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Conventionally, a basic requirement to generate valley Hall effect (VHE) is that the Berry curva-
ture for conducting carriers in the momentum space be finite so as to generate anomalous deflections
of the carriers originated from distinct valleys into different directions. We uncover a geometric valley
Hall effect (gVHE) in which the valley-contrasting Berry curvature for carriers vanishes completely
except for the singular points. The underlying physics is a singular non-π fractional Berry flux lo-
cated at each conical intersection point in the momentum space, analogous to the classic Aharonov-
Bohm effect of a confined magnetic flux in real space. We demonstrate that, associated with gVHE,
exceptional skew scattering of valley-contrasting quasiparticles from a valley-independent, scalar
type of impurities can generate charge neutral, transverse valley currents. As a result, the massless
nature of the quasiparticles and their high mobility are retained. We further demonstrate that, for
the particular Berry flux of π/2, gVHE is considerably enhanced about the skew scattering reso-
nance, which is electrically controllable. A remarkable phenomenon of significant practical interest
is that, associated with gVHE, highly efficient valley filtering can arise. These phenomena are robust
against thermal fluctuations and disorders, making them promising for valleytronics applications.

I. INTRODUCTION

In electronics and spintronics, information is encoded
through charge and electronic spin, respectively. In addi-
tion to charge and spin, valley quantum numbers provide
an alternative way to distinguish and designate quan-
tum states, leading to the concept of valleytronics1,2, an
area that has attracted much recent interest3–11. Take
graphene as an example, where the crystalline structure
stipulates that uncharged degrees of freedom such as val-
ley isospin can arise12. In the first Brillouin zone there
are two nonequivalent Dirac points, K and K′, which
are associated with distinct momenta or valley quan-
tum numbers. The two nonequivalent valleys act as
an ideal two-state system, which have a large momen-
tum separation and are robust against external pertur-
bations2,13. Electrons affiliated with the distinct valleys
can be exploited for applications, e.g., in quantum in-
formation processing14. Appealing binary valley charac-
teristics can also arise in other materials such as silicene
and MoS2

6, graphene-inspired artificial crystals such as
photonic graphene15 that exhibits valley-polarized beams
and sonic (phononic) crystals9 in which valley vortex
states can emerge, and valley photonic crystals16.

In valleytronics, a fundamental issue is to separate the
electrons with distinct valley quantum numbers, i.e., to
create the so-called valley filters1. In graphene, due to its
synthetic nature, the valley isospin can be manipulated
for various valley filtering designs via strategies such as
perfect zigzag edge confinements1, staggered sublattice

potentials2, trigonal warping effect of the band struc-
tures15, line defects17, and strain engineering10,11,18–20.
A viable mechanism to realize valley filtering is through
the valley Hall effect (VHE)2,5,7,21–28, where electrons
with different valley quantum numbers are separated and
move in spatially distinct regions. Indeed, the Hall effect
is one of the most fundamental phenomena in physics,
and of particular relevance to VHE are the anomalous
Hall effect (AHE)29 and the spin Hall effect (SHE)30–35.
There exist two types of mechanism for AHE/SHE: in-
trinsic or extrinsic. The former in general has a topo-
logical origin, where finite momentum space Berry cur-
vatures (Berry flux densities) characterizing the topolog-
ical invariants of the band structure of the material are
linked, while the latter is typically caused by the skew
(Mott) scattering or side-jump effect from the external
impurities involving spin-dependent perturbations, e.g.,
spin-orbit coupling. SHE opens up an avenue for the con-
version between electrical (charge) currents and spin (un-
charged) currents, which played a key role in spintronics
development for spin-current generators and detectors.
Similar to SHE, associated with VHE, electrical currents
can generate transverse valley currents and vice versa. In
recent years there have been theoretical2,7,21–24 and ex-
perimental5,25–28 studies of VHE. Due to the similarity
between SHE and VHE, most existing theoretical propos-
als for VHE are based on essentially the same physical
mechanism as for SHE13,36, where either bulk or local
valley-resolved perturbations are required.

For the honeycomb lattice system, the semiclassical
picture based on finite valley-contrasting Berry curva-
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tures stipulates that valley-resolved gap opening pertur-
bations are necessary for VHE and valley filtering2,23.
Alternative mechanisms for VHE require external mag-
netic fields, strain-induced pseudo magnetic fields, or
magnetic materials that have an opposite effect on the
two valleys10,11,18–20. We ask the following question:
when Berry curvatures vanish does nontrivial valley-
contrasting physics exist without any valley-resolved per-
turbation? The purpose of this paper is to provide an af-
firmative answer. Our success in uncovering a valley-free
perturbation mechanism for VHE and valley filtering re-
lies on two basic observations: (i) the classic Aharonov-
Bohm effect can be induced by a singular line of mag-
netic flux with vanishing magnetic field away from it,
and (ii) the Berry curvature (Berry flux density) can
be regarded as the geometric analog of the magnetic
field (magnetic flux density) in the momentum space37,38.
Specifically, analogous to a confined magnetic flux gen-
erated by an infinitely narrow solenoid, the Berry flux
arising from a conical intersection (singularity) in the
energy-momentum spectrum is perfectly localized at the
diabolical point with a specific valley quantum num-
ber. The Berry phase acquired along a loop enclosing
the point can then be defined but, away from the point,
the Berry curvature vanishes everywhere. Due to time-
reversal symmetry, the singular Berry fluxes associated
with the nonequivalent valleys carry opposite signs. As
a result, if two valleys possess a singular non-π fractional
Berry flux with opposite signs, different Berry phases
can be acquired along the closed loop induced by, e.g., a
scattering process, leading to valley-resolved interference
patterns. We stress that such valley-contrasting effects
are originated from the singular nature of the underlying
band structure in the absence of any finite Berry cur-
vature away from the singular points without imposing
any constraint on the type of the scattering that can be
completely valley-independent.

Here we present a novel VHE with which an effi-
cient valley filtering effect can arise via spatially valley-
contrasting interference. Due to the geometric nature
of the underlying mechanism, we name the phenomenon
gVHE where, when the momentum-space singular Berry
flux is non-π fractional, charge neutral valley currents
are generated from exceptional skew scattering from a
valley-independent, scalar type of impurities. The gVHE
is neither purely intrinsic nor purely extrinsic, but of a
mixed type. As such, our result is beyond existing knowl-
edge and represents a fundamentally new phenomenon.
To be concrete, we focus on α-T3 lattices that host mass-
less Dirac-like particles with a variable singular Berry flux
and show that there is a nonlinear dependence of the val-
ley Hall angle on the Berry flux with asymmetrically res-
onant features. For the particular singular Berry flux of
π/2, gVHE is considerably enhanced, which occurs near
a resonance associated with skew scattering and can be
electrically controlled by varying the Fermi energy or the
scatterer strength. We develop a physical understanding
of the resonant skew scattering, which is nonperturbative

and much stronger than the conventional skew scattering
predicted by a third or higher order perturbation theory.
We further show that gVHE is robust against thermal
fluctuations and disorders, making it promising for val-
leytronic applications.

II. HAMILTONIAN AND METHODS

Effective Hamiltonian. We consider a generalized lat-
tice system (i.e. α-T3) interpolating between a graphene
and a dice lattice. The effective low-energy Hamiltonian
is given by39

H0 = h̄vF
(
τ3 ⊗ Sαx kx + τ0 ⊗ Sαy ky

)
, (1)

where vF is the Fermi velocity, k = (kx, ky) denotes the
2D wavevector measured about one of the two nonequiv-
alent valleys (K or K′) at a corner of the hexagonal
Brillouin zone, and the Pauli matrices τ1,2,3, τ0 = I2×2

act on the valley degree of freedom representing an
emergent isospin. The matrices Sαx and Sαy (explicit
forms in Appendix A) parameterized by α = tanφ
identify the nonequivalent crystalline sublattices. The
Hamiltonian H0 acts on the six-component spinor Ψ =
[Ψτ
A,Ψ

τ
B ,Ψ

τ
C ,Ψ

τ ′

A ,Ψ
τ ′

B ,Ψ
τ ′

C ]T . The energy spectrum con-
sists of three bands: a dispersionless flat band E0(k) = 0
and two linearly dispersive bands Es(k) = sh̄vF |k| with
s = ±1 being the band index, where the latter are iden-
tical to the low-energy bands of graphene that give rise
to massless excitations.

