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Abstract 

The existence of shear surface acoustic waves (SAWs) was regarded impossible in non-piezoelectrics 

with homogeneous flat surfaces. We showed that transverse shear SAWs can propagate near the flat 

surfaces of all crystalline dielectrics due to the omnipresent flexoelectric coupling. It appeared that 

the penetration depth of the previously unexplored SAW is defined by the flexocoupling strength. 

Since the SAW occurs due to the flexoelectric coupling, we named it flexoelectric SAW (Flexo-

SAW). We predict that the phonon spectra corresponding to the Flexo-SAWs and bulk phonon 

modes can be separated in thin non-piezoelectric films, such as strontium titanate.  
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I. INTRODUCTION  

A. Amazing dynamics at the surfaces of solids. The physical processes taking place at the 

surface of solids are so versatile that becomes an inexhaustible subject of fundamental research [1, 2]. 

In particular, since the discovery of surface waves in solids [3], they focus the increasing attention of 

scientists [4, 5], because their experimental and theoretical studies can serve as the source of unique 

information about the surface impact on the dynamics and structure of atomic lattice [6], structural 

instabilities and phase transitions induced by the surface [7], and explore the properties of phonons in 

spatially confined systems [8, 9]. In addition to the fundamental aspect, the surface oscillations and 

waves are indispensable for applications in modern nanoacoustics [10] and nanoplasmonics [11].  

B. Surface waves: from the discovery to nowadays. Existence of the surface acoustic waves 

(SAWs) in solids of arbitrary symmetry (including the isotropic one) had been predicted at the end of 

the 19th century by Lord Rayleigh [3]. The main conclusion made from the Rayleigh solution is that 

the shear surface wave cannot propagate along the flat surface. The longitudinal-transverse Rayleigh 

waves are the mixture of shear and dilatation waves of expansions and compressions, in contrast to 

the acoustic waves propagating in the bulk of a solid matter, which have two transverse shear modes 

and a longitudinal dilatational one [12]. Only at the end of the sixties of the 20th century Bleustein 

[13] and Gulyaev [14] had shown that purely shear surface waves can propagate in some solids 

without inversion center (e.g., at definite crystallographic cuts of piezoelectrics), and naturally their 

appearance is impossible in all non-piezoelectrics with a homogeneous flat surface. Nonlinear 

Rayleigh waves propagating along the flat surface of a homogeneous solid medium covered by a thin 

film were considered in 1998 by Eckl et al [15]. The influence of a standing SAWs on the diffusion 

of an adatom was theoretically studied in 2011 by Taillan et al [16]. Recently the interest to the 

theoretical consideration of classical linear SAWs was renewed by Romero [17], who considered 

several types of SAWs in piezoelectrics with an ideal flat surface.  

Notably, if the surface is not flat the shear waves can appear. In particular, Auld and 

Gagnepain [18] revealed that any periodic corrugation of the surface (including a very shallow one) 

leads to shear surface waves. Furthermore, Love waves [12, 19] are shear surface waves of a planar 

substrate coated with a thin layer. The appearance of shear surface waves for a planar substrate 

supporting an array of mechanical resonators has been reported [20]. Hence one can readily imagine 

the situation that the observation of shear SAWs at the surface of a non-piezoelectric will be 

attributed to surface corrugation [18], artificial inhomogeneities [20] or additional layers [19]. 

However, in the latter case, SAWs are possible only for a certain ratio between the elastic modules of 

the layer and the substrate [19]. The conditions for the existence of shear SAWs on corrugated 

surfaces essentially depend on the form of the inhomogeneity [18]; they are far from being 
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omnipresent. Running ahead, the aim of this work is to show that for the flat surface of an arbitrary 

solid body (including an isotropic one in the sense of elastic properties) the localization of transverse 

acoustic waves is always possible under the influence of the omnipresent flexoelectric effect, 

including the case when all previous theories predicted the complete absence of transverse SAWs.  

C. Experimental observations of SAWs. The questions how to investigate experimentally 

SAWs and how to verify existing theoretical predictions [13-17] along with many others naturally 

arise. Since the frequency of the soft mode related optic and acoustic phonons in piezoelectric and 

paraelectric ferroics typically lays within THz region and corresponding wave vectors are in the 

range (0.05 – 5)nm-1, the phonon spectra ( )kω  can be extracted from the inelastic neutron scattering 

experiments [21, 22, 23, 24, 25, 26] by a conventional procedure. Namely each experimental point of 

the spectra ( )ii kω  (e.g., shown in fig.2 in Ref.[21]) is defined from the energy position iωh  of 

inelastic neutron scattering intensity peak measured at fixed wave vector ik  (see, e.g., fig.1 in Ref. 

[21]). 

Hamilton et al. [27] performed the first experiment demonstration that SAW in quartz can be 

probed by diffraction of cold neutrons. Much earlier Soffer et al [28] proposed an optical imaging 

method for direct observation and study of SAWs at the nonpolar Y-cut of piezoelectric LiNbO3 

(typical manifestation of Bleustein and Gulyaev waves). Pyrak-Nolte et al. [29] made the first direct 

observation of the new class of elastic interface waves propagating along the discontinuity of a 

synthetic fracture in aluminum. De Lima Jr et al. [30] presented the experimental observation of 

Bloch oscillations, the Wannier-Stark ladder, and Landau-Zener tunneling of SAW in perturbed 

grating structures on a solid substrate (at that the vertical surface displacement has been measured by 

interferometric methods).  

Fine aspects of the SAWs can be explored by Brillouin [11, 31, 32] and Raman [33, 34] 

scattering, ultrasonic pulse-echo method [31, 32] allowing hypersound spectroscopic measurements, 

and Surface Enhanced Raman scattering based on the incomplete internal reflection [35]. Also there 

are many advanced techniques for SAWs observations operating in GHz range of frequencies, such 

as laser ultrasonics experiments [36], optical interferometry [37] and surface Brillouin light scattering 

[38, 39]. These methods are mostly relevant for SAWs observations up to (10 − 100) GHz range, 

however they unlikely can "see" SAWs in THz range of frequencies that is typical for proper and 

incipient inorganic ferroelectrics.  

