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Larmor’s theorem holds for magnetic systems that are invariant under spin rotation. In the
presence of spin-orbit coupling this invariance is lost and Larmor’s theorem is broken: for systems
of interacting electrons, this gives rise to a subtle interplay between the spin-orbit coupling acting
on individual single-particle states and Coulomb many-body effects. We consider a quasi-two-
dimensional, partially spin-polarized electron gas in a semiconductor quantum well in the presence
of Rashba and Dresselhaus spin-orbit coupling. Using a linear-response approach based on time-
dependent density-functional theory, we calculate the dispersions of spin-flip waves. We obtain
analytic results for small wave vectors and up to second order in the Rashba and Dresselhaus
coupling strengths α and β. Comparison with experimental data from inelastic light scattering
allows us to extract α and β as well as the spin-wave stiffness very accurately. We find significant
deviations from the local density approximation for spin-dependent electron systems.

PACS numbers: 31.15.ee, 31.15.ej, 71.45.Gm, 73.21.Fg

I. INTRODUCTION

Larmor’s theorem1,2 states that in a system of charges,
all with the same charge-mass ratio q/m, moving in a
centrally symmetric electrostatic potential and in a suffi-
ciently weak magnetic field B, the charges precess about
the direction of the magnetic field with the frequency

ΩL = g
qB

2m
(1)

(in SI units), where g is the gyromagnetic ratio or g-
factor.

In condensed-matter physics, Larmor’s theorem ap-
plies to the long-wavelength limit of spin-wave excita-
tions in magnetic systems which are invariant under
spin rotation.3 In particular, the electrons in a two-
dimensional electron gas (2DEG) in the presence of a
constant uniform magnetic field carry out a precessional
motion at the single-particle Larmor frequency, despite
the presence of Coulomb interactions.

If spin-rotational invariance is broken—for instance, in
the presence of spin-orbit coupling (SOC)—Larmor’s the-
orem is no longer guaranteed to hold, and there will be
corrections to ΩL. This was experimentally observed over
three decades ago for a 2DEG in a GaAs/AlGaAs het-
erostructure, using electron spin resonance (ESR).4 Sub-
sequently, several theoretical studies addressed Larmor’s
theorem in collective spin excitations in 2DEGs.5–13 The
corrections to ΩL are caused by a subtle interplay be-
tween SOC and Coulomb many-body effects, which poses
significant formal and computational challenges; on the
other hand, this offers interesting opportunities for the
experimental determination of SOC parameters and the
study of many-body interactions.

In this paper, we present a joint experimental and the-
oretical study of the spin-wave dispersions of a partially
spin-polarized 2DEG in a semiconductor quantum well.
The influence of Rashba and Dresselhaus SOC on col-
lective electronic modes in quantum wells was first the-
oretically predicted to cause an angular modulation of
the intersubband plasmon dispersion.14,15 The effect was
later experimentally confirmed,16 and then extended to
spin-wave dispersions.17–20

In the absence of SOC, the real part of the spin-wave
dispersion of a paramagnetic 2DEG has the following
form for small wave vectors:21

h̄ωsw(q) = Z +
1

2
Sswq

2 , (2)

where Z is the bare Zeeman energy, and Ssw is the spin-
wave stiffness, which depends on Coulomb many-body
effects (explicit expressions for Z and Ssw will be given in
Section II). Note that for a partially spin polarized 2DEG
the spin-wave stiffness Ssw is negative; by contrast, for
ferromagnetic systems one finds Ssw > 0.3

We recently discovered20 that, to first order in the
Rashba and Dresselhaus SOC strengths α and β, the
spin-wave dispersion is unchanged apart from a chiral
shift by a constant wave vector q0 (defined in Sec. III)
which depends on α, β and the angle ϕ between the mag-
netization direction and the [010] crystalline axis (see
Fig. 1). In other words, to quadratic order in the wave
vector, we find

h̄ωSO
sw (q) = Z +

1

2
Ssw|q + q0|2 +O(α2, β2). (3)

The spin-wave stiffness Ssw remains unchanged, to lead-
ing order in α, β. The physical interpretation is that the
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spin wave behaves as if it were transformed into a spin-
orbit twisted reference frame. This opens up new possi-
bilities for manipulating spin waves, which may lead to
new applications in spintronics.

