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Coherent Diffraction Imaging (CDI) is a rapidly developing form of imaging that offers the po-
tential of wavelength-limited resolution without image-forming lenses. In CDI, the intensity of the
diffraction pattern is directly measured by the detector, and various iterative phase retrieval algo-
rithms are used to “invert” the diffraction pattern and reconstruct a high-resolution image of the
sample. However, there are certain requirements in CDI that must be met to reconstruct the object.
Although most experiments are conducted in the “far-field” — or Fraunhofer — regime, where the
requirements are not as stringent, some experiments must be conducted in the “near-field”, where
Fresnel diffraction must be considered. According to the derivation of Fresnel diffraction, successful
reconstructions can only be obtained when the small angle number, a derived quantity, is much
less than one. We show, however, that it is not actually necessary to fulfill the small angle condi-
tion. The Fresnel kernel well approximates the exact kernel in regions where the phase oscillates
slowly, and in regions of fast oscillations, indicated by large An, the error between kernels should
be negligible due to stationary-phase arguments. We experimentally verify this conclusion with a

helium-neon laser setup, and show that it should hold at X-ray wavelengths as well.

PACS numbers: 42.30.Rx

I. INTRODUCTION

For many scientific fields, the “ideal” microscope
should be capable of producing high-resolution images
of nanoscale samples with femtosecond time resolution.
Pulsed X-ray sources in particular present a promising
method for high-speed, high-resolution imaging. Direct
imaging techniques require a lens to form the sample
image on the detector, but X-ray lenses are often chro-
matic, inefficient, and difficult to manufacture. Coherent
diffraction imaging (CDI) does not use an image-forming
optic, thus avoiding the drawbacks of X-ray lenses. The
sample is illuminated with coherent light and the diffrac-
tion pattern is measured by a large-area pixelated detec-
tor. Since the detector can only measure the amplitude
of the diffraction pattern, iterative phase retrieval (IPR)
algorithms are used to reconstruct the sample amplitude
and phase.

The standard CDI experiment is conducted in the so-
called “far-field” (Fraunhofer) regime where the distance
between the sample and detector is much greater than
the sample size. However, there are some circumstances
in which far-field techniques cannot be used, such as at
very high photon energies or with larger objects, because
the detector stand-off distance would be impracticably
large. As novel and planned light sources such as diffrac-
tion limited storage rings' and X-ray free electron lasers?
(FELSs) dramatically increase the available coherent hard
X-ray photon flux, including the proposed Matter and
Radiation in Extremes (MaRIE) facility at Los Alamos
National Laboratory that will possess a very hard X-ray (
~ 50 keV) FEL3, these issues will need to be increasingly
taken into consideration.

The distinguishing feature of near-field CDI is the sig-
nificant phase curvature of the diffraction pattern when
recorded by the detector. If the sample is illuminated by
a plane wave (as was done for our experimental work),

the placement of the detector is key; the closer the de-
tector is to the sample, the more phase curvature the
diffraction pattern will possess. Another method for
inducing such curvature is to focus the beam on the
sample, creating phase curvature in the incident beam
itself* 6. Studies using such a structured illumination
have shown that the reconstructions are more robust
to spatial incoherence in the beam”®, can allow imag-
ing of extended objects”!?, and reduce how exactly the
support must be known''. These factors contribute to
faster, more reliable convergence of the reconstruction
algorithm'2. Most of these studies have used highly fo-
cused beams with spherical wavefronts, but it has been
shown that astigmatic beams could allow for even bet-
ter reconstructions'®. The biggest downsides to focused-
beam Fresnel imaging is that the beam must be char-
acterized and positional errors can play a large role!4,
which are not concerns for plane-wave CDI in the Fres-
nel regime.