Thus (except for the THz region) the experimental methods of SAW observation are well-

evolved and enough precise to probe their finest properties and to verify the most sophisticated 

theoretical predictions. 



 4

D. Expected role of the flexocoupling on the surface waves. It should be noted that static 

flexoelectric effect [40, 41, 42, 43], consisting in the appearance of polarization due to the strain 

gradient (direct flexoeffect), and the appearance of strain due to the polarization gradient (converse 

flexoeffect), was not taken into account in all known theories of SAWs [3, 12 − 17]. The strain 

induced by the flexoelectric coupling is linearly proportional to the polarization gradient, 

( )lkijkl
sf
ij xPfu ∂∂−= , here ijklf  are the components of flexocoupling tensor [40 − 45], kP  are 

polarization components. The static flexoelectric effect exists in all solids, as allowed by arbitrary 

symmetry, and its strength can be small, moderate or giant, because ijklf  ranges from (0.1 − 1) volts 

[41-45] to hundreds of volts [44]. 

Moreover the notion about dynamic flexoelectric effect [43, 45 , 46 ], consisting in the 

appearance of polarization df
iP  in response to accelerated motion of the medium in the time domain, 

and its impact on phonon spectra has been absent until recently [47, 48]. The dynamic flexoelectric 

effect was firstly introduced by Tagantsev [43, 49] as ( )22 tUMP jij
df

i ∂∂−= , where jU  is an elastic 

displacement and ijM  is a flexodynamic tensor. 

Nevertheless, an elastic wave of any kind is inevitably accompanied by a periodic gradient of 

mechanical strain and stress. This gradient is proportional to the wave vector of the oscillation and is 

obviously small for longer wavelengths. For a media of arbitrary symmetry (including an isotropic 

one) the wave of the strain gradient will cause a wave excitation of electric polarization (i.e., the local 

polarization, the mean value of which is zero) due to the direct flexoelectric effect. The latter, in turn, 

will affect the elastic stresses associated with the wave due to the converse flexoelectric effect. Thus 

the flexocoupling should influence the properties of surface waves in all solids, since it essentially 

affects the bulk phonon spectra in different ferroelectrics and paraelectrics [46 - 49], and the 

influence should be more pronounced for shorter wavelengths. 

E. Research motivation, impact and methods. Recently using Landau-Ginzburg-

Devonshire (LGD) phenomenological continuum media approach Morozovska et al. [47, 48] 

demonstrated the significant influence of the flexocoupling on the appearance of spatially modulated 

phases and on the properties optic and acoustic phonons in the ferroelectric and paraelectric phases of 

ferroelectrics PbTiO3, Sn2P2(S,Se)6, and paraelectric SrTiO3. Motivated by these results we used 

LGD approach for SAWs description in paraelectrics. We revealed that the surface shear waves 

similar to the waves of Bleustein [13] and Gulyaev [14] can exist in dielectrics of any symmetry (e.g. 

in paraelectric SrTiO3) and for an arbitrary orientation of the surface due to the flexoelectric coupling. 

The wave is the oscillation of shear strain coupled with electric polarization. Below we classify the 

this type of waves as flexocoupling-induced SAWs (briefly as Flexo-SAWs). 
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Note that previously known types of SAWs (see e.g. Refs.[12-19]) have been revealed within 

phenomenological continuum media approach. We emphasize that our choice of the 

phenomenological LGD approach conditions the generality of the obtained results, and it shows that 

the predicted Flexo-SAWs exist for all non-piezoelectric solids, whereas microscopic ab-initio 

approaches are material specific. 

 

II. STATEMENT OF THE PROBLEM ALLOWING FOR THE FLEXOCOUPLING  

LGD expansion of bulk ( VF ) and surface ( SF ) parts of Helmholtz free energy F on the polarization 

vector ( iP ) and strain tensor components ( iju ) has the form [47-48]: 
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The components of tensor ija  are positively defined constants for linear dielectric and explicitly 

depend on temperature T for ferroelectrics and paraelectrics. In particular, a Barrett-type [50] formula 

( )( )Cqq
T
ijij TTTTa −α= coth  is valid for incipient paraelectrics like SrTiO3, wherein T

ijα  are the 

inverse Curie-Weiss constants, TC is the Curie temperature, qT  is a characteristic temperature. All 

other tensors in the free energy (1) are supposed to be temperature independent. Tensor ijkla  should 

be positively defined for the functional stability in paraelectrics and ferroelectrics; it can be neglected 

for linear dielectrics. Tensors ijklg  and ijklmnv , which determine the magnitude of the gradient energy, 

are also regarded positively defined. Coefficients ijklq  are the components of electrostriction tensor; 

ijklc  are the components of elastic stiffness tensor. Polarization is conjugated with electric field iE  

that can include external and depolarization contributions (if any exists). The flexoelectric energy is 
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stress tensor.  

Lagrange function is  

( )∫ −=
t

KFdtL ,                                                                   (2) 

where the kinetic energy K is given by expression [43, 45, 47, 49], 
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that includes the dynamic flexoelectric coupling tensor ijM . iU  is the elastic displacement and ρ is 

the density of a material. The strain components are related with the displacement derivatives in a 

conventional way, ⎟
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Dynamic equations of state have the form of Euler-Lagrange (E-L) equations: 
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 For most of the cases one can neglect the polarization relaxation by setting 0=Γ  and omit 

high order elastic strain gradient by setting 0=ijklmnv , if the flexoelectric coefficients are below the 

critical values cr
ijklf  [51 , 52]. For the flexoelectric coefficients higher than the critical ones the 

spatially modulated phase occurs [48], at that the relationship klmnijmn
cr

klqs
cr

ijqs cgff ≅  is valid under the 

condition 0=ijklmnv  [48, 51, 52].  