Due to the α → 1/α (or φ → π/2 − φ) duality of
the model, we restrict our study to the regime α ∈
[0, 1]. Note that the resulting zero-field spectrum is α-
independent and features isotropic linear band crossings,
while H0 describes different low-energy excitations char-
acterized by a α-dependent Berry phase upon winding
of the band-touching point K or K′. In the momentum
space, the Berry phase underlying the nth energy band
belonging to one of the valleys with a valley index τ = ±1
is defined as Φτn =

∮
dk · Aτn with Aτn = 〈Ψτ

n,k|i∇k|Ψτ
n,k〉

being the Berry connection (acting as a vector poten-
tial in momentum space). Quantitatively, we obtain
Φτs = τ(1 − α2)/(1 + α2)π for the conical bands and
Φτ0 = −2τ(1 − α2)/(1 + α2)π for the flat band (See Ap-
pendix B). Two particular cases arise for α = 0 (φ = 0)
and α = 1 (φ = π/4). In the former, the system corre-
sponds to a graphene system with an extra inert flat band
effectively governed by a reduced Hamiltonian in the
block diagonal form H0 = h̄vF (τ3⊗σxkx+τ0⊗σyky)⊕0,
with the Pauli matrices σx,y accounting for the effective
sublattice degrees of freedom. In the latter case, the sys-
tem is a dice lattice hosting massless pseudospin-1 quasi-
particles with a vanishing Berry phase, where the matri-
ces Sα=1

x,y satisfy the spin-1 algebra. From the point of
view of symmetry, the two cases belong, respectively, to
the classes SU(2)⊗(SU(2)⊕SU(1)) and SU(2)⊗SO(3). In
the intermediate regime 0 < α < 1, the matrices Sαx,y in
H0 do not obey the algebra of angular momentum, nor



3

any other closed algebra. As such, with more than a sin-
gle pseudospin operator in general, H0 cannot be reduced
to any known case of relativistic particles (spin-1 or spin-
1/2) but is an admixture (hybrid) of them with a non-π
fractional Berry phase. Remarkably, the Berry phases as-
sociated with the two nonequivalent valleys are different
except for the particular cases of α = 0, 1. In addition,
we note that the Berry curvature Ωτ

k = ∇k×Aτk (acting
as a “magnetic” field in the momentum space) is always
zero away from the gapless point K or K′. Specifically,
as derived in Appendix B, it takes on a singular form as

Ωτ
s,k = τ

1− α2

1 + α2
πδ(k)k̂z ≡ τΦπδ(k)k̂z, (2)

where s is the index of the conical bands, τ is the valley
index of K (τ = 1) and K′ (τ = −1), and k = (kx, ky)
is the quasi-momentum in the sth band measured from
one of the two valley centers. The quantity Φ denotes
the flux magnitude in units of π, and a singular non-π
fractional Berry flux means 0 < Φ < 1, where a valley
contrasting Berry phase of τΦπ can be acquired along any
circuit enclosing a single Dirac point belonging to one of
the valleys. Analogously, the resulting Berry curvature
given in Eq. (2) acts as a tunable “Aharonov-Bohm flux
line” of magnitude Φ applied perpendicular to the 2D
momentum space, which will not exert the local “deflect-
ing force” away from it but will result in a nontrivial
Berry phase depending on the circuit about the “flux
line.” In this regard, the typical Dirac cones emerging
from the hexagonal lattice are effectively a singular π
Berry flux localized at the Dirac point40, while those in
the α − T3 lattice can give rise to a singular non-π frac-
tional Berry flux in general. Since the underlying Berry
curvature vanishes except at the Dirac points that form
a set of measure zero in the 2D momentum space, we can
rule out an anomalous Hall effect of the intrinsic type as
argued in existing works2,29,35.

Semiclassical transport. To investigate the charge and
valley transport properties, we analyze the semiclassical
Boltzmann transport equation (BTE) which, in the pres-
ence of an applied uniform electric field E = Eex, takes
the form41

− eE · vk
∂n0

∂E
=
∑
k′,τ ′

[nτ (k)− nτ ′(k′)]Wτ ′τ (k′,k), (3)

where −e < 0 is the electron charge, vk = (1/h̄)∇kEk is
the band velocity, n0 = 1/[exp (E − µ)/kBT + 1] denotes
the equilibrium Fermi-Dirac distribution, and nτ (k) is
the distribution function for carriers with momentum k
and valley index τ . Impurities distributed at random po-
sitions of scattering centers ri with a dilute concentration
(areal density) nimp are described by the disordered po-

tential V (r) =
∑
i V

(i)(r− ri), and the quantum scatter-
ing rate off the potential from the state |k, τ〉 to the state
|k′, τ ′〉 is Wτ ′τ (k′,k) = (4π2h̄v2

gnimp/k)|fττ ′(θ)|2δ(Ek −
Ek′), where fττ ′(θ) is the scattering amplitude at the
angle θ = arccos (k · k′/k2). Skew scattering means

an asymmetry in the scattering amplitude fττ ′(θ) 6=
fττ ′(−θ), which leads to Wττ ′(k

′,k) 6= Wττ ′(k,k
′).

Defining δnτ (k) = nτ (k) − n0 as the deviation of the
valley-dependent distribution function from its equilib-
rium value, in the linear response regime we impose the
following ansatz for isotropic Fermi surfaces in the con-
duction (valence) band s = 1 (s = −1): δnτ (k) =
svF [Aτ cosϕ(k) +Bτ sinϕ(k)], where ϕ(k) is the an-
gle that the momentum vector k makes with the di-
rection of the external electric field E , Aτ and Bτ are
coefficients. Substituting this ansatz into Eq. (3) and
setting ϕ(k) = 0 (ϕ(k) = π/2) for the longitudinal
(transverse) response, we obtain a closed form solution
of the linearized BTE. The current due to the exter-
nal driving electric field can be calculated explicitly as
jτ = −egS/(2π)2

∫
d2k′δnτ (k)vk with g = 2 and S be-

ing the spin degeneracy and the given sample area, re-
spectively. The steady state charge (longitudinal) and
valley Hall (transverse) currents are then given by jx =∑
τ jτ · ex ≡ σxx|E| and jvH =

∑
τ τ jτ · ey ≡ σyxvH |E|,

where the valley Hall and the longitudinal conductivities
are given by

σyxvH = −e2 g

2h̄

∑
τ=±

∫
dE|E|∂n

0

∂E

τξτsk
1 + (ξτsk/ξ

τ
tr)

2
, (4)

and

σxx = −e2 g

2h̄

∑
τ=±

∫
dE|E|∂n

0

∂E

ξτtr
1 + (ξτtr/ξ

τ
sk)2

, (5)

respectively, with the usual transport (lon-
gitudinal) relaxation time ξτtr and the skew
(transverse) relaxation time ξτsk determined by
1/ξτtr = (2π)−2

∫
d2k′(1 − cos θ)Wττ (k′,k) and

1/ξτsk = (2π)−2
∫
d2k′ sin θWττ (k′,k), respectively.

The valley Hall angle characterizing the efficiency of the
charge current to valley current conversion is given by

γ ≡ jvH
jx

=
σyxvH
σxx

, (6)

which at zero temperature reduces to the ratio ξτtr/ξ
τ
sk

and can be expressed in terms of the pertinent scat-
tering cross sections with respect to a single scattering
event: γ|T=0 = Στsk/Σ

τ
tr, where the skew and trans-

port cross sections are given, respectively, by Στsk =∫
dθ sin θ|fττ (θ)|2 and Στtr =

∫
dθ|fττ (θ)|2(1− cos θ).