To account for higher-order SOC effects in the spin-
wave dispersion, it is sensible to rewrite Eq. (3) in a
more general manner:

ωSO
sw (q) = E0(ϕ) + E1(ϕ)q + E2(ϕ)q2 , (4)

where the coefficients E0, E1 and E2 depend on the prop-
agation direction ϕ (see Fig. 1). From Eq. (3), the
linear coefficient is given to leading order in SOC by
E1(ϕ) = Sswq · q0/q, which can be expressed as20

E1(ϕ) = −2

ζ

Z

(Z∗ − Z)
(α+ β sin 2ϕ) , (5)

where ζ is the spin polarization of the 2DEG, and Z∗ is
the renormalized Zeeman splitting, to be defined below
in Section IIB.

We will present a linear-response approach based
on time-dependent density-functional theory (TDDFT)
which allows us to obtain analytical results for E0, to
second order in α, β, and numerical results for E0, E1

and E2 to all orders in SOC. The breaking of Larmor’s
theorem is expressed in the coefficient E0, which has ϕ-
dependent corrections to Z. In Section IV we will obtain
the following result to leading order in SOC:

E0(ϕ) = Z +
2πNs
Z∗fT

[
(α2 + β2)(3fT + 2)

+ 2αβ sin(2ϕ)(fT + 2)
]
, (6)

where fT = (Z − Z∗)/Z∗.
Our analytical and numerical results will be compared

with experimental results, obtained via inelastic light
scattering in a CdMnTe quantum well sample. By fit-
ting E0, E1 and E2 we are able to extract values for Z∗,
α and β and present evidence for the ϕ dependence of
E0 and E2, which had not been considered in our ear-
lier work.20 Comparison to theory shows significant de-
viations from the standard approximation in TDDFT,
the adiabatic local-density approximation (ALDA). This
provides new incentives to search for better exchange-
correlation functionals for transverse spin excitations of
electronic systems.

This paper is organized as follows. In Section II we dis-
cuss Larmor’s theorem without SOC: first, for complete-
ness, we present a general proof for interacting many-
body systems, and then we discuss Larmor’s theorem
from a TDDFT perspective. This will lead to a new
constraint for the exchange-correlation kernel of linear-
response TDDFT. In Section III we consider the elec-
tronic states in a quantum well with SOC and an in-plane
magnetic field. Section IV contains the derivation of the
spin-wave dispersions from linear-response TDDFT, in
the presence of SOC. In Section V we compare our the-
ory with experimental results and discuss our findings.
Section VI gives our conclusions.

II. LARMOR’S THEOREM

In this section we consider Larmor’s theorem in a
2DEG, from a general many-body perspective (the proof
given in Sec. II A is not new2 but included here to keep
the paper self-contained), and from the perspective of
TDDFT. This will set the stage for the discussions in the
following sections where the effects of SOC are included.

A. Long-wavelength limit of spin waves a 2DEG

Let us consider a 2DEG in the presence of a uniform
magnetic field B = Bêz, where êz is a unit vector lying
in the plane of the 2DEG. The Hamiltonian is

Ĥ =
∑
i

[
p̂2
i

2m
+
Z

2
σ̂z,i

]
+
e2

2

∑
ij

1

|ri − rj |
. (7)

Here, m and e are the electron mass and charge, Z =
gµBB is the Zeeman energy (the splitting between the
spin-up and spin-down bands), and µB = |e|h̄/2m is the
Bohr magneton. For a 2DEG embedded in a semicon-
ductor, m, e, and g are replaced by the effective mass,
charge and g-factor, m∗, e∗ and g∗, where g∗ could be a
positive or negative number.

Since the magnetic field is applied in the plane of the
2DEG (in this section, we assume for simplicity that
the 2DEG has zero thickness), its only effect is on the
electron spin and there is no Landau level quantiza-
tion. Later on, when we discuss quantum wells of fi-
nite width, we will exclude situations where the magnetic
length lB =

√
h̄/|eB| is smaller than the well width, and

hence continue to disregard any orbital angular momen-
tum contributions.

