx
2

sinφ coskx +
AAy

2
cos θ sinφ cosky

+BAy sinky sin θ, (C14)

VI = −
AAx

2
cos θ cosφ coskx −

AAy

2
cosφ cosky

−BAx sinkx sin θ. (C15)

Note that the angles θ and φ are obtained from the definitions
of d(k). We are interested in V⊥ along the resonance circle
given by ∣d(k)∣ = Ω

2
. Let us now make a second approxima-

tion, and take the limit, kx,y → 0, and expand to second order
in kx,y . In this limit, we denote the resonance circle by a con-
stant parameter kr =

√
k2
x + k2

y . The definitions in Eqs. (C13),
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FIG. 13. We show the dependence on polarization of light parame-
terized by, θ = arctan(Ay/Ax) of the Chern number and the gap in
the quasi-energy bandstructure of the upper block.

(C14) and (C15) reduce to,

V⊥ = VR (−M −Bk2
r

∣d∣kr
kx,−

M −Bk2
r

∣d∣kr
ky,

Akr
∣d∣

)

+VI (−
A

kr
ky,

A

kr
kx,0) (C16)

VR = [AAx
2kr

+
AAy(M −Bk2

r)
2kr ∣d∣

+
BAAykr

∣d∣
]ky, (C17)

VI = [−AAx(M −Bk2
r)

2kr ∣d∣
−
AAy

2kr
− BAAxkr

∣d∣
]kx, (C18)

where, ∣d∣ = Ω/2 is a constant.
The Chern number of the bands obtained from irradiation of

the quantum wells with circularly polarized light is ±2. Figure
(12) shows the winding of the vector V⊥ along the resonance
circle. Clearly, it winds twice around the north pole, which
is consistent with a Chern number = ±2. The Chern-number
of the band also depends on the polarization of the incident
light as shown in Fig. (13). The approximate value of the
Chern number for a given polarization angle, θ, is obtained
by computing C defined in Eq. (8). The quasi-energy gap in
the band structure depends on the incident polarization of the
radiation, given by ∣V⊥∣. Clearly, the gap closes as function of
θ, when a transition happens from a topological (C = 2) to the
trivial (C = 0) phase.

In order to realize a FTAI in these systems, we choose a po-
larization angle that is close to the boundary and on the trivial
side of the transition. Disorder renormalizes the position of
the boundary of this transition.
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