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Transport properties of highly mobile 2D electrons in symmetric GaAs quantum wells with two
populated subbands placed in titled magnetic fields are studied at high temperatures. Quantum
positive magnetoresistance (QPMR) and magneto-intersubbands resistance oscillations (MISO) are
observed in quantizing magnetic fields, B⊥, applied perpendicular to the 2D layer. QPMR displays

contributions from electrons with considerably different quantum lifetimes, τ (1,2)
q , confirming the

presence of two subbands in the studied system. MISO evolution with B⊥ agrees with the obtained
quantum scattering times only if an additional reduction of the MISO magnitude is applied at
small magnetic fields. This indicates the presence of a yet unknown mechanism leading to MISO
damping. Application of in-plane magnetic field produces a strong decrease of both QPMR and
MISO magnitude. The reduction of QPMR is explained by spin splitting of Landau levels indicating
g-factor, g ≈0.4, which is considerably less than the g-factor found in GaAs quantum well with a
single subband populated. In contrast to QPMR the decrease of MISO magnitude is largely related
to the in-plane magnetic field induced entanglement between quantum levels in different subbands
that, in addition, increases the MISO period.

I. INTRODUCTION

The orbital quantization of electron trajectories and
spectrum in magnetic fields significantly affects the elec-
tron transport in condensed materials1,2. Spin de-
grees of freedom further enrich the electron response.3

Shubnikov-de Haas (SdH) resistance oscillations1 and
Quantum Hall Effect (QHE)4 are famous examples of
the quantization effect on electron transport at temper-
atures, T , less than the energy, ∆c = h̄ωc, separating
Landau levels. Here ωc is the cyclotron frequency. At
high temperatures, T ≫ h̄ωc, SdH oscillations are absent
due to the spectral averaging of the oscillating density of
states (DOS) in the energy interval, δǫ ∼ T , near Fermi
energy, EF . In this high temperature regime other quan-
tum effects exist.

Two-dimensional electron systems with multiple pop-
ulated subbands exhibit additional quantum resistance
oscillations.5–10 These magneto-inter-subband oscilla-
tions (MISO) of the resistance are due to an alignment
between Landau levels from different subbands i and j
with corresponding energies Ei and Ej . Resistance max-
ima occur at magnetic fields at which the gap between the
bottoms of subbands, ∆ij = Ei − Ej , equals a multiple
of the Landau level spacing, h̄ωc: ∆ij = k · h̄ωc, where

k is an integer11–14. At this condition electron elastic
scattering on impurities is enhanced due to the possibil-
ity of electron transitions between the aligned quantum
levels of ith and jth subbands. At magnetic fields corre-
sponding to the condition ∆ij = (k+1/2) · h̄ωc the inter-
subband electron scattering is suppressed. This spectral
overlap between two subbands oscillates with the mag-
netic field and leads to MISO, which are periodic in the
inverse magnetic field. In contrast to SdH oscillations,

MISO are significantly less sensitive to temperature and
exist at kT ≫ h̄ωc.

Recently MISO in wide (56 nm) GaAs quantum wells
with three subbands populated were investigated in tilted
magnetic fields.15 An application of in-plane magnetic
field produces dramatic changes in MISO and the cor-
responding electron spectrum. Three regimes have been
identified. At h̄ωc ≪ ∆12, the in-plane magnetic field
increases considerably the gap ∆12, which is consistent
with the semiclassical regime of electron propagation.
In contrast, at strong magnetic fields h̄ωc ≫ ∆12 rel-
atively weak oscillating variations of the electron spec-
trum with the in-plane magnetic field have been ob-
served. At h̄ωc ≈ ∆12, the electron spectrum undergoes
a transition between these two regimes through magnetic
breakdown.16–24 In this transition regime MISO with odd
quantum number k terminate, while MISO corresponding
to even k evolve continuously into the high-field regime
corresponding to h̄ωc ≫ ∆12. The observed results are
found in an excellent agreement with the theory22 con-
sidering the wide quantum well as two parallel 2D elec-
tron systems coupled by a tunneling with an amplitude
t0 through a barrier of width d. The observed complex
behavior of MISO in the tilted magnetic field was quan-
titatively understood in the terms of the entanglement
of the orbital electron motion in different subbands in-
duced by in-plane magnetic field. Indeed, due to in-plane
magnetic field each level of a subband interacts directly
with two levels of another subband leading to an entan-
gled mesh of the couplings between quantum levels.15 No
effects of electron spin degree of freedom were detected
in this study.

With a decrease of the width of a quantum well the
gap ∆12 increases. At ∆12 > EF only a single sub-
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band is populated in the quantum well. These quantum
wells do not demonstrate MISO but continue to display
a quantum positive magnetoresistance (QPMR). This ef-
fect is due to enhanced electron scattering on impurities
that results from the increasing amplitude of the elec-
tron wave function in stronger magnetic fields. The later
is direct consequence of the reduction of the electron or-
bit (size of the wave function) with B⊥. QPMR is in
some respect similar to MISO and reflects the enhance-
ment of the intra-subband impurity scattering due to the
quantization of the electron spectrum.13,14,25 QPMR has
been observed in electron systems with two populated
subbands26 and in narrow (13nm) quantum wells with a
single subband populated.27 The later is recently inves-
tigated in tilted magnetic fields.28 These investigations
have demonstrated that the QPMR magnitude decreases
significantly with application of in-plane magnetic field.
The QPMR decrease is found to be strongly correlated
with the reduction of SdH amplitude indicating the spin
origin of the effect. This considerable effect of the spin
degree of freedom on the electron-impurity scattering was
unexpected since it is widely accepted that in GaAs high
mobility quantum wells most impurities are not mag-
netic.

In the presented paper we have studied transport prop-
erties of high quality GaAs quantum wells of an interme-
diate width d0=26 nm. The goals of this study are to
detect effects of the spin degree of freedom on MISO,
which has not been seen as well as to investigate the ef-
fect of the spin splitting on QPMR28 in a 2D system with
two subbands populated. Experiments presented below
demonstrate a significant reduction of the QPMR with
the application of the in-plane magnetic field, which is
in good agreement with the modification of the electron
spectrum via Zeeman effect with g-factor g ≈0.43±0.07.
The observed g-factor is, however, significantly less than
the enhanced electron g-factor observed in GaAs quan-
tum wells with a single subband populated.

MISO also have demonstrated a strong reduction of
the magnitude with the in-plane magnetic field. However
in contrast to the QPMR decrease, the MISO reduction
is found to be predominantly related to a modification
of the electron spectrum via the orbital coupling of two
subbands induced by the in-plane magnetic field. The
Zeeman term provides a sub-leading contribution to the
MISO reduction. The in-plane magnetic field induced en-
tanglement between wave functions in two subbands also
leads to variations of MISO period which are found to
be in good agreement with our experiments. This agree-
ment provides the basis for a new method to measure the
width of quantum wells.

At small magnetic fields MISO indicate the presence
of a yet unknown mechanism of additional damping. We
found that a quite small nonparabolicity of the electron
spectrum could explain the additional MISO damping at
zero in-plane magnetic field. However an overly strong
reduction of the numerically computed MISO amplitude
with the magnetic field tilt does not allow us to firmly

identify the nonprabolicity of the electron spectrum as
the only cause of the observed additional MISO decrease.

Finally a cross comparison of QPMR and classi-
cal magnetoresistance in perpendicular magnetic fields
shows good mutual agreement with the quantitative
theory14,25,30 and indicates the dominant contribution
of the intersubband impurity scattering to the electron
transport. An analysis of the MISO amplitude shows sig-
nificantly less effect of the scattering between subbands,
which destroys the overall agreement with theory.