III. RESULTS

We model the impurities as an ensemble of dilute disk
scatterers of radius R described by the scalar potential

V (i)(r) = τ0 ⊗ IV0Θ(R− |r− ri|) (7)

located at random positions ri, where V0 is the potential
height and I is an identity matrix acting on the sublat-
tice space. Note that the impurities are neither valley nor
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sublattice dependent and they do not affect the massless
nature of the carriers associated with the conical bands.
As a result, high mobility of the carriers is retained. Scat-
tering properties from a single impurity can be treated
without the need to use perturbation theory, as presented
in Appendix C. A quantitative understanding of under-
lying transport can be obtained through the Boltzmann
transport formalism described in Section II. Based on
quantitative analyses and calculations, we demonstrate
in a concrete manner the main findings stated in the last
paragraph of Sec. I.

A. Exceptional valley skew scattering induced
geometric valley Hall effect

We first show that a surprising valley skew scattering
effect can arise for the case of singular non-π fractional
Berry flux. Quantitatively, such a valley-resolved asym-
metric scattering process from the state |k, τ〉 to the state
|k′, τ ′〉 can be characterized by the skew cross section
Στsk =

∫
dθ sin θ|fττ (θ)|2 with fττ (θ) being the scatter-

ing amplitude at the angle θ = arccos (k · k′/k2). The
skew cross section turns out to be finite for the flux mag-
nitude in the range 0 < Φ < 1 and attains significant
values about the resonant scattering point [c.f. Eq. (D5)
in Appendix D]. This is striking because the scattering
asymmetry in the valley coded binary channels emerges
from an isotropic, valley-free electrostatic scatterer in the
absence of any valley-dependent perturbation. Moreover,
the physical effect is not of any perturbative type, which
is remarkable considering that a previous third-order per-
turbation theory predicted29 only small values for the
skew scattering cross section. In our case, the result-
ing sizeable valley skew scattering behavior has a dif-
ferent physical origin that is associated with the valley-
dependent Berry phase caused by the singular Berry flux
in terms of any trajectory enclosing a single conical in-
tersection point with one of the valleys centered. As a
result, for a given scattering process with specific mo-
menta, carriers from the two nonequivalent valleys can
acquire different nontrivial phases, with which a spatially
valley-resolved wave scattering pattern emerges. A rep-
resentative physical picture of the exceptional valley skew
scattering process is demonstrated in Fig. 1 for a singular
non-π fractional Berry flux case (i.e., Φ = 1/2).

Associated with the exceptional valley skew scattering,
a VHE can arise. In particular, as the hallmark of any
skew scattering, a finite value of Στsk means a kind of
asymmetry characterized by |fττ (θ)| 6= |fττ (−θ)| for car-
riers belonging to a given valley τ (τ = ±). In addition,
the preservation of the time-reversal symmetry imposes
a mirror symmetry |fττ (θ)| = |fτ̄ τ̄ (−θ)| on different val-
leys. Both factors contribute to the spatial separation of
the valley degree of freedom of carriers and lead to the
emergence of a transverse valley current with zero net
charge. The VHE can be quantified by the valley Hall
angle (VHA) γ, the ratio of the valley Hall conductiv-

FIG. 1. Exceptional valley skew scattering from a
valley-independent scalar-type scatterer. The two val-
leys are K′ and K in (a) and (b), respectively, which are
distinguished in terms of the spatially resolved phases of the
second component of the corresponding wavefunctions. The
red (blue) arrow and streamlines denote the propagation di-
rection of quasiparticles from the valley K′ (K). The scalar
scatterer is represented as the gray shaded disk. (c) Spatially
valley-resolved intensity distribution of the resulting interfer-
ence/diffraction pattern. Panels (a-c) are for a singular Berry
flux of ±π/2 with the following scattering parameters: rel-
ative incident energy E/V0 = 0.7268 and effective scatterer
strength V0R = 1.

FIG. 2. A schematic illustration of geometric Valley
Hall Effect (gVHE) induced by skew scattering from
impurities (gray shaded disks). This type of Hall effect is
mixed that is mediated by the inherent singular Berry flux
and manifests itself with exceptional valley skew scattering
from valley-independent scalar-type impurities.

ity to the longitudinal conductivity [c.f., Eqs. (4) and (5)
in Section II]. Effectively, γ is a figure of merit char-
acterizing the efficiency of net transverse valley current
conversion. A better undertanding of the skew scattering
mechanism can be obtained from the closed form of VHA
at zero temperature given by

γ|T=0 = Στsk/Σ
τ
tr.

It follows from the expression that a finite VHA and
hence VHE arises from effective valley skew scattering
from a scalar type of impurities in the absence of any
valley-dependent perturbations, as shown schematically
in Fig. 2, where a singular non-π fractional Berry flux is
located at each center of the two nonequivalent valleys
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in the momentum space. We note that, the origin of the
proposed VHE can be attributed to the singular Berry
flux leading to valley-resolved quasiparticle scattering
with distinct Berry phase accumulations but vanishing
Berry curvature. This is analogous to the Aharonov-
Bohm effect induced by a confined real magnetic flux
without any magnetic field exerted outside (hence the
name gVHE).

B. Dependence of VHA on singular Berry flux

FIG. 3. Singular Berry flux defined valley Hall an-
gle. (a) Contour map of valley Hall angle γ versus the sin-
gular Berry flux magnitude Φ and the relative energy E/V0

for scatterer strength V0R = 1. (b) Average valley Hall angle
γ̃ over the Fermi energy versus the Berry phase for different
values of the scatterer strength as represented by the solid
line (V0R = 1), the dashed line (V0R = 10), and the dot-
dashed line (V0R = 100). (c) Enhancement of VHA due to
resonant valley skew scattering occurring within the energy
range indicated by the thick black line in (a) for Φ = 1/2 and
V0R = 1.

Quantitatively, the emergence of gVHE can be ascer-
tained through the dependence of the characteristic VHA
γ on the singular Berry flux magnitude Φ. We cal-
culate VHA at zero temperature and show its contour
map versus the relative carrier energy E/V0 and Φ in
Fig. 3(a). There are finite VHAs (γ 6= 0) within the
range 0 < Φ < 1, which correspond to a non-π fractional
Berry flux leading to a non-π fractional Berry phase but
a zero Berry curvature away from the Dirac point, say
for E/V0 > 0. In addition, in the two limiting cases
with singular Berry fluxes of 0 and π (i.e., Φ→ 0, 1), we
have γ → 0. Note that the former and latter cases corre-
spond, respectively, to a dice lattice system with massless
pseudospin-1 low-energy excitations and a graphene sys-
tem hosting massless pseudospin-1/2 quasiparticles. By
definition, γ = 0 means that the Hall effect vanishes, and
a large value of |γ| indicates a strong VHE. In addition,

at zero temperature, γ|T=0 is effectively the transport
skewness that characterizes the degree of asymmetry in
the associated scattering event. As such, we have that
the gVHE emerges due to the singular non-π fractional
Berry flux that permits exceptional valley skew scatter-
ing from valley independent, scalar type of scatterers. At
low energies, i.e., kR � 1, for E/V0 � 1, we obtain an
analytic formula for the VHA versus the flux magnitude
(see Appendix D for the derivations and its validation):

γ(Φ) '
πx2 Φ(1−Φ)

1+Φ

(1 + η)2 [Φ− (1− 2η)]
2

+ 4ηΦ(1−Φ)
1+Φ

, (8)

where η = E/V0 and x = kR. We see that the VHA ex-
hibits a nonlinear dependence on the Berry flux and an
asymmetric resonance profile. In particular, as Φ is in-
creased from 0 to 1 monotonously, the VHA reaches max-
imum at Φ∗ ' (1 − 2η), followed by a decrease to zero.
Asymptotic behaviors at the opposite limits of Φ → 1
and Φ → 0 derived from Eq. (8) are: γ(Φ) ∼ (1 − Φ)
for Φ → 1 and γ ∼ Φ for Φ → 0. We see that the VHA
vanishes linearly as Φ→ 0, 1, i.e., when the π-quantized
Berry flux is recovered. Away from these limiting cases,
gVHE emerges following an asymmetrically resonant be-
havior that has a nonlinear dependence on the singular
Berry flux. Relaxing the assumption of E/V0 � 1, we
obtain an estimation of the other resonance position for
E/V0 > 1/2 as Φ∗ ' (2η − 1) (see Appendix D). Both
theoretical predications are marked by the green dashed
line in Fig. 3(a), where, on the other hand, the linear
dependence of the resonance position on the Berry flux
can be utilized to demarcate the unusual Berry phase as-
sociated with the quasiparticles through Hall transport
measurements.

