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Recent progress in extremely correlated Fermi liquid theory (ECFL) and the dynamical mean field
theory (DMFT) enables us to accurately compute in the d→∞ limit the resistivity of the t-J model
after setting J → 0. This is also the U = ∞ Hubbard model. Since J is set to zero, our study
isolates the dynamical effects of the single occupation constraint enforced by the projection operator
originally introduced by Gutzwiller. We study three densities n = .75, .8, .85 that correspond to
a range between the overdoped and optimally doped Mott insulating state. We delineate four
distinct regimes separated by three crossovers, which are characterized by different behaviors of the
resistivity ρ. We find at the lowest temperature T a Gutzwiller Correlated Fermi Liquid regime
with ρ ∝ T 2 extending up to an effective Fermi temperature that is dramatically suppressed from
the non-interacting value by the proximity to half filling, n ∼ 1. This is followed by a Gutzwiller
Correlated Strange Metal regime with ρ ∝ (T − T0), i.e. a linear resistivity extrapolating back
to ρ = 0 at a positive T0. At a higher temperature scale this crosses over into the Bad Metal
regime with ρ ∝ (T + T1), i.e. a linear resistivity extrapolating back to a finite resistivity at
T = 0, and passing through the Ioffe-Regel-Mott value where the mean free path is a few lattice
constants. This regime finally gives way to the High T Metal regime, where we find ρ ∝ T , i.e. a
linear resistivity extrapolating back to zero at T = 0. The present work emphasizes the first two,
i.e. the two lowest temperature regimes, where the availability of an analytical ECFL theory is of
help in identifying the changes in related variables entering the resistivity formula that accompany
the onset of linear resistivity, and the numerically exact DMFT helps to validate the results. We
also examine thermodynamical variables such as the magnetic susceptibility, compressibility, heat
capacity and entropy, and correlate changes in these with the change in resistivity. This exercise
casts valuable light on the nature of charge and spin correlations in the Gutzwiller correlated strange
metal regime, which has features in common with the physically relevant strange metal phase seen
in strongly correlated matter.

I. INTRODUCTION

The resistivity due to mutual collisions of electrons at
low temperatures reveals the lowest energy scale physics
of charge excitations in metallic systems, and therefore
is very important. While it is fairly straightforward to
measure experimentally, it is also one of the most dif-
ficult quantities to calculate theoretically, especially if
electron-electron interactions are strong. Motivated by
the unexpected behavior of resistivity and other variables
in cuprate superconductors and related two-dimensional
experimental systems, some works have postulated that
the Fermi liquid theory - originally developed and justi-
fied for weakly interacting systems - would break down.
In its place a zoo of non-Fermi liquids have been postu-
lated, without necessarily having a rigorous theoretical
underpinning. On the other hand the analytical frame-
work of the extremely correlated Fermi liquid theory
(ECFL)1 and the well established dynamical mean field
theory (DMFT)2 give a different type of result, where the
strong interactions compress the regime of Fermi-liquid
type variation to a very small temperature and frequency
scale. This Fermi-liquid regime is succeeded by a variety
of regimes that display unusual non-Fermi-liquid depen-
dences on frequency and temperature. The main goal
of this work is to elucidate and characterize the differ-
ent regimes that arise in the ECFL and DMFT theories,

and to provide a quantitative comparison between the
qualitatively similar results of these two theories, as ap-
plied to the infinite-dimensional Hubbard model, with
the Hubbard charge repulsion parameter U taken to in-
finity, U →∞.

In earlier work3 we have compared the ECFL and
DMFT results for the zero-temperature spectral func-
tions, finding an encouraging similarity. On scaling the
frequency with the respective quasiparticle weights Z of
the two theories the agreement is even close to quanti-
tative. In the present work we undertake the more am-
bitious comparison of the resistivity and thermodynamic
variables at finite temperatures.

In both the ECFL theory and the DMFT, the strong
interactions cause the quasiparticles of the lowest tem-
perature Fermi liquid to become fragile, i.e., the resulting
quasiparticle weight Z is very small, Z � 1. This is also
arguably the relevant regime in contemporary materials
such as cuprate superconductors, and hence interest in
this problem is very high.

In the problem studied here, namely U → ∞ and
d → ∞, the DMFT theory is formally exact. Further,
the possibility of computing the resistivity from the sole
knowledge of the single-particle Green’s function is en-
abled by the vanishing of vertex corrections4. Despite
these simplifications, obtaining reliable results for the re-
sistivity is technically formidable due to the requirement
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of an impurity solver providing accurate and reliable re-
sults for the self-energy function Σ on the real frequency
axis for both very low and very high temperatures. This
problem has only recently been solved in Ref. (5), almost
25 years after the formulation of the DMFT theory. The
resistivity of the Hubbard model is now known for all
densities and all values of U, including U = ∞. This is
the first set of exact results for the resistivity in inter-
acting metallic systems resulting from inelastic scatter-
ing, and therefore represent an important advance in the
field. The DMFT results5,6 offer a unique opportunity
to test a variety of techniques and approximate meth-
ods for computing this variable. The ECFL formalism,
on the other hand, is in its early stages of development
and several technical innovations are ongoing so as to
enable reliable calculations in the challenging regimes of
the density n <∼ 13,7.

Lastly, in a recent work Ref. (8) our group has pub-
lished a voluminous high-temperature study using series
expansion techniques adapted for very strong correla-
tions, thus extending our understanding of the resistivity
to the full range of temperatures. This study is on the
same model as the present work and extends the results
of Ref. (5) to much higher temperatures. In these stud-
ies the effect the superexchange J is absent due to the
U = ∞ limit, and therefore there is no superconduct-
ing regime that one might expect from a t-J model
in finite dimensions. By taking the limit of infinite U
we have also banished the static superexchange that the
DMFT includes for finite U9–17. However, these studies
do capture the notoriously difficult non-perturbative lo-
cal Gutzwiller correlation effects on the resistivity quan-
titatively, for the first time. It seems fair to say that
our understanding of the strong correlation problem has
advanced significantly with these recent works.