There have been some efforts to evaluate the valid-
ity of the Fresnel approximation itself. Many analyses
mention a value Barber called the “small angle num-
ber”, An, that arises in the derivation of Fresnel diffrac-
tion in the case of plane-wave (not focused) wavefronts?.
This value, derived in detail in Section T A, is the re-
sult of limiting the contributions of high order terms in
the Fresnel approximation; the “required” condition is
that An < 1. This condition can be difficult to sat-
isfy in practice, especially at low photon energies, but
several authors have suggested that fulfilling the small
angle condition may not be necessary. Goodman stated
that when An > 1 the diffraction integral could be under-
stood via stationary-phase arguments, meaning that any
errors incurred by violating the condition are averaged
out by rapid oscillations in the kernel'®. Veerman agreed
with Goodman’s assessment, and also proposed that the
small-angle condition could be relaxed somewhat in the



Detector

Sample

N
a

Coherent light source

FIG. 1. Basic CDI setup; a coherent light source illuminates
the sample of diameter a, and the resulting diffraction pattern
is measured at a detector located a distance z from the sample.

particular case of paraxial beams'®. Southwell provided
the justification for needing paraxial beams by showing
that it was required by the stationary-phase treatment!”.
Finally, Forbes examined the error of the Fresnel approxi-
mation by observing the effect of including or discarding
higher-order terms in various approximations'®. How-
ever, Forbes restricted his analysis to two different forms
of the Fresnel approximation, and did not consider the
error as compared to the exact solution. Despite being
mentioned numerous times in literature, the limits of An,
and the justifications mentioned above of why it may not
be a necessary condition, have not to our knowledge been
tested experimentally. Here we show theoretically that
the small angle condition may not be the limiting fac-
tor in near-field CDI experiments, and show successful
reconstructions of near-field CDI at high An using data
obtained with a visible light experimental setup. We pre-
dict that the small angle number condition can be vio-
lated to yield high-resolution reconstructions at X-ray
wavelengths as well.

A. Theoretical Background

In this section, we will analyze the pertinent scattering
theory of near field CDI and the sensitivity to the large
angle number, An. We begin by considering a sample exit
wave propagating in the z direction through free space to
a detector some distance z away, as in Fig. 1. As can be
derived directly from Maxwell’s equations, the electric
field E (z,y,2,t) in a wave front traveling in a vacuum
obeys the vector wave equation,
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wﬁ = C2V2E (].)

We make two simplifications: (1) We make the approxi-
mation that the polarization € of the electric field is con-
stant over the space of propagation, so that E(x, Y, z,t) =
EE(xz,y,z,t). (2) We assume that the wave has a “carrier
frequency” w, so that its time-dependence can be repre-
sented as F(z,y, z,t) = E(x,y, 2)e™!. Then the spatial
variation of the electric field magnitude FE(z,y, z) obeys
the Helmholtz equation,
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52 = —k*E -V3E, (2)

where k = w/c = 2w /) is the vacuum wavenumber of the
source and V2 = BB—; + 88—;2 is the part of the Laplacian
transverse to the direction of propagation. It is not an
exaggeration to say that the Helmholtz equation defines
diffraction for a propagating wave front.

For a complex wave front starting at z = 0, called the
“object plane” for CDI, and propagating a distance z to
the “detector plane”, the relevant solution to Eq. (2) is
given by

E(F,z):/dF/E(F',O)H(F—F',z), (3)

where the kernel H is

1 =
27 (|f’| +22) 7% + 22
(4)
Here 7 = (x,y), ¥ = (2/,3'), and z is the distance
between the sample and the detector. The 2D vec-

tors 7/ and 7 span planes perpendicular to the propaga-
tion direction, at longitudinal positions 0 and z, respec-
tively. Together Egs. (3) and (4) constitute the Rayleigh-
Sommerfeld solution to the Helmholtz equation®®.

We now outline several approximations which are often
applied to the Rayleigh-Sommerfeld kernel. The magni-
tude of the quantity ¥ — 7’ in Eq. (3) is the transverse
distance between a point on the sample and a point on the
detector. This is typically much smaller than the sample-
to-detector distance z, and so in Eq. (4) we ignore any
terms of magnitude r = |¥| compared to z (outside the
exponent). Furthermore, any term of order k = 27w/
dwarfs terms of order 1/z as long as z > A. Under these
approximations, the kernel becomes

H(F,z) = IRLINVE =g (5)

2mz

The term in the exponents of (4) and (5) requires greater
care. Expanding the exponential term differently leads
to the far-field and the near-field approximations. The
far-field approximation starts with the kernel H as in
Eq. (3), with first argument 7 — 7"

k . ==
H(7 -7 2) ~ —2;7@““ |F=7"]? 22 (6)