Figure 3(b) reveals the effect of the scatterer strength
V0R on gVHE, where the averaged absolute VHA γ̃ ≡∫
|γ|dE/

∫
dE versus Φ for three different values of V0R

(1, 10, 100) is shown, as indicated by the solid, dashed
and dot-dashed lines, respectively. We see that, on av-
erage, weak scatterers favor sizable VHAs, giving rise
to a pronounced gVHE, while strong scatterers do not.
An intuitive picture behind this can be obtained by
resorting to the general summation form of the skew
cross section in terms of the scattering phase shift δl:
Στsk = 4/k

∑
sin δl sin δl+τ sin(δl − δl+τ ) where, for a

given carrier energy value E/V0, the larger V0R is, the
more scattering channels with different phase shifts are
excited. As a result, there are many sign changes in δl
or (δl − δl+τ ), reducing significantly the summation and
hence VHA. This phenomenon is essentially due to the
phase effect and is dominant in the long wavelength limit.
In particular, from Fig. 3(c), we see that the VHA can
be enhanced significantly due to the emergent resonant
valley skew scattering in the energy domain, which can
be achieved by controlling the Fermi energy.
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FIG. 4. Illustration of resonant skew scattering as-
sisted valley filtering. For Φ = 1/2 with the resonance
position indicated by the small red circle in Fig. 3(c), (a) po-
lar plot of normalized differential cross section as a function
of the scattering angle for different valleys: K (solid blue line)
and K′ (red dashed line), (b) associated near-field patterns
of the local probability density belonging to different valleys
(top two panels) and the corresponding current density plots
(bottom ones), and (c) a schematic illustration of gVHE as-
sociated with resonant valley skew scattering.

C. Enhanced valley filtering through resonant skew
scattering

Accompanying the enhancement in the VHA at skew
scattering resonances, a sizeable valley filtering effect will
be anticipated. Insights into resonant skew-scattering as-
sisted valley filtering can be gained by investigating both
the far-field and near-field behaviors in terms of the dif-
ferential cross section (DCS) dΣτ/dθ = |fττ (θ)|2 and the
associated near-field patterns for different valleys, as il-
lustrated in Figs. 4(a) and 4(b), respectively. There is an
exact mirror symmetry with respect to the horizontal axis
between the patterns associated with different valleys - an
exact manifestation of the time-reversal symmetry. From
the formula for γ|T=0, we note that a large VHA implies
a left-right asymmetry in the DCS and hence gives rise
to a strong valley polarization along the azimuthal direc-
tion, and vice versa. Demonstration using a polar plot
of DCS is displayed in Fig. 4(a) with resonance parame-
ters indicated by the red circle in Fig. 3(c). As a result, a
remarkable valley filtering/polarization effect emerges to-
gether with VHA enhancement and gVHE. Furthermore,
it can be seen from Fig. 4(b) that, at the given resonance,
valley-contrasting spatial skew (asymmetric) trappings
occur via the formation of unusual fusiform vortices on
one side of the boundary. Consequently, the scatterer
only blocks one of the valleys effectively at one side via
valley-dependent skew trapping, making the system an
effective valley filter near the resonance. Figure 4(c) il-
lustrates schematically the valley filtering mechanism due

to resonant skew scattering enhanced gVHE. We also find
that exceptionally large VHAs and strong valley filtering
can occur for intermediate scatterer strength [c.f. Fig. 7
(a) in Appendix D].

FIG. 5. Exceptionally large VHAs and the effect
of thermal fluctuations and disorder averaging. For
Φ = 1/2, (a) a contour plot of the VHA γ versus E/V0

and the scatterer strength V0R at zero temperature, and (b)
ensemble averaged VHA over scatterers with randomly dis-
tributed strength V0R ∈ (0, 10] versus the reduced Fermi en-
ergy for different values of the normalized thermal tempera-
ture kBT/V0 = 0, 0.01, 0.025.

D. Robustness against disorder averaging and
thermal fluctuations

A further analysis of the effect of scatterer strength
reveals that gVHE enhancement induced by resonant
skew scattering is significant for intermediate scatterer
strength, say V0R ∼ 2, where large VHAs with the max-
imum absolute value |γ|max ∼ 0.8 can arise, as shown
in Fig. 5(a). The Hall angle values are much larger
than those for metals42–46 (|γ| ∼ 0.01 − 0.1) and for
graphene47–49 (|γ| ∼ 0.2). This remarkable result holds
in the presence of thermal fluctuations and disorder aver-
aging, as shown in Fig. 5(b), rendering the phenomenon
uncovered here promising for valleytronics applications.

IV. DISCUSSION

We uncover a singular momentum-space Berry flux me-
diated mechanism for VHE and show that it can lead to
efficient, electrically controllable valley filtering without
compromising the high mobility of the carriers, which is
far more advantageous than the conventional approach
of introducing a finite quasiparticle mass or deforming
the underlying energy dispersion. In particular, for frac-
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tional Berry fluxes charge neutral transverse valley cur-
rents can be generated from exceptional skew scatter-
ing from a valley-independent, scalar type of impurities.
Analogous to the Aharonov-Bohm effect mediated by a
singular magnetic flux in the physical space, the VHE
has a geometric origin associated with the underlying
momentum-space Berry phase but vanishing Berry cur-
vature. We develop an analytic understanding of the phe-
nomena of gVHE and valley filtering, for which further
physical insights can be gained by resorting to symme-
try considerations (Appendix E). We demonstrate that
gVHE and the resulting valley filtering are robust against
thermal fluctuations and disorders while preserving the
high mobility of the carriers, potentially opening a door
to developing faster and more efficient valleytronics.

It is worth emphasizing that the phenomenon of gVHE
uncovered in this work belongs to the mixed type and
emerges in the absence of any valley-resolved perturba-
tion. To our best knowledge, this differs from any of the
previous cases (Appendix F). We also remark that in-
tervalley scattering can be neglected in our analysis, for
the following two reasons: (1) a relatively large momen-
tum transfer on the order of the inverse lattice spacing
is needed to scatter an carrier from the K valley to the
K ′ valley and (2) it is physically reasonable to assume
that the impurity potentials are smooth on the lattice
scale but sharp in comparison with the carriers’ wave-
length (Appendix G).

While we have used the α-T3 lattice to demonstrate our
findings, we expect them to arise generally in physical
systems hosting massless Dirac-like particles with a sin-
gular non-π fractional Berry flux in the momentum space.
For instance, there exists a correspondence between our
model and massless Kane fermion systems50,51 that can
arise in 3D zinc-blende crystals, i.e., Hg1−xCdxTe, at
some critical doping concentration52–54. In particular,
for singular Berry flux Φ = 1/2 (α = 1/

√
3), we have

H0(α = 1/
√

3) ≡ HKane(k, kz = 0) (see Appendix H).
In this sense, the phenomenon of gVHE uncovered here
manifests itself as the geometric SHE in a massless Kane
fermion system, which can be experimentally validated
in the 3D zinc-blende crystals in the presence of spin-
independent (scalar-type) cylindrical symmetric impuri-
ties (e.g., charged dislocation line defects along the [001]
direction).
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Appendix A: Explicit form of matrices Sαx and Sαy

The matrices Sαx and Sαy are given by

Sαx =

 0 cosφ 0
cosφ 0 sinφ

0 sinφ 0

 , (A1)

and

Sαy =

 0 −i cosφ 0
i cosφ 0 −i sinφ

0 i sinφ 0

 , (A2)

which are parameterized by α = tanφ. They identify the
nonequivalent crystalline sublattices in the α-T3 lattice.