In summary, at the lowest temperatures these ear-
lier studies5–8 found a Fermi-liquid type resistivity with
ρ ∝ T 2. This regime extends only up to TFL(δ), a Fermi-
liquid temperature scale dependent on the hole density
(δ ≡ 1−n). We shall term this the Gutzwiller Correlated
Fermi Liquid (GCFL) regime. This regime is followed
by three distinguishable regimes with linear in T resis-
tivity having different slopes and intercepts, which are
separated by crossovers; a Gutzwiller Correlated Strange
Metal (GCSM) followed by a “Bad Metal” and finally a
“High-T metal” regime, as discussed below (see Fig. (1)).
The nomenclature stresses that these regimes originate
purely from Gutzwiller correlations (i.e., double occu-
pancy avoidance). In particular the regimes have no de-
pendence upon the superexchange energy J or other en-
ergy scales which might be additionally involved in pro-
ducing the related strange metal found in cuprates18,19.

In order to understand the low-temperature regimes,
we would like to throw light on the factors that lead to
an extraordinarily low values of the Fermi temperature
TFL(δ) that are found. We also wish to provide a de-
tailed understanding of the behavior of constituent vari-

FIG. 1. A schematic view of the different regimes of tem-
perature dependent resistivities found in the calculations of
Ref. (5–8). The various temperature scales are schematic.
At the lowest T we have a Gutzwiller-Correlated-Fermi liq-
uid regime (GCFL) with ρ ∝ T 2. This quadratic varia-
tion terminates at a characteristic Fermi temperature TFL(δ),
which is found to be surprisingly small relative to TBR = δD,
the Brinkman-Rice temperature scale (2D is the bandwidth).
Upon warming we reach the Gutzwiller-Correlated-Strange
metal (GCSM) regime, which is the main focus of this work.
This gives way at higher T to the so called bad-metal regime
with a resistivity that increases linearly beyond the Ioffe-
Regel-Mott value ρ0 characteristic of disordered metals. The
temperature scale of this regime is TBR discussed above. Fi-
nally at the highest T we reach the high T regime with
ρ ∝ T that can be extrapolated back to pass through the ori-
gin. We thus find a total of four regimes separated by three
crossovers. It should be noted that in both theories consid-
ered here, the approximate range of the temperatures scales
are TFL ∼ 0.004− 0.01D, and the crossover to the bad-metal
regime occurs at T ∼ 0.04−0.06D for the densities considered
(n = 0.75 to n = 0.85).

ables that lead to a linear resistivity in the GCSM regime,
starting at this low temperature. Here the ECFL theory
provides us with a great advantage since it is largely an-
alytical, and one can inspect the various constituents in
detail. It is also interesting to seek a possible causal re-
lationship between the linear temperature dependence of
ρ in the GCSM regime and the nature of incipient order
(either spin or charge) that might be present. For this
purpose, it is useful to compute, by using the techniques
of Ref. (5 and 7), the entropy and heat capacity, the
magnetic susceptibilities and compressibility. For com-
pleteness we also study the thermoelectric transport, as
well as a few dynamical quantities such as the self en-
ergy of the electrons. In a following paper we present
other dyamical variablse such as the optical conductiv-
ity. These quantities provide a complete picture of the
metallic states having various temperature dependences
sketched in Fig. (1).

The lowest temperature Gutzwiller-correlated Fermi
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liquid (GCFL) with ρ ∝ T 2 shows enhancements of cer-
tain static susceptibilities that are similar to those of the
normal state of liquid 3He. The almost localized Fermi
liquid theory (ALFL) of these enhancements is discussed
by Vollhardt, Wölfle and Anderson in Ref. (24 and 25) on
the basis of Gutzwiller’s wave function and its approxi-
mation to the Hubbard model, where the variation of the
Landau parameters with density at fixed (large) U is con-
sidered. In particular Ref. (25) studies the enhancements
of Fermi liquid parameters leading to enhanced effective
mass m∗/m, magnetic susceptibility χspin/χ

0
spin and the

bulk modulus (i.e. the inverse compressibility). Within
the ALFL all the three stated enhancements are propor-
tional to the inverse of Z in that theory as well as in 3He.
We check below the extent to which this is true in the
GCFL regime, to see how it compares with the predic-
tions of the ALFL theory, and find that the behavior of
the compressibility is somewhat different.

Upon warming we reach the GCSM regime with a lin-
ear temperature dependence of the resistivity ρ. This
regime is interesting since it is reminiscent of the strange
metal regime in the cuprate phase diagrams18. It is re-
markable that this linear resistivity regime extends to
very low T, essentially the TFL(δ), and one wants to
know if this behavior is causally linked to a change in
entropy, i.e. to disordering. We aim at correlating the
GCSM regime with the extent of short ranged spin or
charge order in this regime. These should be reflected in
the heat capacity and the entropy gain. By computing
these variables, we show that upon warming from T = 0
substantial entropy is released as we reach TFL. However
in the entire GCSM regime the magnetic susceptibility
is Pauli like, i.e., with an approximately T independent
behavior, and hence spin entropy should be unchanged.
From a high-T expansion and on various general grounds,
it is known that it changes into a Curie-Weiss type be-
havior at the onset of the bad-metal regime.

The GCSM regime is followed by other subtly different
T dependences as described in Sec. III A that obtain in
the bad-metal regime and the high-temperature regime.
The density dependences of the various crossover scales
give important insight into the physics of the resistivity.
With one exception, all calculations reported here are
performed using both ECFL and single-site DMFT meth-
ods. Using the two methods is very important since it
gives us the opportunity to benchmark the mostly analyt-
ical and relatively new ECFL technique with the estab-
lished and largely numerical DMFT method. The mag-
netic susceptibility is available only from DMFT, and our
presentation below seems to be the most extensive result
for this subtle variable reported to date11,26,27.