 Hereinafter we regard that the dynamic flexoeffect tensor is diagonal, ijij MM δ= , and the 

inequality ρμ<2M  should be valid for the stability of kinetic energy [see Eq.(3)]. Below we use an 

isotropic approximation for the tensor coefficients ijS
S
ija δα= 0  and ( ) ijij Ta δα= , where αS0 is the 

surface energy coefficient, ( ) ( )( )CqqT TTTTT −α=α coth  and ijδ  is a Delta-Kroneker symbol. 

 The boundary conditions at mechanically free surface can be obtained from the variation of 

the free energy (1) on polarization and strain: 
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Here kn  are the components of the external normal to the surface, elastic stress tensor 

ijVij uF δδ−=σ  satisfies the mechanical equilibrium equation, 0=∂σ∂ jij x . The most evident 

consequence of the flexocoupling is the inhomogeneous terms in the boundary conditions (5).  

 Note that the application of the LGD-type continuum theory for the description of acoustic 

phonon dispersion for enough long waves with wave vectors 1<k nm-1 does not require any special 

justifications as it is widely used in the literature (see e.g., Refs.[12 – 17, 19, 31-35, 47-48] and 

paragraph 3.2 in Ref.[49]) and well the results obtained from LGD theory agree with experimentally 

measured phonon spectra [31-35, 48]. For shorter waves with 1>k nm-1 the results presented below 
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have only qualitative significance, but we hope that semi-quantitative description of the SAWs can be 

sufficient to stimulate the search of their experimental verification. 

 

III. ANALYTICAL SOLUTION FOR A LOST SURFACE WAVE 

A. Explicit form of the Euler-Lagrange boundary problem for transverse surface waves 

Let us consider the transverse wave of electric polarization ( )txxP ,, 312  and elastic displacement 

( )txxU ,, 312  propagating along direction 1x  near the surface 03 =x  of a semi-infinite non-

piezoelectric solid [see Fig. 1]. The wave is not damped by the depolarizing effects influence because 

( ) 0,, 31 =txxPdiv
r

.  

 
 

x2 

x1

x3 

P2(x1,x3,t) 

Surface 
wave k

 
FIG. 1. Geometry of the surface wave propagating in a semi-infinite non-piezoelectric (dielectric or 

paraelectric) material. Red arrows are the elementary dipoles, which are zero at the surface in the particular 

case ∞=α 0S  (because ( ) 0,0,12 =txP  at ∞=α 0S ). Black grid illustrates the deformation of the unit cells 

caused by the displacement ( )txxU ,, 312  (the scale is distorted). 

 
Explicit form of the E-L equations (4) for the purely transverse surface waves with the 

boundary conditions at the surface 03 =x  are derived in Appendix A of the Suppl. Mat [53]. These 

equations can be linearized in dielectrics and paraelectrics (i.e., at α>0). For considered geometry the 

linearized E-L equations along with the boundary conditions (5) acquire relatively simple form 

(compare with the equations in paragraph 3.2 in Ref.[49]): 
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Symbol Δ stands for Laplace operator. Boundary conditions (5) acquire the form 
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Hereinafter the inequality 4444
2

44 gcf <  is regarded valid for the system stability. 

 
B. General expressions relating the amplitudes, frequency dispersion and penetration depth of 

the travelling surface waves 

Let us look for the solution of the linearized boundary problem (6) in the form of a travelling 

surface wave: 

( ) ( )( ) ( )kpxtkxitxxP ~exp,, 31312 ξ−ω−= ,     ( ) ( )( ) ( )kuxtkxitxxU ~exp,, 31312 ξ−ω−= .          (7) 

Here k is the wave vector in the direction of the wave propagation, ω is its frequency, ξ  is inverse 

penetration depth of the wave. Since the solid occupies the semi-space 03 ≥x , only the exponents 

either vanishing or not increasing at ∞→3x  are present, so that the inequality ( ) 0Re ≥ξ  should be 

valid.  

The substitution of expressions (7) in Eqs.(6) leads to the system of linear algebraic equations 

for the amplitudes p~  and u~  
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The condition of the system (8) zero determinant gives the condition of the SAW existence 
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The solution of Eq.(9) for the penetration depth of the wave is  
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wherein the functions ( )ωB  and ( )ωC  are given by expressions 

( ) ( ) 44
2
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2
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2 2 fMgcB ω−ρω+α−ωμ=ω ,            (10b) 

( ) ( ) ( )2222 ω−α−ωμρω=ω MC .                            (10c) 

The conditions ( ) ( )22
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)(2 2
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444444 <−
−

α−ω−ρ+μ
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fgc
cTfMgc  are 

required for ( ) 0Re ≥ξ i . 

Substitution of the solution (7) rewritten in the explicit form 

( ) ( )[ ] ( )[ ]tkxixqxqQ ω−ξ−+ξ−= 13223112 expexpexp  (where the symbol q=p for polarization P or q=u 

for the strain field U) to the Eqs.(8) and boundary conditions (6c) leads to the two independent 

equations for the penetration depths iξ : 
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21 ξ=ξ ,                                                               (11a) 
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Along with Eqs.(11) the following relation between the amplitudes p and u should be valid, 
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If the shear strain wave is excited by polarization, its resonant enhancement at definite frequency ω is 

possible under the condition ( ) ( )[ ]( ) 0, 22
44

2 =−ωξ+ρω kkkck i . The dispersion law ( )kω  will be 

derived and analyzed below.  

The evident form of Eq.(11a) is equivalent to the condition of zero determinant in Eq.(10a), 

namely 

( ) ( ) ( )[ ] 04 2
444444

2 =−ω−ω fgcCB .                                  (13) 

Note, that the solution of Eq.(13) with respect to frequency is independent on the wave vector. 