Appendix B: Berry phase and curvature

We follow the recent works39,50,51 to carry out calcula-
tions to show that, in our α-T3 system, the Berry curva-
ture and phase are not conventional in the sense that the
phase can be a fraction of π. The effective Hamiltonian
in the main text is

H0(k) = α̃ · k, (B1)

where k = (kx, ky, 0) and α̃ = (τ3⊗Sαx , τ0⊗Sαy , τ1⊗ S̃z)
with S̃z = 0 ⊕ σx. The Hamiltonian H0 has eigenvalues
E = n|k| with n = 0,± denoting the band index, and
the associated eigenstates are given by

|k, s〉|τ〉 =
1√
2

τ cosφe−iτθ

s
τ sinφeiτθ

 |τ〉, (B2a)

for E = s|k| with s = ±, and

|k, 0〉|τ〉 =

 τ sinφe−iτθ

0
−τ cosφeiτθ

 |τ〉, (B2b)

for E = 0, where tan θ ≡ ky/kx and τ = ± de-
notes the valley index. The Berry connection (field) of
each band can be calculated from the definition Aτ

n,k =
〈τ |〈k, n|i∇k|k, n〉|τ〉. We have

Aτ
0,k = −τ 1− α2

1 + α2
∇kθ,Aτ

s,k = −1

2
Aτ

0,k. (B3)

Consequently, the Berry curvature Ωτ
n,k = ∇k ×Aτ

n,k is
readily obtained as
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Ωτ
s,k =

τ

2

1− α2

1 + α2
∇k ×

(
− ky
k2
x + k2

y

,
kx

k2
x + k2

y

, 0

)
= τ

1− α2

1 + α2
πδ(k)k̂z, (B4)

for the conical bands and Ωτ0,k = −2Ωτ
s,k for the flat

band, while the Berry phase Φτn =
∮
dk · Aτ

n,k for any
closed path Cτn,kd

encircling a degeneracy point kd (i.e.,

a single valley center) in the momentum space is given
by

Φτs = τ
1− α2

1 + α2
π, and Φτ0 = −2Φτs . (B5)

From Eqs. (B4) and (B5), we see that our α-T3 system
possesses a vanishing Berry curvature except at the band-
touching point (or Dirac point) and valley-contrasting
Berry phases except for α = 0 or 1, which makes the
emerging Dirac-like cone an effective singular Berry flux
applied perpendicular to the 2D momentum space with
a tunable magnitude of Φ = (1−α2)/(1 +α2). It should
be noted that this argument holds for scalar type of per-
turbation assumed in our work, and since the transport
process we investigate occurs away from the Dirac point,
the contributing carriers experience vanishing Berry cur-
vatures throughout the process.

Appendix C: Scattering amplitude formulas

Minimal model and partial wave expansion. As indi-
cated in the main text, we use the following perturbed
Hamiltonian

H = H0 + V (r), (C1)

to model the quantum scattering processes from the ex-
trinsically controllable impurities such as randomly po-
sitioned antidots due to circularly symmetric vertical
gates. The impurities are treated as an ensemble of finite-
size scattering centers of radius R described by the disor-
dered scalar potential V (r) =

∑
i τ0⊗IV0Θ(R−|r−ri|),

which are distributed at random positions ri with V0 be-
ing the potential height. The characteristic size R of
each individual scatterer is assumed to be much larger
than the lattice constant so that intervalley scattering
is negligible. If the scatterers are sufficiently dilute so
that multiple scattering effects can be ruled out, i.e., the
density satisfies nimp � 1/R2, we can impose the sin-
gle scattering-event approximation to obtain physically
meaningful solutions for the far-field scattering ampli-
tude fττ ′(θ) using the standard partial wave decomposi-
tion (PWD) scheme. In the following, we shall derive its
expression in terms of such a single disk scatterer.

Far away from the scattering center (i.e., r � R), for
an incoming flux along the x direction, the spinor wave-
function belonging to the valley τ with band index s takes
the asymptotic form

|Ψ�s,τ (r)〉 = eikx|k0, s〉|τ〉+
fττ ′(θ)√
−ir

eikr|kθ, s〉|τ ′〉, (C2)

where the Einstein summation convention is applied for
the valley index τ ′, the ket |τ〉 represents the valley
state (analogous to the orientation of the isospin along
the z axis), and the vector |k, s〉 is the spinor plane
wave amplitude with wave vectors k0 = (k, 0) and kθ =
k(cos θ, sin θ) that define the directions of the incident
and scattering waves, respectively. In our system, for the
conical dispersion bands s = ±, we have

|k, s〉|τ〉 =
1√
2

τ cosφe−iτθ

s
τ sinφeiτθ

 |τ〉. (C3)

The current operator is defined as Ĵ = (1/h̄)∇kH(k) =
vF (τ3⊗Sφx , τ0⊗Sφy ). We thus obtain the scattered current
as

Jsc =
1

r
〈τ ′|〈kθ, s|f∗ττ ′ Ĵ ·

kθ
k
fττ ′ |kθ, s〉|τ ′〉

=
τvF
r

[
|fττ (θ)|2 + |fττ (θ)|2

]
,

(C4)

while the incident current is

Jin = 〈τ |〈k0, s|Ĵ · k0/k|k0, s〉|τ〉 = τvF . (C5)

The differential cross section can be calculated from the
scattering amplitudes fττ ′(θ) as

dΣτ

dθ
=
rJsc
Jin

= |fττ (θ)|2 + |fττ (θ)|2, (C6)

where τ ≡ −τ , and fττ (θ) denotes the scattering ampli-
tudes in the valley-flip channels, which vanishes in the
absence of intervalley-coupling perturbations. Other rel-
evant cross sections can be calculated in a similar man-
ner. In particular, the total cross section (TCS) is

Στ =

∫ 2π

0

dθ
dΣτ

dθ
, (C7)

the transport cross section (TrCS) is

Στtr =

∫ 2π

0

dθ(1− ττ ′ cos θ)|fττ ′(θ)|2, (C8)

and the skew cross section (SkCS) is given by

Στsk =

∫ 2π

0

dθττ ′ sin θ|fττ ′(θ)|2. (C9)

To obtain an exact expression for fττ ′(θ), we expand the
wavefunctions inside and outside the scatterer as a su-
perposition of partial waves. In particular, for r > R
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(outside the scatterer) and r < R (inside the scatterer),
we have

|Ψ>
s,τ (r)〉 =

∑
l

ψ>l,s(r)|τ〉, (C10a)

and

|Ψ<
s,τ (r)〉 =

∑
l

ψ<l,s(r)|τ〉, (C10b)

respectively, where ψ>l,s|τ〉 and ψ<l,s|τ〉 are the partial
waves defined in terms of the cylindrical wave eigenfunc-
tions of the reduced Hamiltonian H, which in the polar
coordinates r = (r, θ) reads

H = h̄vF τ

 0 cosφL̂τ̄ 0

cosφL̂τ 0 sinφL̂τ̄
0 sinφL̂τ 0

+V(r), (C11)

with the compact operator

L̂τ = −ieiτθ
(
∂r + iτ

∂θ
r

)
,

and V(r) = τ0⊗IV0Θ(R−r) being the circularly symmet-
ric scalar type of scattering potential. Since the isotropic
perturbation V is both valley and sublattice independent,
it does not break any discrete symmetries and in fact
preserves the rotational symmetry of the system. As a
result, we have [H, Ĵz] = 0 with Ĵz ≡ −ih̄∂θ + τ3 ⊗ h̄Sz,
analogous to the z component of the total “(pseudo) an-
gular momentum.” In addition, we have [τ3 ⊗ I,H] = 0
(i.e., conservation of valley isospin) due to the absence of
intervalley coupling. Consequently, H acts on the spinor
eigenfunctions of Ĵz, which yields