Let us define the spin-wave operator2,22–24

Ŝ+,q =
1

2

∑
i

σ̂+,ie
−iq·ri , (8)

where σ̂+ = σ̂x + iσ̂y. This operator satisfies the Heisen-
berg equation of motion

d

dt
Ŝ+,q =

1

ih̄
[Ŝ+,q, Ĥ] = iωsw(q)Ŝ+,q , (9)

where ωsw(q) is the spin-wave frequency dispersion of
the 2DEG. We are interested in the special case q =
0, and abbreviate ωsw(q = 0) = ωsw,0. The opera-

tor Ŝ+,0 = 1
2

∑
i σ̂+,i commutes with the kinetic and

electron-electron interaction parts of Ĥ, and we obtain

[Ŝ+,0, Ĥ] =
Z

4

∑
i

[σ̂+,i, σ̂z,i] = −ZŜ+,0 ,

where we used the standard commutation relations be-
tween the Pauli matrices σ̂x, σ̂y and σ̂z. Together with
Eq. (9), this yields

d

dt
Ŝ+,0 =

i

h̄
ZŜ+,0 , (10)
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and hence

h̄ωsw,0 = Z . (11)

Larmor’s theorem thus says that the long-wavelength
limit of the spin-wave dispersion of a 2DEG is given by
the bare Zeeman energy, regardless of the presence of
Coulomb interactions. By comparison with Eq. (1) we
have ΩL = Z/h̄.

B. TDDFT perspective

TDDFT is a formally exact approach to calculate ex-
citations in electronic systems.25,26 In the most general
case of a magnetic system, TDDFT can be formulated
using the spin-density matrix n as basic variable, whose
elements are defined as

nσσ′(r, t) = 〈Ψ(t)|ψ̂†σ′(r)ψ̂σ(r)|Ψ(t)〉 , (12)

where Ψ(t) is the time-dependent many-body wave func-

tion, and ψ̂σ(r), ψ†σ′(r) are fermionic field operators for
spins σ and σ′, respectively. The spin-density matrix
is diagonal for spatially uniform magnetic fields if the
spin quantization axis is along the direction of the field.
However, spin-flip excitations involve the transverse (off-
diagonal) spin-density matrix response.

The frequency- and momentum-dependent linear-re-
sponse equation for a 2DEG has the following form:

n
(1)
σσ′(q, ω) =

∑
ττ ′

χint
σσ′,ττ ′(q, ω)v

(1)
ττ ′(q, ω) , (13)

where v
(1)
τ ′τ ′(q, ω) is a spin-dependent perturbation, and

χint
σσ′,ττ ′(q, ω) is the spin-density matrix response func-

tion of the interacting many-body system.
The TDDFT counterpart of Eq. (13) is

n
(1)
σσ′(q, ω) =

∑
ττ ′

χσσ′,ττ ′(q, ω)v
(1)eff
ττ ′ (q, ω) , (14)

where χσσ′,ττ ′(q, ω) is the response function of the cor-
responding noninteracting 2DEG, and the effective per-
turbation is

δv
(1)eff
ττ ′ (q, ω) = v

(1)
ττ ′(q, ω) (15)

+
∑
λλ′

[
2π

q
+ fxc

ττ ′,λλ′(q, ω)

]
n

(1)
λλ′(q, ω).

Here, fxc
ττ ′,λλ′(q, ω) is the exchange-correlation (xc) ker-

nel for the spin-density matrix response of the 2DEG.
Let us now consider a noninteracting spin-polarized

2DEG with the Kohn-Sham Hamiltonian

ĥ =
∑
i

[
p̂2
i

2m
+
Z∗

2
σ̂z,i

]
, (16)

which produces two parabolic, spin-split energy bands
h̄2k2/2m + ε↑,↓ (spin-up and spin-down are taken with

respect to the z axis). In the following let us assume that
ε↑ − ε↓ > 0, so ζ < 0. The renormalized Zeeman energy
is therefore given by

Z∗ = ε↑ − ε↓ = Z + vxc↑ − vxc↓ . (17)

From the xc energy per particle of a spin-polarized
2DEG,27 exc(n, ζ) (where n and ζ are the density and
spin polarization, respectively), the spin-dependent xc
potentials are obtained as

vxc↑ = exc + n
∂exc

∂n
+ (1− ζ)

∂exc

∂ζ
(18)

vxc↓ = exc + n
∂exc

∂n
− (1 + ζ)

∂exc

∂ζ
, (19)

so the renormalized Zeeman energy is23,28

Z∗ = Z + 2
∂exc

∂ζ
. (20)