Solution with a similar property was found by Romeo et al [17], who noted that for the case the 

“frequency dispersion” is limited to the discrete set of frequency values )( nn kω , which unlikely has 

chances to be observed.  

Really in the secular case ξ=ξ=ξ 21  (Eq.(11a)) the expressions (7) for the solution should 

be modified as ( ) ( )( )313212 exp xtkxixppP ξ−ω−ξ−=  and ( ) ( )( )313212 exp xtkxixuuU ξ−ω−ξ−= . 

A detailed consideration of the secular case, presented in the part D of Suppl. Mat. [53], leads to the 

conclusion that the surface wave can exist under the validity of a very specific boundary condition, 

00 =α S . Since it exists for a definite frequency, the solution (11a) is the "isolated" point that 

unlikely has chances to be observed experimentally.  

 

C. Impact of the boundary conditions for polarization on the surface waves existence  

In contrast to the pessimistic scenario of the experimental verification of the secular case 

(11a), the solution of Eq.(11b) has sense at all values of 0Sα  and can be simplified for two limiting 

cases, 00 =αS  and ∞=α 0S , considered below. 

(a) "Bulk-like" case I corresponds to the natural boundary conditions for polarization at the surface, 

which are zero normal derivative, 0
032

3
=∂∂

=x
xP , since 00 =αS . Mathematically the case I is 

equivalent to the condition 021 =ξξ , because 021 ≠ξ+ξ . Setting 0=ξ  in Eq.(9) we immediately 

obtain the dispersion relation 
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In fact Eq. (14) represents the dispersion relation for a transverse phonon mode in the bulk, because 

its decay factor ξ given by Eqs.(10) is zero. As anticipated Eq.(14) coincides with Eq.(13b) from 

Ref.[47] in a paraelectric phase with PS = 0 and 2α→α (due to the absence of factor ½ in the free 

energy in Ref.[47]). 

(b) SAW case II corresponds to zero polarization at the surface, ( ) 0,0,12 =txP , since ∞=α 0S  and 

thus 02144
2

44
2 =ξξ−−ρω ckc  from Eq.(11b). The latter condition jointly with the condition 

21 pp −=  is sufficient to satisfy the boundary conditions (6c). The dispersion relation obtained from 

Eqs.(11b) and (10a) is 
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The most important is that under the absence of static ( 044 =f ) and dynamic ( 0=M ) flexocoupling 

the dispersion relation (15) reduces to the bulk dispersion law, 2
44

2 kc=ρω , excluding the separate 

frequency point 
44

2

44

2

gc
α−ωμ=ρω . In the presence of flexoelectric coupling the explicit form of 

Eq.(15) is a biquadratic equation 

( ) ( ) 02
444444

2
4424 =

−
α

+ω−ω
fgc

kckQkA ,                (16a) 

where the functions ( ) 2

44
2

444444

444444
2

444444

22
k

cfgc
fMcg

fgc
kQ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ρ−
−
−μ+ρ

+
−

αρ=  and 

( ) 2
44

2

2
444444

2

cfgc
MkA ρ−
−

−ρμ=  are introduced. Since 2
444444 fgc >  for the system stability, and 0>α  for 

dielectrics and paraelectrics, the last term in Eq.(16a) are positive for the these materials. Since we 

regard that 2M>ρμ  for the Lagrangian (2) stability, the first term ( )kA  can be of arbitrary sign, but 

inevitably becomes positive under the condition 4444
2

44 gcf → , i.e., when the flexoelectric coefficient 

increases towards the critical value. Under the condition ( ) 0>kQ  and relatively high 2
44f  Eq.(16a) 

has two roots, a transverse optic (TO) and acoustic (TA) mode. At ( ) 0<kQ  and ( ) 0<kA  it contains 

only one TA mode. Corresponding equation for the decay factors can be derived from Eqs.(9)-(10), 

namely, 
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where the function ( ) ( )
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=  is introduced. Since the last 

term in Eq.(16b) is positive because of 2
444444 fgc > , the conditions for which both decay factors iξ  

become real are ( ) 0<kR  and ( ) ( )22
44

222
44 4 kckRc −ρω≥ . Both iξ  are complex in the case 

( ) ( )22
44

222
44 4 kckRc −ρω< , and purely imaginary under the conditions ( ) ( )22

44
222

44 4 kckRc −ρω≥  

and ( ) 0>kR . 

 Expressions (13)-(16) are the formal analytical solution of the considered problem, but only 

Eqs.(16) (being the explicit form of Eq.(15)) contain the "lost" transverse surface wave induced by 

the flexoelectric coupling, which we abbreviated as Flexo-SAWs below. The existence of Flexo-

SAWs is not limited to a particular material, but for the sake of concreteness, we have chosen a well-

studied quantum paraelectric SrTiO3 (STO) for which the majority of constants are known. Below 

we explore the wave dispersion in a transverse direction and its penetration under the STO surface. 

 

IV. FLEXOCOUPLING IMPACT ON SURFACE WAVES PROPERTIES IN NON-

PIEZOELECTRIC SOLIDS 

A. Frequency dispersion, phase velocity and penetration depth of SAWs in SrTiO3 

Using Eqs.(16) we calculated the frequency dispersion ( )kω  of the travelling wave vector for the 

case of paraelectric STO at temperatures (100 – 400) K. TA and TO modes penetrating in the bulk 

were calculated from Eq.(14). Most of STO material parameters are well-known. Numerical values 

of the unknown STO parameters have been extracted from the fitting [48] of phonon spectra obtained 

from the inelastic neutron scattering [21]. STO parameters are listed in Table I. Using the parameters 

and the detectable limit of displacement fluctuation amplitude 2U  ~ 1pm we obtained the value of 

polarization amplitude 05.0~2P C/m2 from Eq.(12). 