The plan of the paper is as follows. In Sec. II we first
make some further technical remarks about the methods.
In Section III A we describe the various T dependences of
the resistivity which serve to define the GCFL and GCSM
regimes, and also point to the higher T bad-metal and
high-T regimes. In Section III B we compare the chemi-
cal potential and compressibility. In Section III C we dis-

cuss the frequently made bubble approximation for the
charge and spin susceptibilities, and show that the bub-
ble susceptibility is exactly expressible as an integral of
the energy derivative of momentum distribution function
in d = ∞. We also note that it is a good approxima-
tion to the exact result for the charge susceptibility, but
not so for the spin susceptibilty. In Section III D we il-
lustrate the self energy and local density of states from
the two methods, and find that within ECFL the quasi-
particles tend to have somewhat smaller Z at the highest
densities, as compared to DMFT. This causes a few other
differences described later. In Section III E we examine
further T dependent properties, the heat capacity and
entropy. Section III F discusses the magnetic suscepti-
bility χ from the DMFT calculations and lists some of
the technical difficulties that prevent its evaluation in
the ECFL theory. In Section III G we discuss the ther-
moelectric transport coefficients, the Seebeck coefficient
and the Lorenz number as well as the thermoelectric ef-
ficiency. In Section IV we discuss the salient features of
our results.

II. METHODS

In ECFL we have thus far used an expansion in the
parameter λ, which plays a role analogous to the quan-
tum parameter 1

2S in quantum theories of magnetism,
where S is magnitude of the spin. In the first DMFT-
ECFL comparison paper Ref. (3), we used the second
order terms in an expansion in λ. This approximation
led to quantitatively reliable answer for the quasiparti-
cle weight Z at low temperature only in the overdoped
regime n <∼ .75, but to a non-vanishing value of Z for
n → 1. In the more recent paper Ref. (7) this problem
was addressed using the exact, rather than the λ2 version
of the hole number sum rule, together with a cut-off for
the tails of the spectral function at very high energies.
This procedure extends the validity of the second order
terms to higher density n <∼ 0.85, so that the Z values at
low T tend to zero as the insulating state is approached
and are comparable to, if somewhat smaller than, the
DMFT results. Due to this improvement, we found that
the resistivity is now on the same scale, and exhibits very
similar crossover features as the results in Ref. (5 and 6),
as detailed below. In this work we report the comparison
between the T dependent resistivity and other thermo-
dynamic variables found from this cutoff scheme28 and
the exact results from DMFT. We use the Bethe lattice
semi-circular density of states D(ε) = 2

πD

√
1− ε2/D2 in

both theories.
The ECFL scheme used here has been described in

detail in Ref. (7), and consists of using the O(λ2) expan-
sion with the full number sum rule and the Tukey window
used to cut off the spectral width at very high energies.

The DMFT scheme has been described in detail in
Ref. (3). The NRG calculations29,30 in this work were
performed with the discretization parameter Λ = 2, us-
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ing the discretization scheme from Refs. 31 and 32 with
Nz = 16 interleaved discretization grids. The truncation
cut-off was set at 10ωN , where ωN is the characteristic
energy scale at the N -th step of the iteration. We used
charge conservation and spin SU(2) symmetries. The
spectral functions were computed with the full-density-
matrix algorithm33 and broadened with a log-Gaussian
kernel with α = 0.05, followed by a Gaussian kernel with
σ = 0.3T . The occupancy was controlled using the Broy-
den method34. The self-energy was computed through
the ratio of correlators, 〈〈nσ̄dσ; d†σ〉〉/〈〈dσ; d†σ〉〉35, cor-
rected by the term −wUHB/〈〈dσ; d†σ〉〉, where wUHB is the
spectral weight of the upper Hubbard peak which was
outside the NRG energy window (we redid some calcula-
tions using the standard approach that explicitly includes
the UHB in the every window, using a very large but fi-
nite value of U ; we found excellent agreement between
the two computational schemes).

III. RESULTS

In this work we consider the temperature region T ≤
0.02D, which covers the range up to 200 K if we assume
D ∼ 10000 K, i.e. O(1) eV. Here D is the half bandwidth.
We study three densities (number of electrons per site)
n = 0.75, 0.8, 0.85. These are typical of the over-doped
and optimally doped cuprates.

A. DC Resistivity

We begin with a summary of the results for the resistiv-
ity which form the bedrock for this study. The findings
in Ref. (5–7) are extended in Ref. (8) to higher tem-
peratures, and from these we have a fairly complete un-
derstanding of the behavior of ρ at essentially all T . A
cartoon of these is sketched in Fig. (1). The resistivity ex-
hibits a variety of dependences on T upon warming from
the absolute zero: (i) the Gutzwiller correlated Fermi liq-
uid (GCFL) regime with a quadratic T dependence ρ ∝
T 2 up to a (hole) density-dependent Fermi-liquid temper-
ature TFL(δ) (δ = 1− n); (ii) the Gutzwiller-correlated-
strange metal (GCSM) regime with a linear T depen-
dence ρ ∝ T + constant (constant < 0), (iii) a “knee”
connecting to the bad-metal (BM) regime with again a
linear T dependence ρ ∝ T + constant (constant > 0).
This regime is so named since the ρ crosses the fiduciary
Ioffe-Regel-Mott maximal resistance ρ0 at temperature
on the order of the Brinkman-Rice energy δD, followed
by (iv) a crossover to a high-temperature regime again
with linear T dependence ρ = AT , devoid of an offset
so that the line extrapolates back to pass through the
origin.