II. EXPERIMENTAL SETUP

Studied GaAs quantum wells were grown by molecular
beam epitaxy on a semi-insulating (001) GaAs substrate.
The material was fabricated from a selectively doped
GaAs single quantum well of width d0=26 nm sand-
wiched between AlAs/GaAs superlattice barriers. The
studied samples were etched in the shape of a Hall bar.
The width and the length of the measured part of the
samples are W = 50µm and L = 250µm. AuGe eutec-
tic was used to provide electric contacts to the 2D elec-
tron gas. Two samples were studied at temperature 4.2
Kelvin in magnetic fields up to 9 Tesla applied in-situ
at different angle α relative to the normal to 2D layers
and perpendicular to the applied current. The angle α
has been evaluated using Hall voltage VH = B⊥/(enT ),
which is proportional to the perpendicular component,
B⊥ = B · cos(α), of the total magnetic field B. The to-
tal electron density of sample N1, nT ≈ 7.97×1011cm−2,
was evaluated from the Hall measurements taken at α=00

in classically strong magnetic fields29. An average elec-
tron mobility µ ≈ 1.2 × 106cm2/V s was obtained from
nT and the zero-field resistivity. An analysis of the peri-
odicity of MISO in the inverse magnetic field yields the
gap ∆12=15.15 meV between bottoms of the conduct-
ing subbands, Fermi energy EF=21.83 meV and electron
densities n1=6.1×1011cm−2 and n2=1.87×1011cm−2 in
the two populated subbands. Sample N2 had density
nT ≈ 8.6 × 1011cm−2, mobility µ ≈ 1.0 × 106cm2/V s
and the gap ∆12=15.10 meV. Both samples have demon-
strated very similar quantum electron transport in mag-
netic fields. Below we have presented data for sample
N1.

Sample resistance was measured using the four-point
probe method. We applied a 133 Hz ac excitation
Iac=1µA through the current contacts and measured the
longitudinal (in the direction of the electric current, x-
direction) and Hall ac (along y-direction) voltages (V ac

xx

and V ac
H ) using two lockin amplifiers with 10MΩ input

impedances. The measurements were done in the lin-
ear regime in which the voltages are proportional to the
applied current.
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FIG. 1: Dependence of the dissipative resistance Rxx of 2D
electrons on perpendicular magnetic field taken at different
angles α= (0, 86, 87, 88.1, and 88.6 degrees) between mag-
netic field B and the normal to the 2D layer. Curves at angles
α <88.6 degree are shifted up for clarity. Insert shows mag-
netoresistance in parallel magnetic field.

III. EXPERIMENTAL RESULTS

Figure 1 presents dependences of the dissipative re-
sistance of 2D electrons on the perpendicular magnetic
field, B⊥, taken at different angles α between the direc-

tion of the total magnetic field, ~B, and the normal to the
2D layer. At α=0 degree and B⊥ <0.025 T the mag-
netoresistance demonstrates a small increase related to
classical magnetoresistance14,26,29–31. At a higher mag-
netic field the magnetoresistance slowly increases oscillat-
ing at B⊥ >0.07 T. These oscillations are MISO. MISO
maximums correspond to the condition:

∆12 = jh̄ωc, (1)

where ∆12 = E2 − E1 is the energy difference between
bottoms of two occupied subbands and the index j is
a positive integer.13,14 At even higher magnetic fields
(h̄ωc > kT , corresponding to B⊥ >0.4 Tesla at T=4.2K)
there are SdH oscillations (not shown). In this paper
we focus on the low magnetic field (high temperature)
regime: h̄ωc ≪ kT , where SdH oscillations are absent.
The most observable property of the angular evolution

of the magnetoresistance is the significant reduction of
MISO amplitude at high angles α. Another striking effect
is a variation of the MISO frequency with angle α, which
can be seen by a comparison of the maximum positions
at high B⊥. Other variations of the magnetoresistance
are less obvious and required more accurate comparison.
The insert to Fig.1 presents a dependence of the re-

sistance on magnetic field, B, which is parallel to the
2D electron layer. The in-plane magnetic field of 8 T
increases the resistance by 10-15 percent. This small in-
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FIG. 2: Magnetic field dependence of the normalized resis-
tance without the effect of the parallel magnetic field on
the resistance presented in the insert to Fig.1. The B‖-
contribution is subtracted numerically from the curves shown
in Fig.1. Obtained curves are offset for clarity. The insert
presents the same curves without offset. At B⊥ <0.025 T the
insert demonstrates classical magnetoresistance in two sub-
band systems that is independent of the angle α while at
B⊥ >0.025 T progressive deviation between curves at differ-
ent angles is observed and related to the quantum positive
magnetoresistance.

crease occurs at B⊥=0T and, thus, is not relevant to
the quantization of the electron motion and spectrum in-
duced by the perpendicular magnetic field. This in-plane
magnetoresistance is driven by a mechanism, which is
different from the Landau quantization leading to MISO
and QPMR. Since observed quantum contributions to
the resistivity (QPMR and MISO) are relatively small it
makes sense to expect that an application of the perpen-
dicular magnetic field may provide a very small contribu-
tion (if any) to the observed small in-plane magnetore-
sistance. Below we assume that the magnetoresistance
shown in the insert in-plane does not depend on the per-
pendicular magnetic field.
Using this assumption we have subtracted numerically

the contribution of the in-plane magnetic field from the
original experimental data shown in Fig.1. Figure 2
presents the result of the subtraction normalized by the
resistance at zero magnetic field, RD = Rxx(B = 0T ).
The modified resistance, Rm

xx, is computed using the fol-

lowing formula: Rm
xx(B⊥) = Rxx(B⊥) − R‖

xx(B‖), where

R‖
xx is the in-plane magnetoresistance shown in the insert

to Figure 1 and B‖ = tan(α)B⊥ is the in-plane magnetic
field applied to the sample.
The applied procedure yields an observable effect on

the dependencies at large angles at which B‖ is large. In
particular modified magnetoresistance, Rm

xx at α=88.6
degree decreases with the perpendicular field, while the
original dependence does increase at B⊥ >0.05 T. The
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FIG. 3: Figure (a) shows non-oscillating content of magne-
toresitance related to QPMR at various angles. From the
top to the bottom α=0, 80, 82.5, 85, 86, 87, 88.1, and 88.6
degrees. Figure (b) presents oscillating content of the mag-
netoresistance at the same set of angles as in Figures 1 and
2.

most impressive outcomes of the applied procedure are
the collapse of the classical magnetoresistance obtained
at different angles in perpendicular magnetic fields be-
low 0.025 T and the progressive decrease of the mag-
netoresistance with the angle at B⊥ >0.025 T. This is
shown in the insert to Fig.2. Both outcomes are very
similar to the ones obtained in 2D electron systems with
a single subband populated.28 Below we analyze quanti-
tatively the angular evolution of the oscillating (MISO)
and non-oscillating (related to QPMR) contents of the
magnetoresistance.

Figure 3(a) presents the non-oscillating content of the
normalized magnetoresistance, R∗

QPMR/RD, obtained at
different angles in a broad range of the perpendicular
magnetic fields. The noticeable property of the obtained
angular evolution is the fact that angular variations of the
electron transport start quite sharply at B⊥ ≈0.025 T at
which the classical magnetoresistance starts to saturate
indicating the regime of the classically strong magnetic
fields29,30: ωcτtr ≫ 1, where τtr is the transport scatter-
ing time. This result agrees with the beginning of the
quantization of the electron motion: ωcτq ∼ 1 since in
the studied system a small angle scattering dominates:
τq ≪ τtr.