 

Table I. Description, dimension and numerical values of parameters in Eqs.(16) collected from Refs. 

[54, 55, 56, 57] 

 
Description of the physical 
parameter 

Symbol and 
dimension 

Numerical value for 
SrTiO3 

Refs 

Coefficient at P2 α(T)   (×C-2·m J) ( )( )CqqT TTTT −α coth  50 

Inverse Curie-Weiss constant αT    (×105C-2·m J/K) 15 54 - 57 
Curie temperature TC    (K) 30 54 - 57 
Characteristic temperature Tq    (K) 54 54 - 57 
Surface energy coefficient αS0    (×C-2·J) ∞ N/A 
LGD-coefficient at P4 β    (×108 JC-4·m5) 81 54 - 57 
LGD-coefficient at P6 γ     (×109JC-6·m9) 0   54 - 57 
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Electrostriction coefficient  q44    (×109J m/C2) 2.4 54, 57 
Elastic stiffness coefficient c44     (×1010 Pa) 11 54 - 57 
Gradient coefficient at (∇P)2 g44   (×10-10C-2m3 J) 0.5  (fitting parameter) 48, 
Elastic strain gradient (∇u)2 v     (×10−9V s2/m2) 0     (fitting parameter) this work 
Static flexoelectric coefficient f44     (V) +2.1    (exp. value) 48 
Dynamic flexoelectric coefficient M   (×10−8Vs2/m2) −1   (fitting parameter) 48 
Kinetic coefficient μ    (×10-18s2m J)  1.45     (fitting parameter) 48 
Material density at norm. cond. ρ    (×103 kg/m3)  4.930 at 120 K handbook 
Lattice constant a    (nm) ax=ay=az=0.395  at 120 K handbook 

 
The dispersion curves of the lowest transverse acoustic (TA) and transverse optic (TO) 

surface phonon modes are shown by solid curves in Fig. 2(a). The frequency of TO mode is rather 

high, and the minimal distance between the TO and TA modes is about 5 THz at 2.1≈k nm-1. The 

modes interaction is very weak in STO that is typical for paraelectrics. For the sake of comparison 

the dispersion corresponding to the bulk TA and TO phonon modes are presented by dashed curves 

in Fig. 2(a). The difference between the dispersion curves for the bulk and surface TO modes is the 

most pronounced (~ (2 – 5)THz) for small wave vectors 5.0<k nm-1 but remains essential for all 

considered values 50 ≤≤ k nm-1. The difference between the frequency dispersion of the bulk and 

surface TA modes becomes noticeable only for the wave vector values 2>k nm-1. Thus the 

differences between the bulk and surface TO modes decreases, while the differences between the 

bulk and surface TA modes increases with the temperature increase [compare solid and dashed 

curves of different colors in Fig. 2(a)]. 

Despite the difference between the frequency dispersion of the surface and bulk TA modes 

are essentially smaller than between the corresponding TO modes, further we limit our consideration 

by surface TA modes properties, primary because their penetration depth is real [Fig. 2(с)] and the 

acoustic frequency is much lower that the optical one [Fig. 2(a)]. These properties of surface TA 

modes open the interesting possibilities for their excitation and experimental observation. In contrast, 

it appeared that TO modes penetration depth is purely imaginary for STO ( ziq=ξ ) and so they are 

not localized near the surface. In particular the TO mode calculated from Eqs.(16) is a standing 

waves reflected from the surface 03 =x , and it disappears with the flexocoefficient 44f  decrease 

below 1.5 V. As a matter of fact the impact of the flexocoupling on the standing TO waves requires a 

separate study, because their amplitude can be noticeable in thin films [see the next section]. 

The dependences of the surface TA wave penetration depths 1/1 ξ  and 2/1 ξ  on the 

wavelength λ are shown in Fig. 2(b) for several temperatures (100 – 400) K. Because the penetration 

depth 1/1 ξ  rapidly increases with the wavelength increase [see solid curves in Fig. 2(b)], the surface 

wave properties gradually tend to the ones of bulk wave in the limit ∞→λ . The depth 2/1 ξ  firstly 

increases, then reaches a very smooth maximum (or a plateau) and then saturates with the 
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temperature decrease. Both penetration depths 1/1 ξ  and 2/1 ξ  almost coincide at small <λ 1 nm 

[compare dashed and solid curves in Fig. 2(b)]. Note that the depth 1/1 ξ  monotonically increases 

with the temperature increase; and the depth 2/1 ξ  decreases with the temperature decrease [compare 

black, red, purple and blue dashed curves in Fig. 2(b)]. Since the depths determine the localization of 

the surface wave, only the highest value [ ]21 /1,/1max/1 ξξ=ξ  matters. 

Dispersion law for Rayleigh, Bleustein and Gulyaev waves are similar to the bulk elastic 

(infrasound, acoustic or ultrasound) waves. Their frequency ω  is proportional to the wave number, k , 

namely kvP=ω , where Pv  is the wave velocity. The dependence of the surface TA wave phase 

velocity kvP ω=  on its wavelength kπ=λ 2  is shown in Fig. 2(c) for several temperatures from 

the range (100 – 400) K. Firstly the phase velocity increases enough sharply and monotonically with 

the wavelength increase from 0.1nm to 10 nm, and then it saturates and tends to the phase velocity of 

the shear wave in the bulk of material. Smaller Pv  values correspond to the lower temperatures 

[compare black, red, purple and blue curves in Fig. 2(c)]. The saturation starts at λ values about 5 nm 

for T = 400 K, and about 30 nm for T = 100 K.  