Now let us calculate the collective spin-flip excitations
using linear response theory. Since the ground state of
the 2DEG has no transverse spin polarization, the spin-
density-matrix response decouples into longitudinal and
transverse channels, and we can write the associated non-
interacting response functions as

χ
L

(q, ω) =

(
χ↑↑,↑↑ χ↑↑,↓↓
χ↓↓,↑↑ χ↓↓,↓↓

)
(21)

χ
T

(q, ω) =

(
χ↑↓,↑↓ χ↑↓,↓↑
χ↓↑,↑↓ χ↓↑,↓↑

)
, (22)

and similar for the interacting case. The transverse part
of the interacting response function is diagonal, and can
be expressed via TDDFT as

χint
T

(q, ω) =

( χ↑↓,↑↓
1−χ↑↓,↑↓fxc

↑↓,↑↓
0

0
χ↓↑,↓↑

1−χ↓↑,↓↑fxc
↓↑,↓↑

)
. (23)

We now consider the case q = 0, where the spin-flip
Lindhard functions have the simple form

χ↑↓,↑↓(0, ω) = − nζ

ω − Z∗
(24)

χ↓↑,↓↑(0, ω) =
nζ

ω + Z∗
(25)

(for a comprehensive discussion of the Lindhard func-
tion—the response function of the noninteracting elec-
tron gas—see Ref. 29). We get a collective excitation
at that frequency where χint

T
is singular. We substitute

Eqs. (24) and (25) into Eq. (23) and set the determi-
nant of the 2× 2 transverse response matrix χint

T
to zero.

Furthermore, because the system has no transverse spin
polarization in the ground state, we have

fxc
↑↓,↑↓(q, ω) = fxc

↓↑,↓↑(q, ω) ≡ fxc
T (q, ω) . (26)

This yields the q = 0 limit of the spin-flip wave of the
2DEG as

ωsw,0 = Z∗ − nζfxc
T (0, ωsw,0). (27)
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This expression is formally exact. Comparing with the
many-body result (11), and using Eq. (20), gives

fxc
T (0, Z) =

2

nζ

∂exc

∂ζ
. (28)

Equation (28) is an exact constraint on the transverse xc
kernel of the 2DEG, based on Larmor’s theorem. It is
not difficult to show that it is satisfied by the adiabatic
local-density approximation (ALDA), where the xc kernel
is frequency- and momentum-independent.23,30

Larmor’s theorem in the 2DEG can be understood
from rather simple physical arguments.23 A collective ex-
citation of the spin-polarized ground state by coherently
flipping all spins does not change the overall exchange
energy of the 2DEG; hence, the q = 0 spin-wave mode
has no Coulomb contributions, and ωsw,0 = Z. By con-
trast, flipping the spin of a single electron with respect
to all other spins causes an exchange energy penalty; the
energy difference between collective and single-particle
excitation is Z∗ − Z > 0.

For small but finite wave vectors, one obtains the long-
wavelength spin-flip wave dispersion:23

ωsw,q = Z − 1

|ζ|
Z

Z∗ − Z
h̄

2m
q2 (29)

which yields the spin-wave stiffness Ssw = − 1
|ζ|

Z
Z∗−Z

h̄
m ,

see Eq. (2). Interestingly, and in contrast with magnon
dispersions in ferromagnetic systems, Ssw is negative,
except for very low densities (rs >∼ 25). To under-
stand this, we use the expression e0 = πn(1 + ζ2)/2 for
the noninteracting kinetic energy per particle of a spin-
polarized 2DEG,29 and recast the spin-wave stiffness as
Ssw = (e′xc+e′0)/|ζ|e′xc, where the prime is a shorthand for
∂/∂ζ. Ssw thus has kinetic and xc contributions, which
have opposite signs, except for the low-density limit in
which the 2DEG becomes ferromagnetic. The xc con-
tribution tends to increase the Coulomb energy as q in-
creases, since more spins become antiparallel; however,
the kinetic energy contribution becomes more negative,
and turns out to be the dominant one. Therefore, the
spin-wave energy decreases with q.

III. QUANTUM WELL WITH IN-PLANE
MAGNETIC FIELD AND SOC

In this Section we will consider the electronic ground
state of an n-doped semiconductor quantum well with in-
plane magnetic field and Rashba and Dresselhaus SOC,
using DFT and the effective-mass approximation. The
problem of interacting 2D electrons in the presence of
SOC and external fields has been well-studied;11–13,31–37

however, to our knowledge the results derived in this Sec-
tion have not been given in the literature before.