32

The angular variations of the non-oscillating content
of the magnetoresistance at B⊥ >0.025 T are related
to the angular evolution of the quantized electron spec-
trum leading to QPMR. Figure 3(a) shows progressively
stronger angular variations of QPMR at higher B⊥. This
is in agreement with the progressively stronger quanti-
zation of the electron spectrum at higher B⊥. We have
found that the strong increase of the angular variations of
QPMR with B⊥ is in good quantitative agreement with
a model presented below. The comparison between the

experiment and model has revealed that the dominant
mechanism leading to the angular decrease of QPMR
is spin (Zeeman) splitting of Landau levels in magnetic
fields. This result agrees with the one obtained in the
systems with a single populated subband.28

Figure 3(b) presents the oscillating content of the mag-
netoresistance, which is related to MISO. The figure
shows strong decrease of MISO at high angles. In con-
trast to the angular variations of QPMR presented be-
low quantitative analysis indicates that the angular vari-
ations of MISO are predominantly due to the modifica-
tions of the electron spectrum via an entanglement of the
electron orbital states induced by the in-plane magnetic
field. The observed spin contribution to the decrease of
the MISO amplitude is sub-dominant. Below we present
a theoretical framework describing the angular evolution
of quantum electron transport.

IV. MODEL OF QUANTUM ELECTRON

TRANSPORT

A microscopic description of both QPMR and MISO
in perpendicular magnetic fields (at α =0o) is presented
in papers Ref.[13,14,25] neglecting any spin related ef-
fects in particular the Zeeman term. An account of the
Zeeman splitting for QPMR is proposed in Ref.[28] for
2D systems with a single subband populated. The pro-
posed model utilizes a similarity of QPMR and Magneto-
InterSubband (MISO) resistance oscillations.5,6,13–15 The
model considers two spin subbands shifted with respect
to each other by Zeeman effect. In each spin subband
the energy spectrum evolves in accordance with Landau
quantization. A scattering assisted spin mixing between
different subbands is postulated to provide the correla-
tion between the angular evolutions of SdH oscillations
and QPMR observed in the experiment.28 Within this
model the absence of the scattering between spin sub-
bands would lead to the absence of an angular evolution
of the QPMR associated with the Zeeman effect in con-
trast to the angular dependence of SdH oscillations. The
origin of the spin mixing requires further investigations.
A mixing between different spin subbands has been re-

ported in Si-MOSFETs.33 The experiments show sizable
contributions of the product of spin-up and spin-down
density of states to quantum resistance oscillations. Fur-
thermore investigations of the resistivity tensor in tilted
magnetic fields have revealed an independence of the Hall
coefficient on the spin subband populations while the
electron mobility in each spin subband was substantially
affected by the in-plane magnetic field34. This behav-
ior has been interpreted by a mixing between spin sub-
bands due to electron-electron interaction.35 Spin-orbit
coupling can also provide a mixing via local impurity
scattering3,28.
In this section the recent model28, describing the an-

gular evolution of QPMR in 2D electron systems with a
single populated subband, is generalized to 2D systems
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with two populated subbands. The spatial subbands are
the result of quantization of the electron wave function
in the z-direction. The z-axes is perpendicular to the
2D electron layer (x − y-directions) of a width d. Index
i=1(2) labels the low (high) subband with the energy
E1(E2) at the subband bottom. The subband separation
is ∆12 = E2 − E1.

A. Response in perpendicular magnetic field, B‖=0

At the beginning we consider the magnetic field ap-
plied perpendicular to 2D electron systems (α=0 de-
gree). In the simplest case of small quantizing magnetic
fields ωcτq < 1 the main contribution to both MISO
and QPMR comes from the fundamental harmonic of
quantum oscillations of the density of states (DOS) cor-
responding to spin-up (↑) and spin-down (↓) subbands.
The DOS of i-th spatial subband, νi(ǫ), reads

2,28:

ν1(ǫ ≥ 0)

ν0
=

[

1− 2δ1 cos

(

2πǫ

h̄ωc

)

cos

(

π∆
(1)
Z

h̄ωc

)]

ν2(ǫ≥∆12)

ν0
=

[

1−2δ2 cos
(

2π(ǫ−∆12)

h̄ωc

)

cos

(

π∆
(2)
Z

h̄ωc

)] (2)

where ν0 = m/(πh̄2) is the DOS at zero magnetic field,

δi = exp(−π/ωcτ
(i)
q ) is Dingle factor, ∆

(i)
Z = µgiB is

Zeeman splitting and τ (i)q is the quantum scattering time
in i-th subbands.
The 2D conductivity σ is obtained from the following

relation:

σ(B) =

∫

dǫσ(ǫ)

(

−∂f

∂ǫ

)

(3)

The integral is an average of the conductivity σ(ǫ) taken
essentially for energies ǫ inside the temperature interval
kT near Fermi energy, where f(ǫ) is the electron distri-
bution function at a temperature T .2

The following expression approximates the conductiv-
ity σ(ǫ) at small quantizing magnetic fields:

σ(ǫ) = σ
(1)
D ν̃1(ǫ)

2 + σ
(2)
D ν̃2(ǫ)

2 + σ
(12)
D ν̃1(ǫ)ν̃2(ǫ) (4)

where ν̃i(ǫ) = νi(ǫ)/ν0 are normalized total density of

states in each spatial subband. Parameters σ
(1)
D (B⊥) and

σ
(2)
D (B⊥) are Drude like conductivities related to con-

tributions of an effective intra-subband scattering, while

the factor σ
(12)
D (B⊥) accounts contributions of the inter-

subband scattering.13,14

The main assumption of this model is utilized in
Eq.(4). Namely the impurity scattering within a spin
sector is considered to be comparable with the impurity
scattering between spin-up and spin-down sectors, when
the energies of the spin sectors are the same. In other

words a spin up (spin-down) electron has equal proba-
bility to scatter into a spin-up or spin-down quantum
state.28

A substitution of Eq.(4) and Eq.(2) into Eq.(3) yields
the following relation for the conductivity:

σ(B) = σD + σQPMR + σMISO (5)

where σD(B) = σ
(1)
D + σ

(2)
D + σ

(12)
D is Drude (classical)

conductivity in a magnetic field. Last two terms in Eq.(5)
describe quantum contributions to the electron transport
in the high temperature regime: h̄ωc ≪ kT . The term
σQPMR describes quantum positive magnetoresistance:

σQPMR=2

[

σ
(1)
D δ21 cos

2(
π∆

(1)
Z

h̄ωc
)+σ

(2)
D δ22 cos

2(
π∆

(2)
Z

h̄ωc
)

]

(6)

At ∆Z=0 Eq.(6) reproduces QPMR in perpendicular
magnetic fields.14,25,27

The term σMISO is related to magneto-intersubband
resistance oscillations:

σMISO=2σ
(12)
D δ1δ2cos(

π∆
(1)
Z

h̄ωc
)cos(

π∆
(2)
Z

h̄ωc
) cos(

2π∆12

h̄ωc
) (7)