In Fig. (2) we present the resistivity in the GCFL and
GCSM regimes. It is striking that the GC strange metal
has a robust linear T resistivity over a wide T scale. The
linear resistivity begins at TFL(δ) which can be driven
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FIG. 2. Comparison of the resistivity computed using the
ECFL (symbols) and the DMFT (dashed). σ0 = 1/ρIRM is
the Ioffe-Regel-Mott conductivity. As n gets closer to unity,
the ECFL scheme employed systematically underestimates Z
relative to the exact DMFT values (see Fig. (6) Ref. (7)).
This lowers the effective Fermi temperature TFL, and simul-
taneously enhances the magnitude of ρ for T > TFL a feature
that is prominently visible above. It should be possible to
improve the quantitative agreement between the two theories
in future28.

to low values, ∼ 45K (see Ref. (7)), by the Gutzwiller
correlations alone, even though the bandwidth is of O(2)
eV. We emphasize that this unexpectedly drastic scale re-
duction yielding TFL � ZD � δD requires a “hard” cal-
culation for justification, and can hardly be argued from
general principles. The slight difference in the TFL(δ) be-
tween the two theories is due to the somewhat different
Z(δ) found in the two theories, for example Fig. (6) of
Ref. (7) shows that the ECFL gives a smaller Z than the
DMFT28. We also note that using the standard value
for ρIRM ∼ 300 µΩ cm, the Ioffe-Regel-Mott resistiv-
ity Ref. (36), the absolute scale of the resistivity com-
puted in these approaches is quite similar to that found
in the experiments. For example, Fig. (1) in Ref. (7)
compares well on an absolute scale with the well-known
linear resistivity result of S. Martin et. al. in Ref. (37)
on Bi2212, where the superconducting phase cuts off the
region T ≤ 80K.

Building on the analysis of Refs. (5–7), we derive
a closed form expression for the resistivity in terms of
the chemical potential and the real and imaginary parts
of the single-particle self-energy on the Fermi surface
(Eq. (7)). We begin with the formula (Eq. (41) in
Ref. (7)) for the conductivity on the infinite-dimensional
Bethe lattice:

σ = 2πD σ0

∫
dω

∫
dε

(
−∂f
∂ω

)
φ(ε)ρ2

G(ε, ω), (1)

where σ0 = e2~Φ(0)/D (Φ is defined in Eq. (39) of
Ref. (7)), σ0 ∼ 1/ρIRM , and the transport function
φ(ε) = Φ(ε)/Φ(0) is given explicitly in Eq. (40) of Ref. (7)

as φ(ε) = Θ(1 − ε2

D2 ) × (1 − ε2

D2 )
3
2 . The single-particle
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FIG. 3. ECFL calculation of the resistivity and related objects. Panel a): The resistivity as a function of the temperature
using the exact formula, Eq. (1), compared with the approximation, Eq. (7), for n = 0.75, 0.8, 0.85 (bottom to top). Eq. (7)
is an excellent approximation at all densities for all temperatures. Panel b): Parameters resulting from a low-frequency
expansion of the imaginary part of the self-energy in the vicinity of the Fermi-surace, plotted as a function of temperature, for
n = 0.75, 0.8, 0.85 (bottom to top). B0 is the self-energy on the Fermi surface, while B2 is the quadratic-frequency term. The

ratio B2π
2T2

B0
→ 1 as T → 0, and is approximately constant as a function of temperature. Panel c): φ[A(0)] = φ[µ−<eΣ(0)],

plotted as a function of the temperature, for n = 0.75, 0.8, 0.85 (bottom to top). φ[A(0)] is practically independent of
temperature, and has very weak density-dependence.

spectral-function is

ρG(ε, ω) =
1

π

B(ω)

[A(ω)− ε]2 +B2(ω)
, (2)

where A(ω) ≡ ω+ µ−<eΣ(ω), B(ω) = −=mΣ(ω), and
all objects depend implicitly on the temperature T . At
low temperatures and frequencies B(ω) � D, so that
Eq. (1) simplifies to

σ = σ0

∫
dω

(
−∂f
∂ω

)
φ [A(ω)]

B(ω)
, (3)

Following6, we perform a small-frequency expansion

φ [A(ω)] = φ [A(0)] + . . . ; B(ω) = B0 +B2 ω
2 + . . . .

(4)
The linear order term in B(ω) as well as all higher order
terms in B(ω) and φ [A(ω)] make negligible contributions
to the conductivity in the temperature range considered,
and are therefore neglected. The integral may be evalu-
ated analytically and yields

σ =
σ0 φ [A(0)]

2πT
√
B2B0

ψ1

(
1

2
+

1

2πT

√
B0

B2

)
, (5)

where ψ1(z) is the Polygamma function, related to the
Digamma function, Ψ(z), through ψ1(z) ≡ d

dzΨ(z)38.

The ratio B0

B2π2T 2 is weakly-dependent on temperature,
and may be replaced by its zero-temperature limit
(Fig. (3b)). In order to find this limiting value, consider
the GCFL regime where

B0 = B2π
2T 2 (GCFL). (6)

Substituting Eq. (6) into Eq. (5) and eliminating B2, we
finally obtain the simple formula

ρ =
12 ρ0

π2 φ
[
µ̄−<e Σ̄(0)

] ×B0, (7)

where we have used that ψ1(1) = π2

6 . Here, we denote the

zero-temperature limit of any variable Q as Q̄, and have
used that φ [A(0)] is practically temperature-independent
(Fig. (3c)). Hence, the resistivity is proportional to the
imaginary part of the self-energy on the Fermi-surface.
Moreover, the proportionality constant is very weakly
density-dependent (since this is true of φ

[
Ā(0)

]
). Eq. (7)

can be obtained from Eq. (47) in Ref. (7) by multiply-
ing the RHS of the latter by the constant 12

π2 and setting
T → 0 in the denominator. The latter equation is ob-
tained by retaining the leading order term in the Som-
merfeld expansion of Eq. (3). In Fig. (3a), we plot the
resistivity as a function of the temperature, using both
Eqs. (1) and (7), in the ECFL scheme. We find that
Eq. (7) is an excellent approximation at all densities and
temperatures considered, i.e. it holds in both the GCFL
and GCSM regimes.