The frequency spectrum of the phase velocity is shown in Fig. 2(d) for several temperatures 

(100 – 400) K. The velocity monotonically decreases with the frequency increase at frequencies less 

than the critical value crω , at that ≈ωcr 3.7 THz at 100 K and ≈ωcr 8.75 THz at 400 K (compare 

black, red, purple and blue curves in Fig. 2(d)). At frequencies crω>ω  the velocity is zero; hence 

the second-order phase transition occurs at crω=ω . Numerical values of the phase velocity ~(1 – 

4)km/s are in the same interval than the SAW velocity (3472.5 ± 1.5) m/sec measured by Soffer et al 

[28] at the nonpolar Y-cut of piezoelectric LiNbO3. Soffer waves are typical manifestation of 

Bleustein and Gulyaev SAWs. However considered SAWs have the eigen frequencies ( )kω ~ 5 THz 

at the wave vectors k = (1 – 100) nm-1, while the SAWs in LiNbO3 were excited at resonant 

frequency about 40 MHz at k = 0.1mm-1. The several orders of magnitude difference calls into 

question the opportunity to observe and study Flexo-SAWs in paraelectrics using the optical spatial 

filtering technique [28]. 



 14

P
ha

se
 v

el
oc

ity
  v

P 
(k

m
/s

) 

(c) 

100 K 

200 K 

300 K 

400 K 

Fr
eq

ue
nc

y 
ω

 (T
H

z)
 

Wave vector k (nm-1) (a) 

TA
100 K 

200 K 

300 K 

400 K 

400 K 

100 K 

TO

 

Wavelength λ (nm) Wave frequency ω (THz) 

P
ha

se
 v

el
oc

ity
  v

P 
(k

m
/s

) 400 K 

200 K 

300 K 

100 K 

(d)

ωcr

Surface 
Bulk 

Wavelength λ (nm) 

P
en

et
ra

tio
n 

de
pt

h 
 1

/ξ
 (μ

m
) 

(b)

400 K 

200 K

300 K

100 K 

400 K 

1/ξ1 

1/ξ2

 
FIG. 2. (a) Frequency dispersion of the bulk (dashed curves) and surface (solid curves) phonon modes 

calculated for STO parameters. Transverse optic ("TO") and acoustic ("TA") modes are shown. (b) 

Dependence of penetration depth of the surface TA wave on its wavelength. (c) Phase velocity of the surface 

TA wave in dependence on the wavelength. (d) Phase velocity dependence on the surface wave frequency. 

Different curves in parts (a)-(d) correspond to the temperatures T=100, 200, 300 and 400 K, which values are 

specified near the curves. Static flexoelectric coefficient f44=2.1 V, dynamic flexocoupling constant 

M = − 1×10−8Vs2/m2, surface energy parameter ∞=α 0S . Other material parameters of STO are listed in 

Table I. 

 

B. Impact of the flexocoupling on the SAW frequency dispersion and penetration depth  

Note that Fig. 2 is calculated for the static flexoelectric coefficient f44=2.1 V and dynamic 

flexocoupling constant M = −1×10−8Vs2/m2 extracted from the soft phonon spectra measured by 

inelastic neutron scattering [see Fig.2 in Ref. [21]]. Note that the extracted value f44=2.1 V is in a 

surprising agreement with the value f44=(2.18±0.05) V determined from the bending of STO crystal 
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by Zubko et al [58], but earlier they measured that f44=1.3 V [59]. The dynamic flexocoupling 

constant absolute value 1×10−8Vs2/m2 is within the range (0 – 20)×10−8Vs2/m2 that’s physical 

reasonability was estimated in Refs. [47, 48]. Since exact values of fij and M are still under debate for 

most of ferroics including ferroelectrics and quantum paraelectrics [60, 61, 62], it seems reasonable 

to explore the properties of the revealed surface TA wave on the value of fij varying in the actual 

range (0 – 3)V. Hereinafter we consider 0<M  for STO, because the inequality 044 <Mf  is in a 

much better agreement with the phonon spectra [21, 22, 23] and bending measurements [58] than the 

case 044 >fM . Results are presented in Figs 3 and 4. The case M=0 is shown in the figures for 

comparison. 

Figure 3(a) shows the dependences of the SAW penetration depth ξ/1  on the static 

flexocoelectric efficient f44 calculated for several wave vectors kn, zero (M = 0) and negative (M < 0) 

dynamic flexoconstants, respectively. Under the condition M = 0 the penetration depth ξ/1  sharply 

increases (up to cm) with the flexoelectric coefficient f44 decrease below 0.5 V and diverges when its 

value tends to zero [see dashed curves in Fig. 3(a)]. When the penetration depth ξ/1  diverges, the 

surface wave properties coincide with the ones of a bulk wave. For wave vectors >k 1 nm-1 and 
crff 4444V1 <<  the TA wave penetration depth ξ/1  becomes less than 100 nm, so it is indeed 

becomes a SAW. The depth ξ/1  very sharply increases (up to the infinity) in the immediate vicinity 

of crff 4444 → , and becomes imaginary at crff 4444 >  indicating the onset of the spatially modulated 

phase. The critical value of the spatially modulated phase appearance is ≈= 444444 cgf cr 2.45 V, and 

it is independent on the dynamic flexocoupling value as anticipated [48]. The divergence of ξ/1  at 

044 =f  disappears for negative M and positive 44f . Corresponding curves have a sharp maximum 

only at crf44  [see solid curves in Fig. 3(a)]. Actually we established that the divergence ξ/1  can 

originate from the last term ( )22
44

2 kfM −ω  in Eq.(15) for the TA mode frequency ω. Since the term 

is positive for the case 044 <Mf , corresponding penetration depths given by Eqs.(10) are finite. 

Negative sign of 44f  induces the additional divergence of ξ/1  at negative M values. At the same time 

the inequality 044 >fM  seem in a contradiction with the values extracted from the neutron 

scattering [22, 23] and bending [58] experiments in STO. However the condition 044 ≥fM  and is 

far not excluded for other materials. 