Hϕl,s|τ〉 = Eϕl,s|τ〉, (C12)

where the wavefunctions ϕl|τ〉 simultaneously satisfy

Ĵzϕl|τ〉 = h̄τ lϕl|τ〉 with l being an integer. After some
algebra, we obtain, for the conical bands (i.e., s = ±),

ϕ
(0,1)
l,s (r)|τ〉 =

1√
2π

cosφh
(0,1)
l−τ (qr)e−iτθ

ish
(0,1)
l (qr)

− sinφh
(0,1)
l+τ (qr)eiτθ

 eilθ|τ〉,

(C13)

where q = |E−V|/h̄vF and s = Sign(E−V). The radial

function h
(0)
l = Jl is the Bessel function and h

(1)
l = H

(1)
l

is the Hankel function of the first kind. The partial waves
outside (r > R) and inside (r < R) the scatterer are given
by

ψ>l,s(r)|τ〉 =
√
πil−1

[
ϕ

(0)
l,s |τ〉+Aττl ϕ

(1)
l,s |τ〉+Aττl ϕ

(1)
l,s |τ〉

]
,

(C14a)
and

ψ<l,s(r)|τ〉 =
√
πil−1

[
Bττl ϕ

(0)
l,s′ |τ〉+Bττl ϕ

(0)
l,s′ |τ〉

]
,

(C14b)
respectively, where Aττl (Aττl ) and Bττl (Bττl ) denote the
elastic (valley-flip) partial wave reflection and transmis-
sion coefficients in the angular channel τ l, respectively.
To obtain explicit expressions of the partial wave coeffi-
cients, proper boundary conditions (BCs) are needed.

Boundary conditions. Recalling the commutation re-
lations [Ĵz,H] = 0 and [τ3⊗I,H] = 0, we define a spinor
wavefunction in the polar coordinates as

ψ(r, θ)|τ〉 = [ψ1, ψ2, ψ3]T |τ〉 =

 R1(r)e−iτθ

R2(r)
R3(r)eiτθ

 eilθ|τ〉,

(C15)
which satisfies

Hψ|τ〉 = Eψ|τ〉. (C16)

Substituting Eq. (C15) into Eq. (C16) and eliminating
the angular components, we obtain the following one-
dimensional, first-order ordinary differential equation for
the radial component:

− iτ

 0 cosφ
[
d
dr + τ lr

]
0

cosφ
[
d
dr − τ

l−τ
r

]
0 sinφ

[
d
dr + τ l+τr

]
0 sinφ

[
d
dr − τ

l
r

]
0

 R1(r)
R2(r)
R3(r)

 =
E − V (r)

h̄vF

 R1(r)
R2(r)
R3(r)

 . (C17)

Directly integrating the radial equation over a small interval r ∈ [R − η,R + η] defined about the interface at r = R
and then taking the limit η → 0, we obtain

R2(R− η) = R2(R+ η),

cosφR1(R− η) + sinφR3(R− η) = cosφR1(R+ η) + sinφR3(R+ η),
(C18a)
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provided that the potential V (r) and the radial function components R1,2,3(r) are all finite. Reformulating such
continuity conditions in terms of the corresponding wavefunction yields the desired BCs:

ψ<2 (R, θ) = ψ>2 (R, θ),

cosφψ<1 (R, θ)eiτθ + sinφψ<3 (R, θ)e−iτθ = cosφψ>1 (R, θ)eiτθ + sinφψ>3 (R, θ)e−iτθ.
(C18b)

Far-field solutions. Using the asymptotic form of the
Hankel function,

H
(1)
l (kr) ∼

√
2/πkrei(kr−lπ/2−π/4),

and evaluating the outside wavefunction given in
Eq. (C10a) in the far field region (r � R), we arrive
at

|Ψ�s,τ (r)〉 =eikx|k0, s〉|τ〉+

−i
√

2/πk
∑
lA

ττ ′

l eilθ√
−ir

eikr|kθ, s〉|τ ′〉.
(C19)

From Eqs. (C19) and (C2), we obtain

fττ ′(θ) = −i
√

2

πk

∑
l

Aττ
′

l eilθ. (C20)

In our system, the valley-flip amplitudes Aττl and Bττl
vanish due to the absence of intervalley coupling. Con-
sequently, we have fττ = 0.

Imposing the BCs [Eq. (C18b)] on the total wavefunc-
tions of both sides at the interface r = R, we have Bττl Jl(qR) = ss′

[
Jl(kR) +Aττl H

(1)
l (kR)

]
,

Bττl X
(0)
l,τ (qR) = X

(0)
l,τ (kR) +Aττl X

(1)
l,τ (kR),

(C21)

where X
(0,1)
l,τ = h

(0,1)
l−τ cos2 φ − h

(0,1)
l+τ sin2 φ. Solving

Eq. (C21), we obtain the unknown coefficients as

Aττl = −
Jl(qR)X

(0)
l,τ (kR)− ss′X(0)

l,τ (qR)Jl(kR)

Jl(qR)X
(1)
l,τ (kR)− ss′X(0)

l,τ (qR)H
(1)
l (kR)

,

(C22)
and

Bττl =
H

(1)
l (kR)X

(0)
l,τ (kR)−X(1)

l,τ (kR)Jl(kR)

H
(1)
l (kR)X

(0)
l,τ (qR)− ss′X(1)

l,τ (kR)Jl(qR)
.

(C23)

Using the basic relations J−l = (−)lJl and H
(1)
−l =

(−)lH
(1)
l , we obtain the following relations characterizing

the intervalley symmetries:

Aττ−l = Aτ̄ τ̄l ;Bττ−l = Bτ̄ τ̄l . (C24)

However, there are no such symmetries for the coefficients
belonging to the same valley, except for the particular
cases of α = 0 and α = 1, where

Aττ−l = Aττl ;Bττ−l = Bττl , (C25a)

for α = 1 (dice lattice), and

Aττ−l = Aττl+1;Bττ−l = Bττl+1, (C25b)

for α = 0 (graphene). The resulting probability den-
sity ρ = 〈Ψs,τ (r)|Ψs,τ (r)〉 and the local current density

j = 〈Ψs,τ (r)|Ĵ |Ψs,τ (r)〉 can be calculated accordingly.
Particularly, the exact scattering amplitude fττ (θ) can
be obtained according to Eq. (C20).