The setup is illustrated in Figure 1, which defines two
reference frames. The reference frame R′ is fixed with
respect to the quantum well: the quasi-2DEG lies in the

x′

y′

z′ z

x

y

ϕ

]100[

]010[
B 

ϕ q 

FIG. 1. (Color online) Reference frames R′ (black) and R
(red) used to describe the electronic states in a quantum well
with in-plane magnetic field B and spin-wave propagation
direction q.

x′ − y′ plane, where the x′-axis points along the crys-
tallographic [100] direction and the y′-axis points along
the [010] direction. The z′-axis is along the direction of
quantum confinement of the well.

The coordinate system R is oriented such that its x−z
plane lies in the quantum well plane, and the z-axis
points along the in-plane magnetic field B. In the in-
elastic light scattering experiments that we will discuss
below, B is always perpendicular to the wave vector q of
the spin waves. Here, q is along the x-axis, which is at
an angle ϕ with respect to the x′-axis.

The single-particle states in the reference frame R′ can
be written as

Ψ′jk(r′) = eik·r
′
ψ′jk(z′) . (30)

Here, k = (kx′ , ky′ , 0) is the in-plane wave vector and j
is the subband index; in the following, we are only in-
terested in the lowest spin-split subband, so the subband
index j will be replaced by the index p = ±1. The two-
component spinors ψ′pk(z′) are obtained from the follow-
ing Kohn-Sham equation:

[h0σ̂0 + hx′ σ̂x′ + hy′ σ̂y′ ]ψ
′
pk(z′) = Epkψ

′
pk(z′) , (31)

where σ̂0 is the 2×2 unit matrix. The spin-independent,
diagonal part of the single-particle Hamiltonian is

h0 =
k2

2
− 1

2

d2

dz′2
+ vconf(z

′) + vH(z′) + v+
xc(z′) . (32)

Here, vconf(z
′) is the quantum well confining potential

(an asymmetric square well), vH(z′) is the Hartree po-
tential, and we define v±xc(z′) = [vxc↑(z

′)± vxc↓(z
′)]/2.

The off-diagonal parts in Eq. (31) contain the Zeeman
energy Z plus xc and SOC contributions:

hx′ = −
(
Z

2
+ v−xc(z′)

)
sinϕ+ αky′ + βkx′ (33)

hy′ =

(
Z

2
+ v−xc(z′)

)
cosϕ− αkx′ − βky′ , (34)

where α and β are the standard Rashba and Dresselhaus
coupling parameters.
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To find the solutions of the Kohn-Sham system, it is
convenient to transform into the reference system R of
Fig. 1, whose z-axis is along the magnetic field direction.
We introduce two in-plane vectors, q0 and q1, whose
components (in the frame R′) are

q0x′ = 2(α cosϕ+ β sinϕ) (35)

q0y′ = 2(α sinϕ+ β cosϕ) (36)

and

q1x′ = 2(−α sinϕ+ β cosϕ) (37)

q1y′ = 2(α cosϕ− β sinϕ) . (38)

With this, Eq. (31) transforms into[
h0σ̂0 +

(
Z − k · q0

2
+ v−xc

)
σ̂z +

k · q1

2
σ̂x

]
ψpk = Epkψpk

(39)
(the scalar products k · q0 and k · q1 are invariant under
this coordinate transformation). The solutions of Eq.
(39) can be written as follows:

Epk =
k2

2
+
ε↑ + ε↓

2
+
p

2

√
(Z∗ − k · q0)

2
+ (k · q1)2 ,

(40)
where Z∗ = ε↑ − ε↓ and p = ±1. The associated eigen-
functions are

ψ+,k(y) =
1√

1 + b2

(
1
b

)
φ(y) (41)

ψ−,k(y) =
1√

1 + b2

(
−b
1

)
φ(y) (42)

and

b =
1

k · q1

[√
(Z∗ − k · q0)

2
+ (k · q1)2 − Z∗ + k · q0

]
.

(43)
The solutions (40)–(43) have been expressed in terms of
the solutions in the absence of SOC, ε↑,↓ and φ(y), which
follow from[

h0 −
k2

2
±
(
Z

2
+ v−xc

)]
φ↑,↓ = ε↑,↓φ↑↓ . (44)

The spin-up and spin-down envelope functions φ↑ and
φ↓ are practically identical for the systems considered
here, which allowed us to use φ↑ ≈ φ↓ ≡ φ to express
the solutions (41) and (42) in a relatively compact form.
This implies that the dependence of v−xc(z′) on z′ can be
neglected in Eq. (44).