Figure 3(b) shows the dependence of the TA mode frequency ω on the static flexoelectric 

coefficient f44, calculated for the cases M = 0 and M < 0, respectively. The difference between these 

two cases is relatively small [compare solid and dashed curves in Fig. 3(b)], leading to the 

conclusion that the impact of dynamic flexoconstant value on the frequency ω of surface TA mode is 
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relatively small (at least in comparison with its influence on the penetration depth). For both cases 

M=0 and M<0 the frequency ω becomes higher than 2.5 THz for small wave vectors ≥k 0.5 nm-1 

and flexocoefficients f44 lying in the range (0 – 3) V. The frequency values are relatively high 

(>4 THz) and almost independent on the flexoelectric coefficient f44 for wave vectors <k 1 nm-1, it 

starts to decrease slowly with 44f  increasing for >k 1 nm-1. Note that THz values are typical for the 

soft phonons frequencies in proper and incipient ferroelectrics. 
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FIG. 3. Dependence of the TA wave penetration depth ξ/1  (a) and frequency ω (b) on flexocoefficient f44 

calculated at 300 K for M = 0 (dashed curves) and M = − 1×10−8Vs2/m2 (solid curves). Different curves 

correspond to the wave vectors k = (0.5, 1, 2, 4) nm−1 specified near the curves. STO parameters are listed in 

Table I.  

 

Figures 4(a) and 4(b) demonstrate the dependences of the SAW penetration depth ξ/1  on the 

flexoelectric coefficient f44 and wave vector k calculated for the cases M = 0 and M < 0, respectively. 

Under the condition M = 0 the penetration depth ξ/1  sharply increases (up to cm) with the 

flexoelectric coefficient f44 decrease below 0.5 V and diverges when its value tends to zero [see 

different contour lines in Fig. 4(a)]. The divergence of ξ/1  at 044 =f  disappears for negative M and 

positive 44f . Corresponding curves have a sharp maximum at crf44  only [see different contour lines in 

Fig. 4(b)]. 

Figures 4(c) and 4(d) show the dependence of the surface TA mode frequency ω on the 

flexoelectric coefficient f44 and wave vector k calculated for the cases M = 0 and M < 0, respectively. 

The difference between these cases is relatively small. For both M=0 and M<0 the frequency ω 

becomes higher than 1 THz for small wave vectors ≥k 0.2 nm-1 and flexocoefficient 0<f44<3 V. The 
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frequency ω is almost independent on f44 for wave vectors <k 1 nm-1 [see almost vertical contour 

lines of constant ω in Figs.4(c) and 4(d)]. Under the condition >k 1 nm-1 the frequency relatively 

slowly and monotonically decreases with 44f  increase [Figs. 4(c) and 4(d)].  
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FIG. 4. Contour maps of the TA mode penetration depth ξ1  (a, b) and frequency ω (c,d) in coordinates 

"wave vector k – flexoelectric coefficient f44" calculated for T = 300 K M = − 1×10−8Vs2/m2 (a, c) and M=0 (b, 

d). Parameters corresponding to STO are listed in Table I.  

 

To resume the analyses of the graphical results presented in section IV we can state that the 

existence and penetration depth of the revealed surface TA phonon mode is ruled by the static and 

dynamic flexocouplings. In particular the mode transforms to the bulk wave in the absence of the 

couplings. So the flexoelectricity indeed generates previously unexplored type of acoustic waves, 

further abbreviated as Flexo-SAWs, which can travel near the flat surface of any solid. Next we can 

speculate whether these surface waves be excited and detected separately from the classical bulk 

phonon modes. 
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VI. POSSIBILITIES OF FLEXO-SAWS EXCITATION AND EXPERIMENTAL 

OBSERVATION 

 
Since the calculated frequency dispersion ( )kω of the Flexo-SAW is within THz region for the 

wave vectors in the range k=(0.05 – 5)nm-1 in non-piezoelectric paraelectrics with relatively small 

coefficient εε≅α 01  (corresponding to the high relative dielectric permittivity ε≥100), the waves can 

be excited similarly to the bulk acoustic phonons, and the dispersion ( )kω  can be determined from 

inelastic neutron scattering [21, 22]. For instance the dispersion curves of the bulk and surface TO 

and TA modes in STO are shown in Fig. 5(a) for the actual range of neutron energies 

(5meV ≤π≤ nmk 222 h 50meV) and different temperatures ( 400100 ≤≤ T  K).  

We expect that the peaks of inelastic neutron scattering intensity corresponding to the surface 

and bulk phonon modes can be separated in thin non-piezoelectric paraelectric layers, where the 

phonon spectra near the surface becomes more and more important with the thickness decrease, and 

corresponding peak either splits, or shifts. This is possible because the difference between the energy 

of the surface and bulk phonons is ( ) =Δ kETO (1 – 3) meV for TO modes at k =(0.1 – 5)nm−1, and 

( ) −=Δ kETA (0.5 – 3) meV for TA modes at k>2nm−1 at temperatures (100 – 300) K [see Fig. 5(c)]. 

Corresponding penetration depth of TA mode ( )k1−ξ  is about or less than 10 nm at k>1 nm−1 and 

T=100 K, and at k>2 nm−1 and T=300 K [see Fig. 5(b)]. So that we expect that the surface and bulk 

phonon modes can be separated in thin non-piezoelectric layers with thickness of about several 

penetration depths, which is about or less than 50 nm for STO. In thin layers both surfaces contribute 

into the response. For a macroscopic sample each peak position corresponds to the response of each 

bulk acoustic or optic mode, which positions are well-known for many ferroics and typically 

tabulated (e.g. for STO).  