At ∆
(i)
Z =0 Eq.(7) reproduces MISO in perpendicular

magnetic fields yielding Eq.(1) for MISO maximums.13,14

B. Effect of in-plane magnetic field

With no in-plane magnetic field applied the spatial
subbands are coupled to each other via elastic scatter-
ing. An in-plane magnetic field, B‖, provides an addi-
tional coupling via Lorentz force coming from the last
term in Eq.(8). This additional B‖-coupling preserves
the degeneracy of the quantum levels but induces varia-
tions of the electron spectrum, which, due to a relativis-
tic origin of Lorentz force, are dependent on the energy
(velocity). These spectrum variations destroy the exact
energy periodicity of the spectral overlap between dif-
ferent subbands existing at zero in-plane magnetic field
and leading to MISO. In particular, in contrast to the
B‖=0T case, the energy independent condition for the
MISO maximum presented by Eq.(1) is not relevant any
more since the intersections of the quantum levels of low
and high subbands do not occur at the same perpendicu-
lar magnetic field if an in-plane magnetic field is applied.
To estimate this effect quantitatively we compute nu-

merically the electron spectrum of an ideal two subband
system in a titled magnetic field neglecting the impurity
scattering. The impurity scattering is introduced then by
a broadening of the bare quantum levels using the Gaus-
sian shape of the DOS with the preserved level degen-
eracy. Finally the conductivity is numerically evaluated
via Eq.(3) and Eq.(4) using the computed DOS.
In the comparison between the model and experiment

we found that Zeeman effect provides a sub-leading con-
tribution to the resistance. We did not find any indica-
tion of the dependence of the Zeeman splitting on the



6

energy in the vicinity of Fermi energy. Our results are
reasonably well described by an energy independent Zee-

man term: ∆
(i)
Z = µgiB. Numerical computations of

the electron spectrum start with a spinless Hamiltonian
describing 2D electron in a tilted magnetic field. The
Zeeman term splits the obtained quantum levels. In the
spectrum computations spin-orbital interactions are ne-
glected and the Zeeman term is assumed to be the same
in both spatial subbands.
We consider a quantum well of a width d in z-direction

formed by a rectangular electrostatic potential V (z) with
infinitely high walls and placed in a titled magnetic

field ~B = (−B‖, 0, B⊥). Electrons are described by the

Hamiltonian15:

H =
h̄2k2x
2m∗

+
e2B2

⊥

2m∗
x2+

h̄2k2z
2m∗

+V (z)+
e2B2

‖

2m∗
z2+

e2B⊥B‖

m∗
xz,

(8)
where m∗ is electron effective mass. To obtain Eq.(8) we
have used the gauge (0,B⊥x+B‖z,0) of the vector poten-
tial and applied the transformation x → x− h̄ky/eB⊥.
The first four terms of the Hamiltonian describe the 2D

electron system in a perpendicular magnetic field. The
corresponding eigenfunctions of the system are |N, ξ〉,
where N=0,1,2.. presents N -th Landau level (the lat-
eral quantization) and ξ = S,AS describes the sym-
metric (S) and antisymmetric (AS) configurations of
the wave function in the z-direction (vertical quantiza-

tion): |N,S〉 = |N〉(2/d)1/2 cos(πz/d) and |N,AS〉 =

|N〉(2/d)1/2 sin(2πz/d).
Using functions |N, ξ〉 as the basis set , one can present

the Hamiltonian in matrix form. The matrix contains
four matrix blocks: Ĥ = (ÊS , T̂ ; T̂ , ÊAS), where the

semicolon separates rows.The diagonal matrices, ÊS and
ÊAS , represent energy of the symmetric and antisymmet-
ric wave functions in different orbital states N :

ES
mn = δmn[h̄ωc((n− 1) +

1

2
) +

e2B2
‖d

2[ 1
12 − 1

2π2 ]

2m∗
]

EAS
mn = δmn[h̄ωc((n− 1) +

1

2
) + ∆12 +

e2B2
‖d

2[ 1
12 − 1

8π2 ]

2m∗
]

(9)

where ∆12 = E2 − E1 is the energy difference be-
tween bottoms of two spatial subbands and indexes
m=1,2...Nmax and n=1,2...Nmax numerate rows and
columns of the matrix correspondingly. These indexes
are related to the orbital number N : n,m = N +1, since
the orbital number N = 0, 1, 2... In numerical computa-
tions the maximum number Nmax is chosen to be about
twice larger than the orbital number NF corresponding
to Fermi energy EF . Further increase of Nmax show a
very small (within 1%) deviation from the dependencies
obtained at Nmax ≈ 2NF .
The first term in Eq.(9) describes the orbital quanti-

zation of electron motion. The last term in Eq.(9) de-
scribes diamagnetic shift of the quantum levels and is
related to the fifth term in Eq.(8). In the basis set |N, ξ〉
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FIG. 4: Figure (a) presents electron spectrum at α=0 degrees
in the vicinity of Fermi energy EF . Vertical dashed lines indi-
cate that intersections between all subband levels occur at the
same magnetic field. Figure (b) presents electron spectrum
at α=88 degrees in which intersections of the quantum levels
are not aligned anymore.

the diamagnetic term is proportional to 〈ξ|z2|ξ〉. The
diamagnetic terms do not depend on N .
The off-diagonal matrix T̂ is related to the last term in

Eq.(8), which mixes symmetric and antisymmetric states.

Since x = lB⊥(a
∗ + a)/

√
2 works as the raising a∗ and

lowering a operators of the Landau orbits, the last term
in Eq.(8) couples Landau levels with orbital numbers dif-

ferent by one. Here lB⊥ = (h̄/eB⊥)
1/2 is the magnetic

length in B⊥. As a result, for n > m the matrix element
Tmn between states |N,S〉 and |N + 1, AS〉 is

Tmn = δm+1,n

e2B‖B⊥lB⊥

m∗
〈N |a

∗ + a√
2

|N + 1〉〈S|z|AS〉

= δm+1,nh̄ωc

[ 16B‖d

9π2B⊥lB⊥

]

(n/2)1/2

(10)

The matrix T̂ is a symmetric matrix: Tmn = Tnm. The
Hamiltonian Ĥ is diagonalized numerically at different
magnetic fields B⊥ and B‖. To analyze the spectrum the
obtained eigenvalues of the Hamiltonian are numerated
in ascending order using positive integer index l=1,2....
Eqs.(8,9,10) yield the electron spectrum obtained in a
rigid electrostatic potential V (z) that provides a good
agreement with experimental data. We relate this agree-
ment with a large gap ∆12 between subbands indicating
strong electrostatic potential V (z) in the system. The
electron transport depends on the distribution of the
quantum levels in the interval kT near the Fermi energy
EF

29. Below we focus on this part of the spectrum.
Figure 4 presents variations of the electron spectrum

with the perpendicular magnetic field in the vicinity of
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EF at two different angles α as labeled. Two subbands
provide two sets of Landau levels moving at a different
rates with B⊥. At α = 0 degree (B‖=0T) these two
sets intersect at the same perpendicular magnetic field as
emphasized by the two vertical dashed lines. These level
intersections lead to MISO maximums and corresponds
to the relation Eq.(1).
At α=88 degree a finite in-plane is applied. The most

apparent transformation the electron spectra is the ab-
sence of a coherent intersection of two subbands. In fact
at this angle only two levels are intersecting at a given
B⊥ in the shown energy interval in the vicinity of EF .
The absence of coherent intersections of Landau levels
within the kT interval near EF leads to a significant re-
duction of the conductivity σ in Eq.(3) since two spectra
do not well overlap.
Another apparent property of the angular evolution of

these spectra is the increase of the interval of the mag-
netic field between consecutive intersections of a level
with the levels in the other subband. This evolution sug-
gests an increase of the MISO period at a higher paral-
lel fields. The numerical computations indicate that the
main contributions to the level misalignment in tilted
magnetic fields are due to the entanglements of the Lan-
dau levels via off-diagonal terms described by Eq.(10).
The obtained quantum levels ǫi have been split by

Zeeman term, ∆Z = µgB into two levels ǫis la-
beled by spin index s =↑, ↓ and then broadened by
Gaussian function: Gs(ǫ)=(m/2πh̄2)(ωcτq)

1/2 exp[−(ǫ −
ǫis)

2/(h̄2ωc/πτq)] preserving the degeneracy of the

levels.36,37 The obtained DOS is used in Eq.(4) and
Eq.(3) to compute MISO. These numerical computations
are compared with experiments in section VI.