Appendix D: Derivation of the Eq. (8), its validation
and resonance feature

It follows from the Eqs. (C7)-(C9) and Eq. (C20) that
the scattering cross sections have their summation forms
given by

Στ =
4

k

∞∑
l=−∞

|Aττl |2, (D1a)

Στtr = Στ − 4

k

∞∑
l=−∞

<
[
Aττl (Aττl+τ )∗

]
, (D1b)

and

Στsk =
4

k

∞∑
l=−∞

=
[
Aττl (Aττl+τ )∗

]
. (D1c)

Here we analyze the low energy scattering of the 2D
massless Dirac-like particles governed by the Hamilto-
nian given in Eq. (C1). At low energies, i.e., kR� 1, the
scattering is dominated by the lowest channels l = 0,±τ .
Defining x ≡ kR and ρ ≡ V0R and adopting the conven-
tion h̄vF = 1, under the assumption of x < ρ � 1 (i.e.,
under-barrier scattering for weak scatterer/barrier), we
obtain the coefficients as

Aττ0 = − P0

P0 + iQ0
, Aτττ = − P1

P1 + i(4α2 +Q1)
,

Aττ−τ = − P1α
2

P1 + i(4 +Q1α2)
,

(D2)

where P0 = πx and

Q0 = 2

(
x ln

γEx

2
− τJ0(ρ− x)

Jτ (ρ− x)

)
, (D3)

with ln γE ≈ 0.577 · · · being the Euler’s constant and
P1, Q1 given by [P1, Q1] = x[P0, Q0]. Substituting these
coefficients into Eq. (D1), we obtain
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Στtr/R =
4P 2

0

x(P 2
0 +Q2

0)

{
1− 4Q1α

2

[
1

P 2
1 + (4α2 +Q1)

+
1

P 2
1α

4 + (4 +Q1α2)2

]}
, (D4)

and

Στsk/R =
16P 2

0P1α
2

x(P 2
0 +Q2

0)

{
1

P 2
1 + (4α2 +Q1)

− 1

P 2
1α

4 + (4 +Q1α2)2

}
. (D5)

For the particular cases of α = 0 (graphene) and α = 1
(dice lattice), we have Στsk/R = 0, indicating absence of
valley skew scattering and thus Hall effect associated with
it. In the weak scattering regime (ρ� 1), the prefactor

P 2
0

x(P 2
0 +Q2

0)
≈ π2J2

1 (ρ− x)

4J2
0 (ρ− x)

x ∝ x� 1

is off-resonance, while the other factors generally (except
for α = 0, 1) contain a dual resonance profile in the en-
ergy domain. From Eq. (D5), we obtain the resonance
condition as

Q1 + 4α2 = 0⇒ x

ρ
=

α2

1 + α2
, (D6a)

or

Q1α
2 + 4 = 0⇒ x

ρ
=

1

1 + α2
. (D6b)

Letting η = x/ρ ≡ E/V0 and using the relation Φ =
(1 − α2)/(1 + α2), we reformulate the dual resonance
condition in terms of the reduced Berry phase Φ explicitly
given by

η∗ =
1− Φ∗

2
, (D7a)

and

η∗∗ =
1 + Φ∗

2
≡ 1− η∗. (D7b)

It can be seen that the first resonance occurs at η ∈
(0, 1/2), while the second one lies within η ∈ [1/2, 1).

From Eqs. (D4) and (D5), we obtain the valley skew-
ness (i.e., the valley Hall angle at zero temperature de-
scribed in the main text) as

γ|T=0 ≡
Στsk
Στtr
≈ 4P1(16− P 2

1 −Q2
1)α2(1− α2)(1 + α2)

(162 +Q4
1)α4 + 16Q2

1(1 + α8) + 4Q1α2(1 + α4)(16 +Q2
1)
. (D8)

In the limit η � 1, Eq. (D8) can be further simplified as
(the subscript T = 0 is omitted hereafter for clarity)

γ(Φ) ≈ 4P1α
2(1− α2)(1 + α2)

Q2
1 + 4Q1α2(1 + α4) + 16α4

'
πx2 Φ(1−Φ)

1+Φ

(1 + η)2 [Φ− (1− 2η)]
2

+ 4ηΦ(1−Φ)
1+Φ

.

(D9)

From Eq. (D9), we obtain the asymptotic behaviors in
the opposite limits of Φ→ 1 (massless spin-1/2 particles
occurring in, e.g., graphene or topological insulators) and
Φ → 0 (massless spin-1 particles excited in dice lattices
and various type synthetic photonic structures) as

γ(Φ)→

{
πx2

8η2+4η(1−Φ) (1− Φ), for Φ→ 1,
πx2

(1−η)2+4ηΦΦ, for Φ→ 0.
(D10)

To validate these analytical results on resonance and
the valley Hall angle quantitatively, we compare them
with those from direct numerical calculations. As shown
in Fig. 6, there is an excellent agreement between the
analytical results for the dual resonance condition given

in Eqs. (D6) and (D7) and the corresponding numerical
results [c.f. (a)-(d) of Fig. 6], and a similar agreement has
been obtained for the singular Berry flux resolved valley
Hall angle in Eq. (D9) [c.f. Fig. 6 (e)].

For a particular value of the Berry flux, say Φ = 1/2

(i.e., α = 1/
√

3) that can be related to the massless Kane
fermions observed in recent experiments (see Appendix H
below), we can infer from Eq. (D5) that skew scattering
will be enhanced due to the emergent dual resonances po-
sitioned at/around η = (1± Φ)/2, which can be reached
by controlling the carrier energy E. Exact calculations
show that such enhancements induced by the dual reso-
nant skew scattering are significant and can lead to con-
siderable valley Hall angles with the maximum absolute
values |γ|max ∼ 0.8 for intermediate scatterer strength,
e.g., ρ = 2, as depicted in Fig. 7(a). From the near-field
patterns as illustrated in Figs. 7(b-e) for the valley K
(The patterns for the other valley K ′ are merely mir-
ror images of those for K with respect to the horizontal
axis.), we see that remarkable valley-contrasting spatial
skew (asymmetric) trappings occur through the forma-
tion of unusual fusiform vortices around one side of the
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FIG. 6. Validity of analytic results in the low-energy
scattering regime. For x � 1, (a,b) color coded natural
logarithm of the transport cross section in the coordinates of
(α, η) and (Φ, η), respectively, for scatterer strength ρ = 0.1.
(c,d) Color coded ln (Στtr) and zero temperature valley Hall
angle γ as a function of the Berry flux Φ and η for ρ = 1.
(e) Valley Hall angle γ versus the Berry flux Φ for different
values of the reduced carrier energy η = 0.06, 0.1, 0.3 (along
the red arrow). In all panels, the blue curves are calculated
from the analytic formulae Eqs. (D6) and (D7) for the dual
resonance condition [c.f., (a-d)] and Eq. (D9) for the Berry
flux dependence of the valley Hall angle [c.f., (e)], with the
conventions {h̄vF = 1, x = kR, ρ = V0R, η = E/V0} (as in
the main text).

boundary. Consequently, the scattering effectively blocks
one of the valleys at one side via the skew trapping, gen-
erating efficient valley filtering near/at the resonances.
This is consistent with the (far-field) valley-contrasting
angular distributions of the corresponding DCS as dis-
played in the insets of Fig. 7(a).

Appendix E: Symmetry considerations

The concept of symmetry breaking is fundamental and
played an important role in the development of modern
condensed matter physics. Various physical effects or
phenomena can be attributed to the lack of certain dis-
crete symmetries, e.g., the time reversal symmetry. In-
sights about our scattering system can be obtained from
a symmetry analysis. To be general, we focus on the fol-
lowing perturbed Dirac-like Hamiltonian in two dimen-
sions:

H(k) = α̃xkx + α̃yky + V, (E1)

where (α̃x, α̃y) = (τ3 ⊗ Sαx , τ0 ⊗ Sαy ) and V de-
notes the external perturbed potential. The Hamil-
tonian H acts on the spinor wavefunction Ψ =
[Ψτ
A,Ψ

τ
B ,Ψ

τ
C ,Ψ

τ̄
A,Ψ

τ̄
B ,Ψ

τ̄
C ]T with τ̄ ≡ −τ and satisfies

HΨ = EΨ. As done in the work by Beenakker55, we
figure out an explicit representation of the true time re-

FIG. 7. Enhanced valley Hall angle and valley filter-
ing by resonant skew scattering. (a) Valley Hall angle
as a function of carrier energy normalized by the scattering
potential height. (b,c) the near-field patterns of local prob-
ability and current density, respectively, associated with the
valley K at the resonance indicated by the R1 pink circle in
(a). (d,e) the corresponding near field patterns associated
with another resonance as indicated by the R2 pink circle for
the same valley. Insets of (a) are polar plots of the differential
cross section for different valleys at two prominent valley Hall
angles marked by the pink circles R1 and R2. For all panels,
we set ρ = 2.

versal operator given by

T = τ1 ⊗ IK|k→−k, (E2)

where I is the 3× 3 identity operator acting on the sub-
lattice space and K denotes the complex conjugation op-
erator. Note that the ture time reversal operation is of
the orthogonal type, which leads to the transformations
T Ψ = [Ψτ̄∗

A ,Ψ
τ̄∗
B ,Ψ

τ̄∗
C ,Ψ

τ∗
A ,Ψ

τ∗
B , Ψτ∗

C ]T , T α̃x,yT −1 =
−α̃x,y in the basis adopted and thus interchanges the
valleys, consequently reversing the sign of the current
j = Ψ†(α̃x, α̃y)Ψ. For the Dirac-like Hamiltonian (E1),
there is another antiunitary operator defined indepen-
dently for each valley:

Te =


τ0 ⊗ (iσy ⊕ 0)K|k→−k, for α = 0,

τ0 ⊗

 0 0 −α
0 1 0

−1/α 0 0

K|k→−k, for α ∈ (0, 1],

(E3)
which by definition does not interchange the valleys but
reverses the sign of the current associated with each val-
ley. It thus acts as an effective time reversal operator for
a single valley.