TO modes, which "penetration depth" appeared purely imaginary for STO parameters [see 

Fig. 5(d)], can be imagined as standing TO waves reflected from the surface 03 =x . As it was 

mentioned, TO mode disappears with the flexocoefficient 44f  decrease below 1.5 V. The standing 

TO waves are expected to be noticeable in thin films, which thickness is an integral multiple of their 

period ( )kqzπ2 . 
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FIG. 5. (a) Energy dispersion ( )kωh of the bulk (dashed curves) and surface (solid curves) phonon modes 

calculated in STO. Transverse optic ("TO") and acoustic ("TA") modes are shown. Symbols are initial 

experimental data from figure 2 in Ref. [21]. (b) Dispersion of the surface TA mode penetration depth ( )k1−ξ . 

Different curves in (a)-(b) correspond to the temperatures T=100, 175, 300 and 400 K, which values are 

specified near the curves. (c) Energy difference ( )kEΔ  of the surface and bulk TO modes (top curves with 

label ΔETO) and TA modes (bottom curves with label ΔETA). (d) Dispersion of the TO modes wave vector 

( )kqz  in the direction 3x , normal to the surface. Corresponding localization depth is purely imaginary, 

ziq=ξ . Different curves in parts (c)-(d) correspond to the temperatures T=100, 175 and 300 K, which values 

are specified near the curves. STO parameters obtained from the fitting of experimental data [21] are listed in 

Table I. 
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The dispersion of the TA shear strain wave amplitudes ( )kui  calculated from Eq.(12) are 

shown in Fig.6(a). The amplitude is normalized on the polarization amplitudes ip  regarded 

proportional to the applied electric field E0, 0~ jiji Ep χ . Contour maps of amplitudes of polarization 

( )txxP ,, 312  and displacement ( )txxU ,, 312  components in TA wave are shown in Figs.6(b) and 6(c), 

respectively. The maps were calculated from Eq.(7) for fixed frequency ( )kω , time ( )kt ωπ= 2  and 

wave vector k = 1 nm−1. As one can see from Figs.6(b) the polarization wave is zero at the surface 

03 =x  for the case ∞=α 0S , because 21 pp −= . The wave amplitude has a maximum at depth 

23 ≈x nm and becomes negligibly small at 153 >x nm. Displacement is maximal at 03 =x  and 

exponentially vanishes at 53 >x nm. So that the neutron scattering in thin STO films of thickness less 

than (20 – 50)nm should give us the information about the surface TA phonons coupled with 

flexoelectricity. 
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FIG. 6. (a) The dispersion of the normalized TA wave strain amplitudes ( )[ ]kkui ,ω  calculated in STO at 

temperatures 100, 175 and 300 K, which values ate shown near the curves. The amplitude is normalized on the 

polarization amplitudes ip . Insets: contour maps of the TA wave amplitudes ( )txxP ,, 312  (b) and ( )txxU ,, 312  

(c) calculated from Eq.(7) for fixed wave vector k = 1 nm−1 and time ( )kt ωπ= 2 . STO parameters are listed 

in Table I.  
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To resume the section, the possibilities of the Flexo-SAWs observation by inelastic neutron 

scattering is much more favorable in thin layers (< 50 nm) of paraelectrics and incipient ferroelectric 

with dielectric permittivity ε>>100 (i.e. in STO or KTO at low temperatures) in comparison with 

linear low-k dielectrics with ε≤10. Also we hope that some of the predicted properties of Flexo-

SAWs can be verified and explored using optical imaging, infrared spectroscopy, Raman and 

Brillouin scattering and Surface Enhanced Raman scattering based on the incomplete internal 

reflection. Also lattice dynamics calculations (complementary to LGD approach) can be in order, but 

unfortunately they are beyond our possibilities.  

 

VII. CONCLUSION 

The existence of the shear SAWs was regarded impossible in non-piezoelectrics with flat 

homogeneous surface without taking into account the flexoelectric coupling. We predict that shear 

transverse SAWs can propagate in all crystalline dielectrics with the flexoelectric coupling, and 

named them Flexo-SAWs. In particular, we predict that the Flexo-SAWs should have rather unusual 

dispersion properties, which main features are following: 

1. The existence and penetration depth of the Fleo-SAW is ruled by the static and dynamic 

flexoelectric couplings. In particular, the penetration depth of acoustic mode is relatively small 

(several nm) for moderate and high values of the flexocoupling strength and diverges in the absence 

of the flexoelectric coupling, and in the latter case these waves become indistinguishable from the 

bulk waves. 

2. With decreasing the wave vector k the wave velocity along the surface approaches the speed of 

bulk shear waves, while the penetration depth tends to infinity. 

3. For wavelengths about micrometer order and less the phase velocity of the surface wave decreases, 

and its penetration depth increases up to tens of microns. 

4. The dispersion relation for Flexo-SAW depends strongly on the boundary conditions for the 

electric polarization at the surface of the material. 

Since the SAW transforms to the bulk wave in the absence of the couplings, we conclude that 

the flexoelectricity indeed generates previously unexplored type of SAWs, Flexo-SAWs, which can 

travel near the flat surface of any solid. The Flexo-SAW has THz frequency in a paraelectric SrTiO3, 

and its penetration depth varies from nanometers to hundred microns depending on the wave vector 

varying from 0.1 nm−1 to 10 nm−1.  

We expect that the peaks of inelastic neutron scattering intensity corresponding to the Flexo-

SAW and bulk phonon modes can be separated in the paraelectric layers of thickness less than (20 – 

50) nm, giving an independent opportunity to define the flexoelectric coefficients, which are poorly 
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measured by other methods. The absence of the experimental observations of Flexo-SAWs can be 

explained by a very small neutron scattering intensity in thin layers. 

 In contrast to acoustic modes, it appeared that the penetration depth of transverse optic modes 

is purely imaginary for the strontium titanate and so they are not localized near the surface. In fact the 

mode is a standing wave reflected from the surface, and it disappears with the flexoelectric 

coefficient decrease. The impact of the flexocoupling on the standing waves deserves a separate 

theoretical study, because their amplitude can be noticeable in thin paraelectric films. 
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