V. QPMR IN TILTED MAGNETIC FIELD

In this section we discuss the angular evolution of
QPMR in two subband systems. In figure 5(a) solid lines
present dependence of normalized QPMR on reciprocal
magnetic field, 1/B⊥, at different angles α between the
direction of the magnetic field and the normal to the
sample. Similar to the case of the quantum wells with
a single populated subband15 QPMR is obtained by a
subtraction of the magnetoresistance at the critical an-
gle αc corresponding to the condition ∆Z/h̄ωc=1/215,38.
At this condition quantum levels are equally separated
by h̄ωc/2 and the fundamental harmonic of DOS is ab-
sent. At small magnetic fields (ωcτq <1) this condition
leads to a nearly constant density of states and, thus,
the absence of QPMR. In practice in the vicinity of the
critical angle the angular variations of the resistance be-
come to be negligibly small in comparison with the over-
all angular variation. These small variations limit the
accuracy at which the QPMR can be obtained at large
angles α. In this study we use αc=88.6 degree. Shown
in Fig.3(a) the curve at αc=88.6 degree will be labeled
as Rmin and is related to classical contributions to the
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FIG. 5: In Figure (a) solid lines present normalized QPMR,
RQPMR/RD = (R∗

QPMR − Rmin)/RD at different angles.
From the top to the bottom α=0, 85, 86, 87, 87.9 and 88.1 de-
grees. Symbols show theoretical fit to the data using Eq.(11).
Figure (b) shows the dependence of the fitting parameters Ai

on the ratio B/B⊥. which is compared with the dependence
following from Eq.(6) at g1=g2=0.43. Figure (c) shows de-
pendence of the quantum lifetimes in both subbands on the
ratio B/B⊥ ∼ ∆Z/h̄ωc.

magnetoresistance.27,29,30 The subtraction of the Rmin

from the non-oscillating content of the magnetoresistance
yields QPMR: RQPMR = R∗

QPMR−Rmin. A normalized
QPMR, RQPMR/RD is presented in Fig.5(a), where RD

is the resistance in zero magnetic field,
Fig.5(a) shows that the decrease of the QPMR with

the angle α is considerable and roughly uniform in the
reciprocal magnetic field, 1/B⊥, indicating a consistent
reduction of the cosine functions in Eq.(6) due to the
increase of the ratio ∆Z/h̄ωc with the angle. At α=0
degree QPMR follows a curved line suggesting a presence
of two exponential terms expected from Eq.(6), which is
rewritten below in the following form:

σQPMR

σD
= A1exp

(

− 2π

ωcτ
(1)
q

)

+A2exp

(

− 2π

ωcτ
(2)
q

)

(11)

where coefficient Ai = 2(σ
(i)
D /σD)cos2(π∆

(i)
Z )/(h̄ωc)).

Using four fitting parameters Ai and τ (i)q we fit the de-
pendences presented in Fig.5(a) using Eq.(11) and rela-
tion σQPMR/σD ≈ RQPMR/RD valid in strong magnetic
fields (see section VII).
Figure 5(b) shows the angular dependence of the pa-

rameters Ai. Both parameter A1 and A2 decrease signif-
icantly with the tilt of the magnetic field. The coefficient
A1 is approximately ten times larger than the coefficient

A2 for all angles leading to the ratio σ
(1)
D /σ

(2)
D ≈ 10.

Taking into account the electron density in two bands:
n1,(2)=6.1(1.87)×1011 cm−2 we have obtained the ratio
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between transport scattering times: τ
(2)
tr /τ

(1)
tr ≈3. The

data thus indicates three times higher mobility in the
upper subband. This mobility increase can be partially

related to the reduced carrier velocity, v
(2)
F ∼ (n2)

1/2 in
the upper subband leading to an increase of the mean
free time between scattering events: τtr = lp/vF , where
lp is mean free path.
The decrease of coefficients A1 and A2 roughly fol-

low the same dependence suggesting approximately the
same g-factor in both subbands. This experimental de-
pendence is close to the dependence expected from Eq.(6)
at αc=88.6 degree corresponding to gQPMR=0.43, which
is presented by the solid line in the figure. The g-factor
obtained from the angular evolution of MISO (see next
section) is gMISO=0.15-0.25. The obtained g-factors are
close to the bare g-factor in GaAs quantum wells39,40 and
significantly smaller the one obtained from QPMR28 and
SdH oscillations41–43 in GaAs quantum well with a single
populated subband.
Figure 5(c) shows the angular dependence of the quan-

tum scattering times τ (i)q . The experiments indicate an
increase of the quantum scattering time at high angles.
We relate this increase with the reduction of the impu-
rity assisted spin flip scattering at high magnetic fields
due to the Zeeman splitting of the Landau levels. The
observed overall increase of the quantum scattering times
approximately by a factor of two correlates with the de-
crease of the density of state by about two times due to
the spin splitting of separated Landau levels, that leads
to the proportional reduction of the quantum scattering
rate.15

VI. MISO IN TILTED MAGNETIC FIELD

In this section we present a comparison of the angular
evolution of MISO shown in Fig.3(b) with the model.
Two MISO properties have been identified: decrease of
the MISO amplitude at large angles and variations of the
MISO period in tilted magnetic fields. Below we discuss
these main properties and indicate an additional MISO
property which is not understood.
Figure 6 presents the dependence of MISO period in

the reciprocal magnetic field, 1/B⊥, on the strength of
the parallel magnetic field. Different symbols show the
period in the vicinity of different perpendicular magnetic
fields as labeled. The experiment demonstrates that the
MISO period depends mostly on the strength of the par-
allel magnetic field. At different B⊥ the dependencies
overlap well indicating no obvious dependence on B⊥.
The period is in a good agreement with the numerical
computations of the MISO period in tilted magnetic fields
at d=33 nm, which is presented by the solid curve in the
figure. For a comparison there are two dependencies of
the MISO period computed numerically for similar rect-
angular quantum wells but with other widths: 40nm and
20 nm. These dependencies deviate significantly from the
experiments.
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FIG. 6: Symbols present dependence of MISO period in the
reciprocal magnetic field, 1/B⊥, on the parallel magnetic field
taken in the vicinity of different perpendicular magnetic fields
as labeled. Lines present theoretical dependences of the MISO
period obtained via numerical computations of the electron
spectrum in titled magnetic fields, using Eq.(8) for different
width d of quantum well as labeled.