Deﬁneﬁ—F—&—zéz, = |R|, R=R/R,#' =#'/|F'|, and
¢ = |f'|/R. R is the 3D vector from the origin (usually
taken at the center of the exit wave) to a point on the
detector. The quantity € has a magnitude roughly equal
to the scale length of the exit wave or sample, divided
by the characteristic sizes of the detector and sample-
to-detector distance z. We assume that this is a small
quantity and manipulate the square root in the exponent
above as follows:
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where the substitution in Eq. (7a) is possible because 7

and 7 are both L to é,, Eq. (7b) follows from Taylor
expanding the preceding line in €, resulting in Eq. (7¢)
after substituting € = |#/|/R. The third term in Eq. (7c)
(and all higher terms) can be ignored if it contributes a
phase much smaller than 27 to the exponent, a condition
which is obtained if

1|7 R 21 12n |7
k [1—R-f’ }<777
2 R ( ) T2 N |F+ zé,|
127 |7 s
e 7r
2 A
Since several approximations were made above, and be-
cause the maximum value of || in reality depends upon
the shape of the sample, numerical factors of order unity
are usually omitted, and the above condition is written
simply as

L
max 1 8
Az <L (8)

where F'r is the Fresnel number.
With these approximations, Eq. (3) becomes

Tk i/ / a7 B(7,0) e

2mz

Fr=

—ikR-7

(9)
This has the form of a Fourier transform with spatial
frequency kR, a fact which can be leveraged to achieve
efficient numerical evaluation of the propagated wave
front. Note that the steps leading to Eq. (9) are some-
what distinct from those used in Ref. 3 to approximate

E(7 z)=—

the kernel for scattered light, although they arrive at a
mathematically-similar result.

The Fresnel approximation - which is the focus of this
work - proceeds along a different tack. Taking the first
argument of the kernel to be 7, as in Eqgs. (4) and (6),
we Taylor expand the exponential term for small |7|/z
as follows:

17 P + 22 = kz (1 + ||>

1|7
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The last term (and all subsequent terms) above can be
ignored if it contributes a phase much smaller than 2,
a condition which implies that

|7:+> . (10)
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An = Ve <1, (11)
where 7,4, = max | — 7’| is the maximum transverse
distance between points on the sample and points on the
detector in Eq. (3). The “small angle number” An is a
dimensionless number which determines when the Fresnel
approximation is valid®. If An > 1, the error incurred by
discarding the higher order terms could be substantial and
indicates that the Fresnel approzimation may not be valid.
Under these approximations, the Rayleigh-Sommerfeld
kernel becomes the Fresnel kernel,

ik kr?
Hpy(r,z) = —21? exp (zkz + 227;) ) (12)

which can also be derived as the kernel for the paraxial
approximation to the Helmholtz equation'®.

A significant property shared by both the Rayleigh-
Sommerfeld and Fresnel kernels fOHOWb from Parbeval S
theorem, which, if we take f (7 = [dFf(7)e T as
our convention for the Fourier transform of the ex1t wave,
states that

/dFIf(F)I2=(2)2

for functions in two dimensions. The Fourier transforms
with respect to 7 of these two kernels are

H(q,z) = exp (Zz k2 — |(7|2> (13)

and
Hp, (7,2) = exp (zkz - z—|q| ) (14)
where Eq. (14) can be derived either directly from

Eq. (12), or by performing a Taylor expansion in ¢ of



the exponent in Eq. (13). Note that |[Hp, (7,2)| = 1 al-
ways, and |H (¢, z)| = 1 when |7] < k. Since || < k for
the parameters of any reasonable experiment that we en-
vision, it is essentially always the case that |H (§,2)| =1
as well.

The intensity at a given propagation distance z and lat-
eral position 7 is given (to within irrelevant multiplicative
constants) by I (7, z) = |E (7, z)|°. The following deriva-
tion then holds for either kernel:

= oo [ ealE@ol
:/dF|E(F,O)|2
— P0)

Here the integrated intensity P(z) (which has units of
power) is the total amount of energy passing through
a plane at z. This result shows that for either kernel
P(z) = P(0), i.e. that both kernels exactly preserve
the total propagated intensity. Only the distribution of
intensity changes. While this is to be expected for the
exact kernel, it is of note that the approximate Fresnel
kernel achieves this as well.