In the GCFL regime, substituting Eq. (6) into Eq. (7),
and using the fact that B2 is approximately constant, we
find that

ρ =
12B̄2 ρ0

φ
[
Ā(0)

] × T 2 (GCFL). (8)

From Fig. 7 of Ref. (7), we know that B̄2 ∝ 1
Z̄2 , where Z

is the quasiparticle weight on the Fermi-surface. There-

fore, Eq. (8) implies that ρ ∝ T 2

Z̄2 in the GCFL regime.
In Fig. (4), we plot the exact resistivity, together

with the approximation Eq. (7), both obtained using the
DMFT calculation (corresponding to Fig. (3a) in the case
of ECFL). Once again, we find that Eq. (7) is an excellent
approximation at all densities and temperatures consid-
ered, i.e. it holds in both the GCFL and GCSM regimes.

Finally, we note that the important effective Fermi
temperature, TFL, can be estimated as the temperature
at which the resistivity deviates from its low-temperature
quadratic behavior. We find at the three densities con-
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sidered, the so determined effective Fermi temperature
for ECFL is, in agreement with Ref. (7), given by TFL ∼
.05Z̄D. In the case of DMFT, we also find TFL ∼ .05Z̄D,
where a slightly higher value of Z̄ results in a slightly
higher value of TFL, as compared to ECFL.

0.000 0.005 0.010 0.015 0.020
0.00

0.05

0.10

0.15

0.20

0.25

T�D

Ρ Ρ
0 Eq.7

Eq.1

FIG. 4. The exact resistivity (Eq. (1)) compared with the
approximation Eq. (7), using the DMFT calculation for n =
0.75, 0.8, 0.85 (bottom to top). Eq. (7) is an excellent approx-
imation at all densities for all temperatures. (See Fig. (3a)
for the corresponding figure in ECFL.)

B. Chemical potential and compressibility

The chemical potential in the ECFL theory is found
from the self-consistency condition of the Green’s func-
tion. The compressibility κ = n−2∂n/∂µ is determined
by numerical differentiation. The derivative is computed
using the finite difference formula ∂n/∂µ = [(n + δn) −
n]/[µ(n+ δn)−µ(n)] with δn = 0.001. In the DMFT we
used larger δn = 0.01 and we performed two full DMFT
runs for fillings n and n+ δn.

We see that the chemical potentials (Fig. 5) match well
apart from a constant shift39. The results obtained using
two different impurity solvers (NRG and CT-HYB QMC)
in the DMFT are in agreement, thus the difference is not
related to some technical issue in the NRG, but is an
actual discrepancy between DMFT and ECFL.

In our earlier work on the single impurity Anderson
model40, using a scheme that is an adaptation of that in
Ref. (3), we studied the single impurity energy, which is
a close analog of the chemical potential in the present
problem. There we found that the location of the im-
purity energy found from the 2nd order ECFL equations
matched very closely the impurity energy found in the
NRG (see Table-1 Ref. (40)). In view of that excellent
agreement, the current discrepancy on the absolute scale
of the chemical potential between the DMFT results (also
from NRG) and the present second order scheme is some-
what unexpected. It would appear that the different hole
number sum rule and the cutoff scheme used here relative
to the scheme in Ref. (3 and 40) influences this variable-
and needs to be investigated more closely in future.

We note that the compressibilities (Fig. 6) are also
roughly similar, and both theories show a suppression rel-
ative to the free fermion theory. The free fermion theory
shows a slight monotonic decrease of the compressibility
with T . In the GCFL and GCSM regimes, the ECFL
compressibility shows an increase with T , followed by a
slight fall with T in the bad metal regime. In (6b), we
show that in the ECFL theory Z/κ is a constant within
numerical errors (∼ ±3.4%) at T = 0.001D. This is not
the case in the DMFT, where Z is proportional to δ,
while κ behaves approximately as κ ∝ δ0.2 close to the
doping-driver Mott transition3. In the GCFL regime,
if we assume that the limit n → 1 follows the almost
localized Fermi liquid theory24,25, we should expect the
compressibility to scale with Z. This is in accord with
the results of ECFL Fig. (6) panel (b), but not with the
DMFT.

DMFT n=0.75 n=0.8 n=0.85
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FIG. 5. Chemical potentials at n = 0.75, 0.8, 0.85 for ECFL
(symbols) and DMFT (dashed lines). The DMFT results are
shifted by a density-dependent constant. After the shift, the
chemical potentials almost coincide.

C. Bubble Susceptibility

The knowledge of the Green’s functions and the nu-
merically determined exact compressibility and magnetic
susceptibility χspin (see below Section(III F)) enable us
to check a popular assumption of retaining only the
bubble graphs, and throwing away the vertex correction
for these quantities. We write the charge susceptibility
χc = dn/dµ as

χc =
1

βNs

d

dµ

∑
k,ωn,σ

eiωn0+

Gσ(k, iωn)

= − 1

βNs

∑
k,ωn,σ

G2
σ(k, iωn){1− d

dµ
Σσ(k, iωn)} (9)

and similarly for χspin by replacing d
dµ →

d
dB , where B

is the magnetic field. The vertex corrections thus corre-
spond to the µ or B derivatives of the self energy. Ap-
proximating this by dropping the derivative of the self
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FIG. 6. (a) Compressibility κ = n−2∂n/∂µ of ECFL (sym-
bols), DMFT (dashed lines) and free fermions (dotted lines).
The DMFT results give a systematically higher value of com-
pressibility than the ECFL theory. (b) Z/κ for the lowest
temperature T = 0.001D at the three densities considered
for ECFL (blue) and DMFT (red). The ECFL result for the
compressibility is proportional to the quasiparticle weight Z,
unlike the DMFT result which displays some variation. The
difference in compressibility between the two theories seems
related to the density dependent shift in chemical potentials
noted in Fig. (5).

energy, we get χc ∼ χspin ∼ χBubble where

χBubble = − 1

βNs

∑
k,ωn,σ

G2
σ(k, iωn). (10)

As usual we can convert the sum to a contour integral
using the pole structure of the Fermi function f(ω) and
write

χBubble =
2

Ns

∑
k

∫
Γ

dω

2πi
f(ω)G2(k, ω)

=
2

πNs

∑
k

∫
dωf(ω)=mG2(k, ω + i0+),(11)

where Γ is a closed contour encircling the imaginary axis
in a counterclockwise fashion, and we rotated the axis

to a pair of lines parallel to the real axis to obtain the
final line. Using the standard definition of the spec-
tral function ρG(k, ω) = − 1

π=mG(k, ω + i0+) we may

write =mG2(k, ω + i0+) = (−2π)<eG(k, ω) ρG(k, ω) to
express χBubble = − 4

Ns

∑
k

∫
dωf(ω)<eG(k, ω)ρG(k, ω).