Distinct from the T symmetry, the Te symmetry can
be broken without a magnetic field. Conventionally, this
occurs when sublattice/valley-dependent perturbations
are present55. Remarkably, in our system, we encounter
a new scenario in which the Te symmetry can be bro-
ken inherently in the absence of any such sublattice or
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valley-dependent perturbation, while the T symmetry is
preserved. In particular, for the scalar type of pertur-
bation, i.e., V = τ0 ⊗ IV0 considered in our work, we
have T VT −1 = V, TeVT −1

e = V and thus T HT −1 = H
while TeVT −1

e 6= H for 0 < α < 1, indicating that there
is no T symmetry breaking as it should be, but Te is in
general broken except for the particular cases of α = 0
(graphene) and α = 1 (dice lattice). The breaking of
the Te symmetry imposes the following constrains on the
scattering coefficients

Aττl 6= Aττ−l, A
τ̄ τ̄
l 6= Aτ̄ τ̄−l, A

ττ
l = Aτ̄ τ̄−l. (E4)

Two relations then follow from Eq. (C20): |fττ (θ)| 6=
|fττ (−θ)| and |fττ (θ)| = |fτ̄ τ̄ (−θ)|, where the former
accounts for the breaking of the Te symmetry and the
latter signifies the preservation of the T symmetry. Con-
sequently, the skew cross section defined in Eq. (C9) is
finite and has opposite signs for different valleys, leading
to the emergence of a net charge-neutrality valley Hall
current. We note that, when such an inherent Te break-
ing (i.e., 0 < α < 1) occurs, the corresponding singular
Berry flux is non-π fractional and continuously tunable as
a function of α. Therefore the basic symmetry property
analysis provides a consistent and more general physical
insight on the singular Berry flux mediated exceptional
valley skew scattering and hence gVHE uncovered in our
work.

Appendix F: Extrinsic versus intrinsic valley Hall
effect

Hall effect due to asymmetric transport associated
with the spin degree of freedom has been studied exten-
sively, with two types of mechanisms: intrinsic or extrin-
sic29,35. In analogy to the intrinsic spin Hall effect, VHE
of the intrinsic type was subsequently proposed through
the introduction of a staggered sublattice potential to
generate finite valley-contrasting Berry curvatures2,13.
Extrinsic VHE requires external valley-resolved pertur-
bations such as magnetic fields, strain-induced pseudo
magnetic fields, or magnetic materials that have oppo-
site effect on the two valleys10,11,18–20.

However, our gVHE is distinct and can arise in the
absence of non-trivial Berry curvatures and any external
valley-dependent perturbation. Unlike the conventional
types, the gVHE uncovered here is mediated by inher-
ent singular Berry fluxes in the momentum space with
vanishing Berry curvatures and manifests itself through
exceptional skew scattering from valley-independent im-
purities. Our gVHE is thus neither purely intrinsic nor
extrinsic but of a hybrid/mixed type of Hall effect.

Appendix G: Intervalley scattering

Intervalley scattering can be justifiably neglected in
our work, for the following reasons. First, the pertur-

bations in our study are of the scalar type, which is
both valley and sublattice independent. That is, the
perturbations respect all discrete symmetries of the orig-
inal Hamiltonian, making the valley degree of freedom
(isospin) conserved throughout the scattering process.
Second, the valleys separated by a long distance in the
momentum space (i.e., 8π/3a with a being the lattice
constant) are robust against perturbations since inter-
valley scattering occurs only when a large momentum
on the order of the inverse lattice spacing for scattering
from K ′ to K ′ is transferred. Last but not least, the im-
purity potentials adopted in our work are assumed to be
smooth on the lattice scale but sharp in comparison with
the carriers’ wavelength.

As a matter of fact, in valleytronic applications such
as valley current generators (valley “battery”) or a val-
ley carrier of information, a weak intervalley scattering
or a long valley relaxation time is needed to generate
a robust valley current and preserve coherence. For the
honeycomb lattice, it turns out that intervalley scattering
is strongly suppressed because of the large separation in
the momentum space, offering the possibility of exploit-
ing the valley index in a way similar to the role of spin in
spintronics applications. This makes graphene attractive
and competitive for valleytronics applications2,56. We
note that, in a more recent experiment for the graphene
system with a sharp, circular scalar type (electrostatic)
potentials as adopted here57, intervalley scattering is gen-
erally not observed and a single valley continuum Dirac
Hamiltonian with disk-shaped step potentials is suffi-
cient.

Appendix H: Map onto massless Kane fermions

In recent experiments52–54, exotic Dirac-like quasipar-
ticles named massless Kane fermions have been observed
in 3D zinc-blende crystals, i.e., Hg1−xCdxTe, at some
critical doping concentration. In the presence of strong
spin-orbit interaction (e.g., ∼ 1eV), the fermions can be
effectively described by the six-band Kane Hamiltonian52

defined in the basis

{|e ↑〉, |hh ↑〉, |lh ↑〉, |e ↓〉, |hh ↓〉, |lh ↓〉} ,

that is arranged from the lowest electron conduction
band |eλ〉, heavy hole valance band |hhλ〉 to the light hole
valance band |lhλ〉 separated by the spin index λ =↑, ↓
as
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HKane(k, kz) =



0
√

3vk+
2 − vk−2 0 0 −vkz√

3vk−
2 0 0 0 0 0

− vk+2 0 0 −vkz 0 0

0 0 −vkz 0 −
√

3vk−
2

vk+
2

0 0 0 −
√

3vk+
2 0 0

−vkz 0 0 vk−
2 0 0


, (H1)

where k± = kx ± iky and v =
√

3/2P/m0 with P being the Kane’s matrix element and m0 being the free electron
mass. With the unitary transformation:

S = τ0 ⊗

0 1 0

1 0 0

0 0 −1

 ,

we obtain

HKane(k, kz) = S†HKaneS = vα̃xkx + vα̃yky + vα̃zkz, (H2)

where the matrices α̃x,y,z (resembling those for Dirac fermions) define the underlying symmetries of the quasiparticles
and have the form

α̃x = τ3 ⊗

 0
√

3/2 0√
3/2 0 1/2

0 1/2 0

 , α̃y = τ0 ⊗

 0 −i
√

3/2 0

i
√

3/2 0 −i/2
0 i/2 0

 , α̃z = τ1 ⊗

 0 0 0

0 0 1

0 1 0

 . (H3)

From Eq. (H3), we have

α̃x = τ3 ⊗ Sα=1/
√

3
x , (H4a)

and

α̃y = τ0 ⊗ Sα=1/
√

3
y . (H4b)

Since the subspace on which the Pauli matrices τi=1,2,3

act hosts real spin instead of the valley isospin, there

exists an exact map between the 2D sector of massless
Kane fermion system and the generalized lattice model
proposed in the main text:

HKane(k, kz = 0) = H0(α = 1/
√

3). (H5)
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