B. Theoretical Findings

We wish to quantify the error in the kernel incurred by
approximating Eq. (4) as Eq. (12). In order to accomplish
this in a scale-invariant sense, it is convenient to define di-
mensionless variables and dimensionless, scaled versions
of these kernels. We define h(u,a) = 2z2H (zu, &) and

hpe(u, a) = 22 Hp, (zu, $) so that

1 1 .
_ . iov/u?2+1
0 = gy (s )
(16)
(1o . _au?
hpr(u, ) = —5, €XP <za + 22) . (17)

Here u = r/z (“dimensionless transverse detector size”)
compares the size of the detector and sample to that of
the sample-to-detector distance and is typically a fairly
small number, whereas o = kz (“dimensionless detector
distance”) is roughly the number of wavelengths that fit

into a distance z, and is therefore typically a very large
number. An can be represented approximately in terms
of u and « as

An~= —. (18)

Here we consider the two different “regimes” of visi-
ble and X-ray wavelengths; the experiment for this work
was conducted using visible light but the overall results
will most likely be useful for hard X-ray experiments.
While the dependence on r makes u somewhat sam-
ple dependent, we give here some typical values of «
and u to give a sense of scale. The data presented in
the next section suggest that for 632.8 nm wavelength
photons (1.96 eV), o ~ 8.8 x 10* and u ~ 0.83 when
z = 0.89 cm and the half-width of the pattern on the de-
tector is 7 ~ 7400 um (Fig. 6b), and a ~ 4.3 x 10* and
u ~ 0.87 when z = 0.43 cm and r ~ 3700 um (Fig. 6¢).
When considering 10 keV photons, o ~ 5 x 10'° when
z=1mand o ~5x10% when z = 1 cm. Values around
u = 0.1 would be considered fairly large for X-ray exper-
iments at this energy range.

The fractional error in the magnitude displayed by the
Fresnel kernel (compared to the exact kernel) is shown
in Fig. 2 as a function of u for visible light and 10 keV
photons. The difference in phase (i.e. complex argument)
between h and hp, is shown in Fig. 3 for various values
of o and u. It is immediately obvious that the greater
the value of «, the lower the value of u when the phase
error begins oscillating quickly.
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FIG. 2. The fractional error ||hr,| — ||| / || in the magnitude
of the kernel incurred by making the Fresnel approximation.
This curve is calculated using o = 10°, although it would
look essentially unchanged for any value of a greater than
approximately 10%.

We see that for our visible light experiment the ampli-
tude error can be very large, ranging from 10% to 200%,
and the phase error oscillates quickly at high u (a better
sense of this can be gleaned from the larger range plotted
in Fig. 4). The same analysis at X-ray wavelengths re-
veals slightly different behavior: while the phases of the



two kernels decorrelate at small u from very rapid oscil-
lations, the magnitude error will typically be less than
about 1%.
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FIG. 3. The difference in the phase (i.e. the complex argu-
ment) between hp,(u, ) and h(u, «) for various values of .
Note that - in order to not clutter the image - the curves for
a = 10'° and o = 10® stop at u = 0.012 and 0.04, respec-
tively.

Though the phase and amplitude errors of the Fres-
nel kernel can be quite large, the oscillatory properties of
both kernels themselves should be examined. The phase
difference of the kernels for a = 4.27 x 10* and o = 10°
are plotted in Fig. 4, along with the phase of the exact
kernel. While the scales of the two regimes are quite dif-
ferent, the behavior is the same - the frequency of the ex-
act kernel’s oscillation increases much more rapidly than
the frequency of the phase error. This is not the de-
fault behavior; when « is less than about 50 (not shown)
we observe the opposite behavior. This means, however,
from the definition of u that the distance between sam-
ple and detector is comparable to the sample size!?; this
situation will rarely, if ever, occur.

We see in Fig. 4 that the phase error changes slowly
when u is “small” (where the scale of “small” w is set by
«), signifying that the Fresnel kernel approximates the
Rayleigh-Sommerfield kernel well in that region. To fur-
ther our analysis, we seek to know the effect of An on
the kernel phase and phase error. We know that when
An = 1 the phase difference should already be observ-
able, and using Eq. 11 we find that for a = 4.27 x 104,
u = 0.185, and for o = 10°, u =~ 0.015; a significant phase
difference is observed at those u values, as expected. We
also see that the kernels themselves have oscillated many
times before reaching these u values. In this region we
can qualitatively apply the stationary phase argument
already alluded to in Refs. 15-17, which suggests that
the rapid oscillations of the kernel average the phase er-
ror to zero. Since the phase is multiplied by the ampli-
tude in the integral, the amplitude error is also averaged
out to zero. This result implies that the diffraction pat-
terns given by the Fresnel approximation and Rayleigh-
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FIG. 4. The difference in the phase (i.e. the complex argu-
ment) between hp,(u,a) and h(u, @) plotted with the exact
kernel h(u,a) at a) a = 4.27 x 10* and b) a = 10° as a
function of v and An as calcuated by Eq. 18. The curves for
arg (h) were stopped at u = 0.04 and u = 0.0005, respectively.
There are approximately 20 cycles of arg(h) plotted in (b).