In the limit d→∞ the Dyson self energy is independent
of k, and therefore we can write =mG2(ε, ω + i0+) =
=m d

dεG(ε, ω+i0+) = −π d
dερG(ε, ω), where we exchanged

the two operations in the last line. Using the definition
of the single particle momentum distribution function
nk → n(ε) ≡

∫
dωf(ω)ρG(ε, ω) we can perform the ω

integration in Eq. (11) and get a compact relation valid
in high dimensions:

χBubble = −2

∫
dεD(ε)

d

dε
n(ε). (12)

Here D(ε) = 2
πD

√
1− ε2/D2 is the band density of states

per site per spin, and D is the half bandwidth.
For non-interacting electrons the function n(ε) is a con-

stant with a unit jump at εF and we recover the standard
result χ0 = 2D(εF ).

In the correlated problem, the jump at the Fermi en-
ergy is Zk by Migdal’s theorem, and so its contribution
to χBubble is Zk. The background also contributes to the
integral in Eq. (12), and it is important to understand its
behavior as n→ 1. In Fig. (7) we display the momentum
distribution at the three densities considered at two tem-
peratures. We note that the entire variation of the mono-
tonic function n(ε) is on the scale of δ; it settles down to
a flat function n(ε) = 0.5 at n = 1− and for small depar-
tures from half filling, the occupied (unoccupied) region
is enhanced (depleted) by an area that is proportional to
δ = 1 − n. Thus we see that as n → 1, the background
contribution is at most as large as δ, and thus χBubble is
a suitably weighted average of δ and Z. In the density
regimes we are considering, the δ variation of Z is close to
δ1.39 rather than δ (see discussion in Ref. (3)), and hence
this balance can only be determined by a numerical eval-
uation. From Eq. (12) we can evaluate χBubble and the
results are shown from both theories at the three densi-
ties δ = .25, .2, .15 in Fig. (8). Within ECFL it appears
that χBubble is dominated by the Migdal jump contribu-
tion; the spacing between the three relatively constant
lines increases at lower δ. Within DMFT the situation
appears to be reversed and χBubble seems to scale with δ.
In Fig. (6) we see that the DMFT results for Z/κ have a
distinct positive slope relative to the ECFL results, and
this is consistent with the above discussed differences in
the computed χBubble as well.

D. Self-energy and local density of states

In this section we study the imaginary part of the
self energy ρΣ(ω) = − 1

π=mΣ(ω) and the (local) spec-

tral function integrated over the band energies ρlocG (ω) =
− 1
π=m

∫
dε D(ε)G(ε, ω). The results of the two theories,
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FIG. 7. The momentum distribution curves at three densities
n = .75, .8, .85 (top to bottom at ε = −1) at T=.004 D (panel
(a)) and T=.02 D (panel (b)). The ECFL curves are solid
symbols and the DMFT curves are dashed lines.

including the magnitudes and their variation, are very
close at low energies. The ECFL self-energy misses a
maximum in ρΣ(ω) found in DMFT between ω ∼ −0.1D
and ω ∼ −0.2D. This feature was already noted in
Ref. (3) and it is expected to influence the results of var-
ious quantities, such as the optical conductivity and dy-
namical Hall constant, but only at a fairly large energy.
The imaginary part of the self energy in both theories
shows a significant ω3 type (i.e. odd in frequency) correc-
tion to the simple-minded expectation of a ω2 behavior
from Fermi liquid theory. This type of a skew has been
argued in Ref. (41) to be responsible for the unusual and
distinctive spectral functions in real materials- such as
the cuprates.

The local spectral function of the two theories, shown
in Fig. 10, are similar. They exhibit a sharpening of the
maximum as n increases. Let us note that this object
is relevant for angle integrated photoemission studies as
well as STM studies, where one would also have to correct
for the one electron density of states showing structure
beyond that in the present theory.

n=0.75 n=0.8 n=0.85
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FIG. 8. The charge susceptibilities χc = dn/dµ, which are
related to compressibility κ as χc = n2κ. The numerically
exact values versus bubble estimates (Eq. (12)) in panel (a)
DMFT (full and dashed lines) and in panel (b) from ECFL
(empty diamonds and solid circles).

E. Entropy and heat capacity

The heat capacity is computed in the ECFL the-
ory by numerically differentiating the internal energy as
CV = ∂EK/∂T on a fine T grid. From its numerical inte-

gration
∫ T

0
dT ′CV (T ′)/T ′ we find the entropy. A similar

procedure is used in the DMFT: the kinetic energies were
computed on a equally spaced temperature grid (step size
∆T = 10−3D), numerically differentiated, smoothed us-
ing a Gaussian filter to obtain the heat capacity CV , then
interpolated using second-order polynomials, and finally
integrated to obtain the entropy.

The heat capacity CV is displayed in Fig. (11a). We
note that CV has a Schottky peak near T ∼ TFL which
becomes sharper as the density increases. At lower densi-
ties (n = 0.7, 0.75), a linear-T behavior is resolved, as we
expect for a Fermi liquid. In Fig. (11b) we display CV /T ,
from which we see that for densities closer to half-filling
(n = 0.8, 0.85), the linear behavior of heat capacity is
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FIG. 9. Single particle decay rates, i.e. the spectral functions
of self-energy (ρΣ(ω) = −π−1=mΣ(ω)) of ECFL (symbols)
and DMFT (dashed lines) for a range of temperatures.

not clearly resolved due to the small TFL scale, and also
due to increasing numerical uncertainties near half filling.
Consequently, we find CV /T appears to be growing as T
decreases, instead of saturating. In Fig. (11c) we show
the product of the heat-capacity slope γ = CV (T )/T and
the quasiparticle residue Z at a low T corresponding to
the GCFL regime. This product is expected to be a con-
stant for localized Fermi liquids Ref. (24). At δ = 0.15,
we see however some variation in both ECFL and DMFT
results. For higher hole densities δ = 0.2, 0.25, it is in-
deed almost a constant.