The obtained width d=33 nm is in a good agree-
ment with the one estimated at α=0 degree via an-
alytical evaluations of the bottoms of the subband
energy spectra. For the rectangular potential well,
V (z), used in the model (see Eq.(8)), the eigenfunc-

tions |0, S〉 = |0〉(2/d)1/2cos(πz/d) and |0, AS〉 =

|0〉(2/d)1/2sin(2πz/d) correspond the eigenvalues, E1 =
h̄ωc/2+(h̄2π2/(2m∗d2) and E2 = h̄ωc/2+(h̄24π2/(m∗d2)
at the bottom of the bands leading to ∆12 = E2 −
E1 = (3π2/d2)(h̄2/2m∗). This relation yields d2 =
(3π2T12/2)(h̄/e), where T12 is the MISO period shown in
Fig.6 at B‖=0 T. The last relation yields dth=32.6 nm,
which is very close to the d=33nm obtained in the fitting
shown in Fig. 6. We note that the obtained values of
the quantum well width is slightly larger than the actual
width, d0=26 nm, measured during the sample growth.
Our experiment suggests that the electron wave function
penetrates by about 3nm into AlAs/GaAs superlattice
barriers sandwiching the quantum well.
We have determined that the dominant contribution to

the increase of the MISO period is provided by the B‖-
induced coupling between spatial subbands. This cou-
pling in due to the Lorentz force and is described by the
off-diagonal matrix Tmn in Eq.(10). Figure 4 indicates
that the application of in-plane magnetic field increases
the interval between consecutive intersections of a Lan-
dau level, which is the major effect leading to the increase
of MISO period. The diamagnetic shifts of the subbands
(last terms in Eq.(9)) provide a sub-leading contributions
reducing the main effect. In particular in the absence of
the diamagnetic terms the correspondence shown in the
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FIG. 7: Solid lines present normalized swing of MISO at
different angles α as labeled. Dashed lines present theo-
retical dependencies of the MISO swing on the reciprocal
perpendicular magnetic field obtained at the following fit-
ting parameters: A∗

MISO = AMISOAb = 0.38 cos(0.091/B⊥);

1τ (1)
q = 1/τ (2)

q =125 GHz used for all angles and different g-
factors shown in the insert. The dotted line presents the-
oretical dependence at α=88.1 degree ignoring the Zeeman
splitting.

Figure 6 between the experiment and model occurs at
d=31 nm.

Figure 7 presents a dependence of the normalized swing
of MISO on the reciprocal magnetic field, 1/B⊥, at dif-
ferent angles α as labeled. In accordance with Eq.(7)
at B‖=0 T the MISO amplitude is proportional to the
product, δ1δ2, of Dingle factors in two subbands. In
the semi-logarithmic scale, used in Fig.7, a straight line
should present this dependence. In contrast at α=0 de-
gree the observed dependence deviates significantly from
a straight line that has been seen previously.9 An attrac-
tive mechanism, which may lead to these deviations is a
non-parabolic spectrum of 2D electrons due to the pres-
ence of the valence band. The non-parabolicity makes
the quantized spectrum to be not periodic with the en-
ergy leading to a breakdown of the perfect spectral over-
lap between subbands at MISO maximums described by
Eq.(1). This breakdown decreases the MISO amplitude.

Our numerical simulations of MISO in systems with
a non-parabolic spectrum indicate good agreement with
the experiment at α=0 degree. However a considerable
disagreement is found in the tilted magnetic field. The
numerical simulations indicate that the B‖-induced en-
tanglement between non-parabolic subbands leads to a
stronger reduction of MISO amplitude than is seen in
the experiment.

A better overall agreement is obtained by assuming
an additional angular independent beating between two
MISOs. This beating could be due to a small difference

between two masses in two parabolic bands or/and due to
fluctuations of the gap ∆12 in the quantum well with non-
ideal boundaries. In this paper we have used the angular
independent MISO beating, which is described by a phe-
nomenological amplitude factor, Ab = cos(0.091/B⊥).
This beating leads to the additional reduction of the nor-
malized MISO amplitude in high reciprocal fields, 1/B⊥:

A∗
MISO = AMISOAB, where AMISO = 2σ

(12)
D /σD is nor-

malized Drude factor in Eq.(7).

Figure 7 shows good agreement between experiment
and numerical computations of the MISO amplitude at
α=0 degree. The computations use the electron spec-
trum obtained numerically as described in section IV-B.
Small angular variations of MISO are observed at α <85
degrees. The largest angular changes in MISO ampli-
tude are found at α >85 degrees. The numerical com-
putations have captured most of the changes especially
in high reciprocal magnetic fields. The shape of the nu-
merical dependences on 1/B⊥ is similar to the one of the
experimental curves.

Two main competing factors determine the MISOmag-
nitude in tilted fields. One is the product of the Dingle
factors, δ1δ2, decreasing with 1/B⊥ in accordance with
Eq.(7). Another factor is the misalignment of the in-
tersections of the quantum levels due to the B‖-induced
entanglement of the levels, which is shown in Fig.5. The
misalignment breaks the perfect spectral overlap between
subbands, described by Eq.(1), and leads to a decrease of
the MISO amplitude at high B‖. A competition between
these two mechanisms produces a maximum in MISO am-
plitude, which can be seen in Fig.7 at the angle α=87.9
degrees in the both experiment and simulation.

The obtained fitting parameters, AMISO=0.38 and
1/τ (1)q = 1/τ (2)q =125 GHz, are quite reasonable. The

normalized Drude factor AMISO = 2σ
(12)
D /σD indicates

about 20% contribution of the effective intersubband
scattering to the total Drude conductivity, σD, of the 2D
system.14 In accordance with Eq.(7) the sum of the quan-

tum scattering rates in two subbands, 2/τMISO
q = 1τ (1)q +

1/τ (2)q =250 GHz, determines the exponential MISO de-
crease with 1/B⊥. This value is in fair agreement with
the one obtained in the QPMR analysis and presented in
Fig.5: 2/τQPMR

q = 1τ (1)q + 1/τ (2)q =130-190 GHz.

The Zeeman splitting provides a sub-dominant contri-
bution leading to a uniform decrease of the MISO am-
plitude. In Fig.7 the dotted line presents the numeri-
cal simulation neglecting Zeeman term and dashed line
presents the simulation taking into account the Zeeman
contribution at α=88.1 degrees. There is a small vertical
displacement between these two curves indicating that
the Zeeman splitting provides a sub-leading contribution
to the overall decrease of MISO amplitude with the tilt
of the magnetic field. Using the Zeeman term as a fit-
ting parameter we have obtained a better agreement be-
tween experiment and simulation. The insert to the fig-
ure presents the electron g-factor extracted from the fit.
The obtained g-factor is smaller the one found in QPMR
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analysis: gqpmr=0.4-0.5 and significantly smaller the one
obtained from transport measurements in quantum wells
with a single populated subband.15,42 The small value of
the electron g-factor suggests that in contrast to quan-
tum wells with one subband populated the exchange in-
teraction contributions to the spin susceptibility are sig-
nificantly smaller in quantum wells with two populated
subbands.

At a small 1/B⊥ consistent deviations between the ex-
periment and numerical simulations are evident. The
MISO simulations demonstrate a stronger angular de-
crease than the experiment. The origin of these devia-
tions could be related to a specific shape of the DOS used
in the simulations. This issue has not been studied.

VII. CLASSICAL MAGNETORESISTANCE

Presented in the previous sections the angular evolu-
tion of the quantum contributions to the electron con-
ductivity agrees with the semiquantitative model postu-
lated a strong scattering between spin subbands.15 We
note that this model has not specified any particular re-

lations between coefficients σ
(1)
D , σ

(2)
D and σ

(12)
D in Eq.(4).

This section presents a quantitative comparison of our
results with the existing quantitative theory of the mag-
netoresistance in the perpendicular magnetic field (α=0
deg).13,14,25,30 Below we have found that QPMR and the
classical magnetoresistance agree quantitatively with the
theory. An inclusion of MISO into the consideration leads
to a significant quantitative disagreement between the
experiment and the theory.