Sommerfield exact solution are nearly identical in all sit-
uations that could be envisioned in an actual experi-
ment, and so an IPR that uses the Fresnel approximation
should be able to handle any appropriately-oversampled
diffraction dataset.

After the point where An > 1, the situation becomes
murkier. It seems reasonable, after examination of Fig. 4,
that the stationary phase argument would hold for some-
what larger u. It is not clear, however, at what point
the stationary phase argument ceases to hold, or alter-
natively, if the kernels oscillate quickly enough so that
the stationary phase argument always holds. We do not
present any theoretical findings to answer these ques-
tions; in the next section, however, we present data with
visible wavelengths (corresponding to a = 4.27 x 10%)
that suggest that even at low « values and high An val-
ues the stationary phase argument still holds. We can
then make the conjecture that if the stationary phase ar-
gument always holds in the visible light regime, then the



plots in Fig. 4 suggest that it should also always hold in
X-ray experiments as well.

II. EXPERIMENTAL METHODS

In this section, we present the results from a sim-
ple near-field CDI experiment performed on a tabletop
helium-neon-based CDI system.

A. Data Acquisition

As shown in Fig. 5, a 5 mW helium-neon laser was
used to produce a monochromatic 632 nm beam. Two
adjustable attenuators reduce the beam intensity, per-
mitting longer exposure times and reducing risk of satu-
ration or damage to the detector. The attenuated light
then passes through a beam-defining pinhole about 150
pm in diameter. Next, the beam is collimated by a lens
and redirected toward the sample by a mirror. An iris,
tuned to be slightly larger than the central Airy disk,
blocks any fringes created by diffraction from the pin-
hole. A CCD camera (ThorLabs 4070M) then records
the diffraction pattern. The distance from the sample to
detector, z, was varied to measure diffraction patterns at
different F'r and An, but was chosen to ensure that the
oversampling ratio, Os = z A/ P N, was greater than two.
P and N are the detector pixel size and the number of
collinear detector pixels with good signal to noise, respec-
tively. The reconstruction of the sample was conducted
as discussed in subsequent sections. The total width of
the group of geometric apertures is 150 pm.

m CCD Camera

Sample

Pinhole 2

Pinhole 1
Collimating Lens

Attenuation filter

Helium-Neon Laser

FIG. 5. Diagram of the experimental setup used to provide
a coherent beam and record the diffraction pattern from the
sample. An optical microscope image of the sample is shown
in the inset, where the red scale bar is 25 microns wide.

B. Data Processing

In order to maximize the amount of light diffracted to
high angles (i.e. near the edge of the detector), while
avoiding saturation issues caused by the low dynamic
range of our CCD camera, we measured 500 images at
three exposure times, ensuring that the lowest-exposure
data set did not include oversaturated pixels. The 500
images were summed and background-subtracted, then
the data sets from the three exposure times were stitched
together so that the low exposure image provided de-
tailed information of the low-angle scatter, while the
high exposure image provided improved signal-to-noise
at higher scattering angles; the process used was similar
to that described in [20]. The stitched image was then
centered and thresholded to filter residual noise.

C. Phase Retrieval

There are several phase retrieval algorithms that could
be applied to reconstruct the images (see Ref. 21 for
a good overview of the main variations). They all use
constraints in Fourier and object space, but they differ
in how they use those constraints. We used the hybrid
input-output (HIO) and error reduction (ER) algorithms
for the results in this paper as this combination has been
shown to be one of the best in terms of stability and
precision?2. We define f(7) as the actual image, g5.(7) as
an estimate of the actual image, and ¢, as an estimate of
the real phase, ¢. F(@) and G (%) are the Fourier trans-
forms of f(7) and gi(7), respectively, which means that
|F(@)| is the square root of the measured diffraction pat-
tern. The basic steps of such a phase retrieval algorithm
are shown below.