In Fig. (12) we plot the entropy of the two theories,
which give very similar results, and that of the free Fermi
gas with a much lower entropy recovery at these tem-
peratures. It is revealing to compare the heat capac-
ity curve at n = 0.8 in Fig. (11a), with the resistivity
results in Fig. (2) at the same densities. Both theo-
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FIG. 10. Local density of states ρlocalG (ε) of ECFL (symbols)
and DMFT (dashed lines) at T = 0.002D.

ries show a broad maximum in the heat capacity near
the corresponding Fermi liquid temperature TFL(δ), this
is the temperature where the GCFL quadratic behav-
ior of resistivity gives way to a linear behavior of the
GCSM. At this temperature the entropy per site [See
Fig. (12)] is ∼ 0.2 kB , compared to the high T (T = ∞)
value of 1.0119 kB , obtained from Sideal ≡ ST=∞ =
kB {n log 2− n log n− (1− n) log(1− n)}. This corre-
sponds to about 20% release of the entropy. For compari-
son, the Fermi gas on the Bethe lattice releases much less,
about 1-2% entropy at a comparable T/D. At lower par-
ticle densities n = 0.8, 0.75 we again see that a∼ 15−20%
release of the entropy occurs at the corresponding Fermi
liquid temperature TFL(δ), however the heat capacity has
a more rounded behavior.

In order to explore this further, in Fig. (13) we display
the resistivity and the entropy recovery on the same T
scale. We may thus take as a rule of thumb that at TFL,
the GCFL entropy release is ∼ 15 − 20% relative to the
maximum. This implies a substantial loss of coherence
relative to the Fermi gas, i.e. the disordering of either
the configurational (i.e. charge) degrees of freedom or to
the spins. Below we study the magnetic susceptibility, to
explore which of these is responsible. We find that the
spins are largely unaffected when we go through TFL,
thereby implicating the charge degrees of freedom.

F. Magnetic Susceptibility

The uniform magnetic susceptibility close to the Mott
transition, n & 0.75, is one of the more difficult vari-
ables to compute reliably by any technique, since it is
highly enhanced by Stoner factors χspin/χ

0
spin ∼ 10. In

the ECFL theory we found the numerical precision re-
quired for computing the susceptibility hard to achieve
with the scheme outlined in Ref. (7). Although the lo-
cal spectral functions for either spin are confined to a
compact region in frequency, it is their difference that is
needed for the susceptibility. This difference is numeri-
cally very small and smeared over a large frequency range
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FIG. 11. (a) Specific heat computed from the kinetic energy
by differentiation as CV = ∂EK/∂T for ECFL (symbols),
DMFT (dashed lines) and free fermions (dotted lines). For
n = 0.8 and n = 0.85 the heat capacity shows a gentle max-
imum at a characteristic T . (b) The ratio CV /T versus T of
ECFL (symbols) and DMFT (dashed lines). Taking the ratio
with T wipes out the maximum seen in (a). (c) γ × Z at
T = 0.001D.

making it very difficult to control. The magnetic suscep-
tibility χ is a sensitive variable also within the DMFT
using the NRG as the impurity solver, in particular away
from half filling at low temperatures, thus it is seldom
studied using this approach (see, however Ref. (11 and
26) for some very early DMFT results, and Ref. (27) for
a more recent study DMFT(NRG) of the half-filled Hub-
bard model in magnetic field at T = 0). With some effort
we have found it possible to estimate its temperature de-
pendence. We used the method of finite field42,43 with
H = 10−4D � T , which is small enough for the system
to remain well inside the linear response regime, but suffi-
ciently large to be little affected by numerical noise. As a
further test, we redid some calculations for H = 10−3D,
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FIG. 12. The entropy versus T computed as∫ T
0
dT ′CV (T ′)/T ′ for ECFL (symbols), DMFT (dashed lines)

and free fermions (dotted lines).
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FIG. 13. Resistivity (blue circle), specific heat (light blue
square) and entropy (red triangle) as percentage of the ideal
entropy at infinite temperature Sideal. The (Schottky) peak
in the heat capacity is close to TFL, the onset point of the
linear-T resistivity or the end of the crossover region.

finding good consistency of the results.
In Fig. (14) we present the DMFT Stoner enhancement

of the susceptibility χspin/χ
0
spin as a function of T . Here

the spin susceptibility is denoted by χspin and for non-
interacting band case it is given by χ0

spin = 2µ2
BD(εF ),

where D is the band density of states per spin per site
defined earlier. The scale of the Stoner enhancement is
rather large, ∼ 10. We find that the T → 0 value is
roughly consistent with 1/Z, as expected for an almost
localized Fermi liquid24.

It is interesting that the Stoner factor and hence χspin
is Pauli-like in the temperature range studied here, i.e.
the GCFL and the GCSM regimes. It does not reflect
the change in the resistivity behavior from quadratic to
linear. Thus the magnetic contribution to the entropy
change in Fig. (11) is very small, and we must infer that
the GCSM regime continues to have a quenched spin en-
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tropy, as in the Fermi liquid. It would appear, by infer-
ence, that the entropy released at TFL is charge related
and the crossover from the Fermi liquid to the GCSM
may be viewed as partial charge disordering. This is to
be contrasted to the cross-over from GCSM to the higher
temperature bad metal regime, where the spin degrees of
freedom do become partially unscreened44,45.
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FIG. 14. Magnetic susceptibility (DMFT results). We note
that the Stoner enhancement grows as δ → 0 and its T depen-
dence is Pauli like, but with a somewhat enhanced T depen-
dence at higher n. The crossover to linear resistivity occurs
(see Fig. (2)) at fairly low T <∼ .005D at these densities, but
has no reflection on the variation of χspin. We may thus infer
that spin disordering is not relevant to the linear resistivity
seen here.