At B⊥ <0.03 T the magnetoresistance presented in
Figure 2 demonstrates a few percent increase with the
magnetic field, which is independent on the in-plane mag-
netic field. Figure 8 shows this part of the magnetore-
sistance in details for two angles as labeled. The exper-
iment indicates that at high tilt of the magnetic field
(α=88.6 deg), at which the modulation of the electron
spectrum is suppressed by the Zeeman splitting of Lan-
dau levels, the magnetoresistance saturates above 0.03
T. At α=0 degree the magnetoresistance shows a ten-
dency to the saturation. The two dependencies deviate
from each other at B⊥ >0.03 T indicating the presence of
QPMR. At B⊥ <0.03T two dependencies coincide sug-
gesting the absence of DOS modulations. The increase
at small magnetic fields is related to the classical mag-
netoresistance expected in electron systems with several
subbands populated.29,30

The mechanism of the classical positive magnetoresis-
tance (CMR) is similar to that for two groups of carriers
with different mobilities29. However in a two subband
system, due to the intersubband coupling via scattering,
the classical resistivity, ρclass, is not reduced simply to
the contribution given by two independent groups of car-
riers from the first and second subbands30. The classical
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FIG. 8: Dependence of normalized dissipative resistance on
perpendicular component of magnetic field at two different
angles α between the magnetic field and normal to the sample
as labeled. Open symbols present classical magnetoresistance
expected from Eq.(12) at νs=22.26 GHz and νr=41 GHz.

resistivity can be conveniently presented as26

ρclass =
m

e2n

ω2
cνs + ν∗ν

2
r

ω2
c + ν2r

(12)

where n = n1+n2 is the total electron density, n1 and n2

are the electron densities in the subbands. This contribu-
tion increases with the magnetic field, starting from the
zero-field value ρD = mν∗/e

2n and saturates at ωc ≫ νs
with the value ρsat = mνs/e

2n. The characteristic rates
νs, νr and ν∗ are given by

νs = (n1/n)ν
tr
11 + (n2/n)ν

tr
22 + νtr12

νr = (n2/n)ν
tr
11 + (n1/n)ν

tr
22 + 2ν12 − νtr12

ν∗ =
(νtr11 + ν12)(ν

tr
22 + ν12)− (ν12 − νtr12)

2n2/4n1n2

νr
(13)

, where νij (νtrij ) are quantum (transport) scattering

rates.14

In small quantizing magnetic fields, ωcτ
(i)
q <1, the

QPMR and MISO can be presented as14,26

ρQPMR =
2m

e2n

[n1

n
νtr11e

−2α1 +
n2

n
νtr22e

−2α2

]

ρMISO =
2m

e2n

[

νtr12e
−α1−α2 cos

2π∆12

h̄ωc

] (14)

, where αi = π/(ωcτ
(i)
q ) = π(νii + ν12)/ωc are the Dingle

exponents.
In Fig.8 the open symbols present the normalized clas-

sical magnetoresistance coming from Eq.(12). The fig-
ure indicates a good agreement between experiment at
α=88.6 degree and the theory. The fit yields two pa-
rameters: the scattering rate in classically strong mag-
netic fields νs=22.26±0.03 GHz and νr=41±0.03 GHz.
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The value of the resistivity at B=0T yields the scat-
tering rate at zero magnetic field, ν∗=21.6 ±0.02 GHz.
Equation (14) provides a quantitative relation between
coefficients Ai used to fit QPMR (see Eq.(11)): Ai =
(2n1/n)(ν

tr
ii /ν∗) yielding νtr11=7.05 GHz and νtr22=2.3

GHz. A substitution of these values into the rela-
tion for νs in Eq.(13) yields the intersubband scatter-
ing rate, νtr12=16.32 GHz. The substitution of the ob-
tained transport scattering rates into the relation for νr
in Eq.(13) leads to the intersubband quantum scatter-
ing rate, ν12=26.95 GHz. The intrasubband quantum
scattering rates, νii, now can be found from the total
quantum scattering rates, 1/τ (i)q = νii + ν12 , obtained
from the comparison of QPMR with Eq.(14) and pre-
sented in Fig.5. The intrasubband rates are found to
be ν11=106 GHz and ν22=18 GHz. Using the obtained
scattering rates we have computed the total scattering
rate ν∗ expected from Eq.(13) at zero magnetic field:
νth∗ =20.4 GHz, which is close to one seen in the ex-
periment: ν∗=21.6 GHz. Thus the cross comparison of
QPMR, CMR and the theory indicates a good mutual
agreement.

The comparison of QPMR and CMR demonstrates the
dominant contribution of the intersubband scattering to
the electron transport. Indeed the intersubband trans-
port scattering rate, νtr12=16.3 GHz, is the main part
of the total transport scattering rate, νs=22.26 GHz,
of electrons in strong magnetic fields. This can be re-
lated to the fact that in contrast to the quantum in-
trasubband scattering leading to a small displacement
of the cyclotron orbit in the studied system any inter-
subband quantum scattering event leads to a significant
(∼ R(1)

c ) displacement of the center of the electron orbit
resulting in a high dissipative conductivity. The large
orbital displacement is due to the substantial difference
in the cyclotron radii, R(i)

c , of electrons at Fermi energy
in two subbands with very different electron densities.
This observation is in agreement with the obtained result:
ν12 ≈ νtr12. Furthermore in the limit, where intersubband
scattering dominates: ν12 ≈ νtr12 ≫ νtrii , the total trans-
port scattering rate in strong magnetic fields: νs ≈ νtr12 is
close to the total scattering rate at zero magnetic field:
ν∗ ≈ (ν12)

2/νr ≈ ν12 in the agreement with the experi-
ment. Indeed Fig.8 demonstrates that the classical mag-
netoresistance is weak (about 3 percent variation) despite
the large difference in the intrasubband scattering rates,
νtrii .

An inclusion MISO in the consideration destroys the
obtained agreement. The comparison of the MISO am-
plitude with the theory, which is presented in Fig.7,
yields AMISO ≈ 0.38 leading, in accordance with
Eq.(14), to the intersubband transport scattering rate
νtrMISO ≈4.2GHz. The obtained value is about 4 times
less that the νtr12 found via analysis of QPMR and
CMR. In contrast the sum of the total quantum scat-
tering rates obtained from the MISO analysis, νMISO =
1/τ (1)q + 1/τ (2)q ≈250 GHz (see caption to Fig.7) agrees
reasonably well with the one obtained from QPMR:

νQPMR ≈133+45=178 GHz (see Fig.5).
The observed strong quantitative discrepancy in MISO

amplitude suggest that some scattering processes may
not been taken correctly in the theoretical consideration
of MISO. In particular recent experiments on QPMR in
tilted magnetic fields15 indicate the importance of spin-
flip processes (spin mixing) in the studied 2D systems.
Such processes are ignored by the existing quantitative
theory. While the spin mixing seems to be not impor-
tant for QPMR in the perpendicular magnetic field15 the
magnitude of MISO may have substantial dependence on
the spin mixing between different spatial subbands. In
particular if we assume that the spin mixing between spa-
tial subbands is absent then the magnitude of MISO in
Eq.(7) should be reduced by factor 2. It follows from the
replacement of the products of the total density of states
ν1ν2 = (ν1↑+ ν1↓)(ν2↑+ ν2↓) in Eq.(3) by ν1↑ν2↑+ ν1↓ν2↓
corresponding to the absence of the spin flip intersubband
scattering.