1. The algorithm starts with a seed image g (7), usu-
ally assigned random amplitudes and phases.

2. The Fourier transform of the object gp(7) gives
G (@), which is an estimate of the measured diffrac-
tion pattern F ().

3. The Fourier constraint is applied; the amplitude
of Gi(@) is replaced by the measured diffraction
pattern amplitude |F ()|, but the phase ¢y is left
unchanged. The result is G} (@).

4. Inverse Fourier transforming G} (@) gives an im-
proved estimate of the image, called g} (7).

5. Applying the support constraint results in gg41(7).
Defining S as the known support of the sample,
we see that for ER this constraint takes the form

gr1(7) = {g (7) ::;g’



and for HIO,
NG,
91 (7) = {gk(F) — B9’ ()

where 3 is a constant, normally chosen between 0.5
and 1. We used 8 = 0.7 for our results.

res
¢S

6. Compute the error (this can be done in Fourier or
object space). If the error is below a certain thresh-
old, quit. If not, go back to step 2.

As originally formulated, the HIO and ER algorithms
only work in the far-field but they can be modified to
work in the Fresnel regime by employing the “distorted
object” approach??, which modification we employed in
our reconstruction algorithm. We used the shrinkwrap
algorithm to dynamically generate the support region.
We did not enforce any other constraints. Each recon-
struction was allowed to run for 125 iterations, where
one iteration consisted of 10 iterations of ER, 20 itera-
tions of HIO, and one application of shrinkwrap. Other
optimizations used in our phase retrieval code that aid
convergence are found in Refs. 24 and 25.

III. RESULTS AND DISCUSSION

We took data at three sample-to-detector distances
(z = 30 mm,8.9 mm, and 4.3 mm) that correspond to
three different values of An (An = 175, 11400, 41600).
We hypothesize that if there are significant errors in the
Fresnel kernel because of large An that we will be unable
to reconstruct the object in a satisfactory manner. For
our data we also calculated the respective values of F'r
(Fr = 0.3, 1.0, 2.1), where higher values of F'r denote
that the data was taken in “nearer-field” than for lower
values of F'r. The dataset with the lowest Fr could be
considered to be in the Fraunhofer regime; reconstruc-
tions attempted with and without the distorted-phase
were equally successful with Fr = 0.3 data. The data
taken at F'r = 2.1 has an oversampling of about 2.5 so
it was not possible to explore appreciably higher Fr and
An, but despite this limitation the values of An span
three orders of magnitude. The log-scale diffraction pat-
terns and their reconstructions are found in Fig. 6, and a
summary table listing various important values is found
in Table 1.

particles consistently) are attainable at large An; indeed,
An > 1 for all attempted reconstructions. We see in
Fig. 7 that the 10% —90% rule gives a resolution between
2.7-2.9 pm for the Fr = 0.3 and F'r = 2.1 reconstructions
respectively, which is somewhat larger than the smallest
sample features (which have dimensions around 2 pm).
This explains why the smallest features, i.e. the small-
est chevrons, triangle or circle, are not cleanly resolved
in any of the reconstructions, though this can also be
attributed in part to dust obscuring some of the fea-
tures in the test pattern. The pixel sizes in the data
sets are 1.29, 0.37, and 0.18 pum for F'r = 0.3,1.0,and 2.1
respectively, so we see that the good signal out to the
edge of the detector in the Fr = 0.3 data resulted in
near diffraction-limited full-pitch resolution, whereas the
poorer signal-to-noise ratio in the other two data sets re-
sulted in relatively poorer achieved resolution. A detec-
tor with greater sensitivity and lower noise would allow
reconstructions at higher F'r to have resolutions closer to
the laser wavelength.

We conducted a numerical study of the differences be-
tween diffraction patterns propagated via both kernels
with X-rays, with a resolution of twice the wavelength
to see if the difference between kernels is significant in
high resolution X-ray experiments. We used a 300 nm
diameter object, 1 nm light and 2 nm object pixel size,
and computed the diffraction patterns via convolution?®.
Depending on the desired experimental parameters the
convolution method can require significant resources -
we used a 96-core computing node with about 1.5 ter-
abytes of RAM for our simulations, operating on 120000
by 120000 element arrays. Such large arrays were re-
quired to reduce diffraction “leaking” around the edges
of the computational array, though it is difficult to elim-
inate leaking completely. We simulated the diffraction
of both kernels at two propagation distances, 1 pm and
0.2 mm. Memory and computing constraints dictated
the larger distance. The propagation of 0.2 mm and 1
pm resulted in F'r of 0.11, 22.5 and An of 140000,40300,
respectively.