G. Thermoelectric transport

For completeness we present the results for the ther-
mopower St, the electronic thermal conductivity κe, and
the Lorenz number L, as well as the thermoelectric figure
of merit. We record the expressions following from stan-
dard transport theory Ref. (46), the thermopower St and
electronic thermal conductivity κe are expressed in terms
of three Onsager transport coefficients L11, L12 = L21

and L22 as follows:

σxx = e2L11, (13)

St = − kB
|e|T

L12

L11
, (14)

κe =
k2
B

T

(
L22 −

L2
12

L11

)
. (15)

In infinite dimensions, these can be found in a straight-
forward way from the spectral functions due to vanishing
vertex corrections:

Lij =
σ0

e2

∫
dω(−f ′(ω))ωi+j−2

∫
dεΦxx(ε)A2(ω, ε).

(16)

The Lorenz number is

L =
e2

k2
B

κe
σxxT

, (17)

and the electronic thermoelectric figure of merit

ZT = TσxxS
2
t /κe. (18)

In usual Fermi liquid theory, the electronic thermal
conductivity κe ∼ T−1 and the thermopower St ∼ γT .
The classic Lorenz number for a gas of particles with
constant relaxation time is L0 = π2/3 when we set
kB = |e| = 1, while for Fermi liquid one expects LFL =
L0/1.54 ≈ 2.1347. In previous DMFT studies46,48–50,
thermal transport coefficients were studied focusing on
the very high temperature regime of the bad metals.
While our results qualitatively agree with the previous
studies, the crossover of thermal transport coefficients
from GCFL to GCSM in the low-T regime (relative to
the very high-T bad metal regime) are resolved for the
first time. Both the thermopower and thermal resistivity
of ECFL change slope near TFL. In DMFT calculation,
only the thermal resistivity shows similar crossover be-
havior, while the thermopower seems to be insensitive to
the crossover from GCFL to GCSM. The Lorenz number
of both ECFL and DMFT converges to L ' 2.1 in the
low-T limit, as expected for a Fermi-liquid ground state.
The low values of ZT , shown in Fig. 16(b), are typical of
normal metals.

IV. CONCLUSIONS

This work achieves two goals. On one hand, we ex-
plored the low-temperature transport regimes of lattice
fermions with the constraint of no double occupancy
(Gutzwiller projection) in the limit of infinite dimen-
sions. We focus on the temperature range where the
Fermi-liquid quadratic resistivity gives way to the first
T linear regime that we dubbed Gutzwiller correlated
strange metal; this cross-over occurs on the temperature
scale which is much lower compared with the bandwidth
(and the Brinkman-Rice scale), but which actually cor-
responds to the experimentally most relevant range of
order 100 K. On the other hand, this work had a fur-
ther methodological goal of comparing the results for a
number of transport, spectroscopic and thermodynamic
quantities obtained using the mostly analytical extremely
correlated Fermi liquid (ECFL) theory and the accurate
numerical results from the dynamical mean field theory
(DMFT) approach based on the numerical renormaliza-
tion group as the impurity solver. We found that at the
cross-over temperature scale both techniques indicate a
change of behavior in most of the quantities we investi-
gated. The two methods have generally good agreement,
which improves upon lowering either the temperature or
the density.

The origin of the cross-over in the resistivity has
been tracked down to the temperature dependence of
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FIG. 15. (a) Thermopower of ECFL (symbols) and DMFT
(dashed lines). Both amplitudes and temperature derivatives
are similar for T ≤ .005 but depart at higher T. (b) Elec-
tronic thermal resistivity κ−1

e of ECFL (symbols) and DMFT
(dashed lines).

−=mΣ(0, T ), the imaginary part of the self-energy on
the Fermi-surface, which starts to deviate from its
low-temperature asymptotic behavior on the scale TFL
(Fermi-liquid temperature). This low-energy scale is pro-
duced by purely local Gutzwiller correlation effects, i.e.,
it is a direct consequence of the constraint of no dou-
ble occupancy of the lattice sites. We managed to show
that ρ(T ) ∝ −=mΣ(0, T ) (Eq. (7)), which accounts well
for the ρ(T ) dependence in the (GCFL)-Fermi-liquid and
(GCSM)-strange metal regimes. As a result, we are able
to explain the temperature-dependence of the resistivity
in terms of the temperature-dependence of the imaginary
part of the self-energy on the Fermi-surface.

The charge compressibility of the DMFT theory at in-
finite U is seen to differ somewhat from that of the ECFL
and also from the almost localized Fermi liquid. Develop-
ments in ECFL are underway in order to resolve the dif-
ference from DMFT. The compressibility shows a kink on
the scale of TFL and the heat capacity has a weak peak.
The magnetic susceptibility, however, shows no change
across this cross-over. The cross-over hence seems to be
related to the charge degrees of freedom, while the spin
entropy is quenched in both Fermi liquid and strange
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FIG. 16. (a) Lorenz number of ECFL (symbols) and DMFT
(dashed lines). The Lorenz number saturates to a constant
(' 2.1) which is typically expected for a Fermi liquid at low
temperatures. (b) Figure of merit for ECFL (symbols) and
DMFT (dashed lines). The low values of ZT found here are
typical of normal metals.

metal regimes. It thus seems that the GCSM regime has
a highly unusual composition, with some disordering of
the charges- presumably in anticipation of the incipient
Mott insulating state, without the participation of the
spins!

In a following paper Ref. (51), we present results for
the dynamical Hall constant and Hall angle indicating
that the two-relaxation-time behavior in transport prop-
erties observed in a number of cuprates emerges upon
entering the GCSM regime. Finally we note a recent pa-
per Ref. (52) where the results of a 2-dimensional version
of the equations studied here are presented.
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