VIII. SUMMARY

Quantum positive magnetoresistance (QPMR) and
magneto-intersubbands resistance oscillations (MISO) of
highly mobile 2D electrons in symmetric GaAs quantum
wells with two populated subbands have been studied
in titled magnetic fields. In the perpendicular magnetic
field QPMR displays contributions from two subbands
with considerably different electron quantum lifetimes
and the intrasubband mobilities. MISO evolution with
B⊥ agrees with the obtained quantum scattering times
only if an extra reduction of the MISO magnitude is ap-
plied at small magnetic fields. This indicates the presence
of an additional mechanism leading to the MISO damp-
ing. A weakly non-parabolic electron spectrum provides
a MISO damping, which is adequate to the one seen in
the experiments at α=0 degree. A simple beating of two
MISOs provides a similar result but fits better the exper-
iments in tilted magnetic fields.
Application of the in-plane magnetic field produces a

strong decrease of both QPMR and MISO magnitude.
The reduction of QPMR is explained by the spin split-
ting of Landau levels indicating g-factor, gQPMR ≈0.4-
0.5, which is considerably less than the g-factor found
in GaAs quantum well with a single subband populated.
In contrast to QPMR the decrease of MISO magnitude
is largely related to the in-plane magnetic field induced
entanglement between quantum levels in different sub-
bands that, in addition, increases the MISO period. Zee-
man spin splitting provides a sub-leading contribution
to the MISO decrease indicating even smaller g-factor:
gMISO ≈0.2.
Cross comparison of the classical magnetoresistance

and QPMR in perpendicular magnetic fields with exist-
ing quantitative theory indicates good mutual agreement.
The MISO amplitude is found to be significantly less than
the one expected from the theory. Taking into account
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the recent findings15, which indicate the importance of
spin mixing (spin flip scattering) in the studied systems,
we suggest that spin degrees of freedom, which are ig-
nored by the existing theory, are relevant for MISO.

Authors thank A. I. Toropov and A. K. Bakarov for
the growth of quantum wells. This work was supported
by the National Science Foundation (Division of Material
Research - 1104503) and CUNY Bridge Program.

∗ Corresponding author: svitkalov@ccny.cuny.edu
1 D. Shoenberg Magnetic oscillations in metals, (Cambridge
University Press, New York, 1984).

2 T. Ando, A. B. Fowler, and F. Stern, Rev. of Mod. Phys.
B 54, 437 (1982).

3 M.I. Dyakonov (Ed.), Spin Physics in Semiconductors,
(Springer-Verlag Berlin Heidelberg, 2008).

4 Sankar D. Sarma, Aron Pinczuk Perspectives in Quantum

Hall Effects, (Wiley-VCH, Weinheim, 2004).
5 P. T. Coleridge, Semicond. Sci. Technol. 5, 961 (1990).
6 D. R. Leadley, R. Fletcher, R. J. Nicholas, F. Tao, C. T.
Foxon, and J. J. Harris, Phys. Rev. B 46, 12439 (1992).

7 A. Bykov, D. R. Islamov, A. V. Goran, and A. I. Toropov,
JETP Lett. 87, 477 (2008).

8 N. C. Mamani, G. M. Gusev, T. E. Lamas, A. K. Bakarov,
and O. E. Raichev, Phys. Rev. B 77, 205327 (2008).

9 A. V. Goran, A. A. Bykov, A. I. Toropov and S. A.
Vitkalov, Phys. Rev B 80, 193305 (2009).

10 A. A. Bykov, A. V. Goran and S. A. Vitkalov, Phys. Rev.
B 81, 155322 (2010).

11 L. I. Magarill and A. A. Romanov, Fiz. Tverd. Tela 13,
993 (1971) [Sov. Phys.Solid State 13, 828 (1971)].

12 V. M. Polyanovskii, Fizika iTekhnika Poluprovodnikov 22,
2230(1988) [Sov. Phys.Semicond. 22, 1408 (1988)].

13 M. E. Raikh, T. V. Shahbazyan, Phys. Rev. B 49, 5531
(1994).

14 O. E. Raichev, Phys. Rev. B 78, 125304 (2008).
15 William Mayer, Jesse Kanter, Javad Shabani, Sergey

Vitkalov, A. K. Bakarov and A. A. Bykov, Phys. Rev. B
93, 115309 (2016).

16 M. G. Priestley Proc. Roy. Soc. A 276, 258 (1963).
17 M. H. Cohen, L. Falicov, Phys. Rev. Lett. 7, 231 (1961).
18 E. I. Blount, Phys. Rev. 126, 1636 (1962).
19 A. A. Slutskin, Sov. Phys. JETP 26, 474 (1968).
20 A. B. Pippard, Proc. Roy. Soc. A 270, 1 (1962).
21 A. B. Pippard, Phil. Trans. Roy. Soc. A 256, 317 (1964).
22 J. Hu and A. H. MacDonald, Phys. Rev. B 46, 12554

(1992).
23 N. E. Harff, J. A. Simmons, S. K. Lyo, and J. F. Klem, G.

S. Boebinger, L. N. Pfeiffer, and K. W. West, Phys. Rev
B 55, R13405 (1997).

24 M. A. Mueed, D. Kamburov, M. Shayegan, L. N. Pfeiffer,

K.W. West, K.W. Baldwin, and R. Winkler, Phys. Rev.
Lett. 114, 236404 (2015).

25 M. G. Vavilov and I. L. Aleiner, Phys. Rev. B 69, 035303
(2004).

26 N. C. Mamani, G. M. Gusev, E. C. F. da Silva, O. E.
Raichev, A. A. Quivy, and A. K. Bakarov, Phys. Rev. B
80, 085304 (2009).

27 Scott Dietrich, Sergey Vitkalov, D. V. Dmitriev and A. A.
Bykov, Phys. Rev. B 85, 115312 (2012).

28 William Mayer, Areg Ghazaryan, Pouyan Ghaemi, Sergey
Vitkalov, and A. A. Bykov, Phys. Rev.B 94, 195312 (2016).

29 J. M. Ziman Principles of the theory of solids, (Cambridge
at the University Press, 1972).

30 E. Zaremba, Phys. Rev. B 45, 14143 (1992).
31 R. Fletcher, M. Tsaousidou, T. Smith, P. T. Coleridge,

Z. R. Wasilewski, and Y. Feng, Phys. Rev. B 71, 155310
(2005).

32 D. V. Dmitriev, I. S. Strygin, A. A. Bykov, S. Dietrich,
and S. A. Vitkalov, JETP Letters, 95, 420 (2012).

33 Sergey A. Vitkalov, Hairong Zheng, K. M. Mertes, M. P.
Sarachik, and T. M. Klapwijk, Phys. Rev. Lett. 85, 2164
(2000).

34 S. A. Vitkalov, H. Zheng, K. M. Mertes, M. P. Sarachik,
and T. M. Klapwijk, Phys. Rev. B 63,193304 (2001).

35 Sergey A. Vitkalov, Phys. Rev. B 64, 195336 (2001).
36 M. E. Raikh and T. V. Shahbazyan, Phys. Rev. B 47, 1522

(1993).
37 Jing Qiao Zhang, Sergey Vitkalov, and A. A. Bykov Phys.

Rev. B 80, 045310 (2009).
38 F. F. Fang, and P. J. Stiles, Phys. Rev. 174, 823 (1968).
39 D. Stein, K. V. Klitzing, and G. Weimann, Phys. Rev.

Lett. 51, 130 (1983).
40 Yu. A. Nefyodov, A. V. Shchepetilnikov, I. V. Kukushkin,

W. Dietsche, and S. Schmult, Phys. Rev. B 83, 041307(R)
(2011).

41 R. J. Nicholas, R. J. Haug, K. v. Klitzing and G. Weimann,
Phys. Rev. B 37, 1294 (1988).

42 D. R. Leadley, R. J. Nicholas, J. J. Harris and C. T. Foxon,
Phys. Rev. B 58, 13036 (1998).

43 B. A. Piot, D. K. Maude, M. Henini, Z. R. Wasilewski, J.
A. Gupta et al., Phys. Rev. B 75, 155332 (2007).