The validity of the Fresnel kernel depends only on An,
not F'r, and since An > 1 we might expect to see a dif-
ference using the Fresnel and exact kernels. The 0.2 mm
propagation yields an error of about 5% between ker-
nels, computed by summing the absolute values of the
diffraction pattern intensities and dividing by the sum of
the Rayleigh-Sommerfield propagated diffraction pattern
intensity. Some of this error can be attributed to diffrac-

tion leaking around the detector edges. The greater part

of the error is simply due to differences between the

z (mm) Os Fr An U a

30 171 0.3 175 0.25 298 x 10°
8.9 5.1 1 11400 0.83  8.84 x 10*
4.3 2.5 2.1 41600 0.87  4.27 x 10*

Rayleigh-Sommerfield and Fresnel kernels. When con-
sidering all sources for error in an actual X-ray exper-

iment, however, such as detector imperfections, use of

TABLE I. Important values in the experiment at each F'r.

The first observation is that good quality reconstruc-
tions (reconstructing even many of the defects and dust

beam stops, and Poisson noise, 5% error seems tolerable.
We note that at a propagation distance of 1pm the kernel
error is only slightly higher at 8%. These results support
the conclusion that the value of An is not important when
the Fresnel kernel is used without regard to photon en-



FIG. 6. Experimentally obtained diffraction patterns and reconstructions at different An. Figs. (a) through (c) are uncropped
log-scale diffraction patterns for Fresnel numbers of Fr = 0.3, 1.0, and 2.1, and (d) through (f) are the corresponding recon-
structions. The data from F'r = 0.3 was binned by a factor of 4 to speed up the reconstruction algorithm; the other datasets
were reconstructed without binning. Red dashes in (d) and (f) indicate the contours of the lineouts used in Fig. 7.
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FIG. 7. Lineouts indicated in Fig. 6 for the F'r = 0.3, 2.1 data.
The dashed lines represent the values at 10% and 90% of the
maximum value, resulting in a resolution of approximately
2.9 pm when Fr = 0.3 and 2.7 pm when Fr = 2.1.

ergy or resolution. Situations involving larger samples
and higher energies are certainly useful to consider, but
those simulations are even more computationally expen-
sive than the results we have presented her; additionally,
there is no reason to believe that the results would be
different.

It was mentioned in a previous section that it is diffi-
cult to determine at what point the kernel’s oscillations

overcome the error between the Fresnel and Rayleigh-
Sommerfield kernels. While we do not present here a
good method for determining that bound, we can say
something about it empirically from these results. In
Fig. 2 we see that the magnitude error for this setup
should be very large (around 100%) for the Fr = 2.1
data. One would expect that a reconstruction of that
data using the Fresnel kernel in the distorted object ap-
proach would not possible, but we have demonstrated
otherwise. Thus it is reasonable to assume that the error
in the Fresnel kernel is not as great as Fig. 2 would sug-
gest, and thus it seems that the kernel oscillations start
early and fast enough to effectively minimize error accu-
mulation. Encouragingly, we see in Fig. 4 that the ker-
nel difference manifests much earlier and more rapidly
in comparison to the exact kernel oscillations at X-ray
wavelengths than for the helium-neon setup. Therefore,
since acceptable reconstructions were obtained for visi-
ble wavelengths, we would expect the phase error to play
even less of a role for X-ray experiments.

We have shown theoretically that the condition An <«
1, once thought to be a limiting factor in near-field recon-
structions, actually only describes one small effect of an
approximation step of the diffraction integral that is usu-
ally overshadowed by the rapid oscillations in the diffrac-



tion integral that average out to zero. As An becomes
large the difference between the Fresnel and Rayleigh-
Sommerfield kernels becomes negligible compared to the
oscillations of either kernel, and both the amplitude and
phase error get averaged to zero while evaluating the in-
tegral. We have demonstrated experimentally that there
seems to be no appreciable restriction due to An at vis-
ible wavelengths, and have argued based on our results
that the restrictions would be even less of a concern at
X-ray wavelengths; this conclusion, however, still needs

to be verified by experiment.
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