Finally, let us expand the solutions (40)–(43) in powers
of the SOC coefficients α and β. We obtain to second
order in SOC

Epk =
k2

2
+
ε↑ + ε↓

2
+
p

2

(
Z∗ − k · q0 +

(k · q1)2

2Z∗

)
(45)

k (Å-1) 

E 
(m

eV
) 

FIG. 2. (Color online) Spin-split lowest subband, Eq. (40),
of an asymmetrically doped 20 nm CdTe quantum well with
B = 4.18 T, with α = 2.2 meVÅ and β = 3.9 meVÅ, taken
at an angle ϕ = 45o (i.e. along [110]). The inset shows the
quantum well profile and the electronic density distribution.

and

ψ+(y) =

 1− (k · q1)2

8Z∗2

k · q1

2Z∗
+

(k · q0)(k · q1)

2Z∗2

φ(y) (46)

ψ−(y) =

 −k · q1

2Z∗
− (k · q0)(k · q1)

2Z∗2

1− (k · q1)2

8Z∗2

φ(y). (47)

We illustrate the energy dispersion (40) of the lowest
spin-split subband in Fig. 2. Here, we consider an asym-
metrically doped CdTe quantum well of width 20 nm and
electron density 2.6 × 1011 cm−1. An applied magnetic
field of B = 4.18 T leads to the bare and renormalized
Zeeman energies Z = 0.40 meV and Z∗ = 0.573 meV, re-
spectively, using the LDA. Here, we use the effective-mass
parameters m∗ = 0.105m, e∗ = 1/

√
10, and g∗ = −1.64

for CdTe.
We choose the Rashba and Dresselhaus parameters

α = 2.2 meVÅ and β = 3.9 meVÅ (see below), which
causes the two subband to be slightly displaced horizon-
tally with respect to one another (in Fig. 2, we plot k
along the [110] direction, i.e., for ϕ = 45o).

IV. SPIN-FLIP WAVE DISPERSION

A. Linear-response formalism

In the following, we are interested in the collective spin-
flip modes in a quantum well with in-plane magnetic field
and SOC. Based on the translational symmetry in the
x − z plane, one can Fourier transform with respect to
the in-plane position vector r = (x, z); this introduces
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the in-plane wave vector q. The TDDFT linear-response
equation (14) then becomes

n
(1)
σσ′(q, y, ω) =

∑
ττ ′

∫
dy′χσσ′,ττ ′(q, y, y

′, ω)v
(1)eff
ττ ′ (q, y′, ω),

(48)
where the noninteracting response function is given by

χσσ′,ττ ′(q, y, y
′, ω) =

−
±1∑
pp′

∫
d2k

(2π)2

θ(EF − Epk)

ω − Epk + Ep′k−q + iη

× ψpσ(k, y)ψ∗p′σ′(k− q, y)ψ∗pτ (k, y′)ψp′τ ′(k− q, y′)

+

±1∑
pp′

∫
d2k

(2π)2

θ(EF − Epk)

ω + Epk − Ep′k+q + iη

× ψp′σ(k + q, y)ψ∗pσ′(k, y)ψ∗p′τ (k + q, y′)ψpτ ′(k, y
′).

(49)

The energy eigenvalues Epk and the single-particle states
ψpσ(k, y) are defined in Eqs. (45)–(47). θ is the step
function, and the Fermi energy is given by EF = πNs −
(α2 + β2), where Ns is the electronic sheet density (the
number of electrons per unit area). We assume here that
both spin-split subbands are occupied, which is different
from the situation considered in Refs. 35–37.

In the response function (49) we only consider spin-
flip excitations within the lowest spin-split subband of
the quantum well; contributions from higher subbands
are ignored, because they will be irrelevant as long as
the Zeeman splitting is small compared to the separation
between the lowest and higher subbands, which is safely
the case here.

An interesting property of the response equation (48)
is that it is invariant under the simultaneous sign changes
α → −α, β → −β, and q → −q, as can easily be seen
from the form of the response function (49). From this
we conclude that an expansion of the coefficients E0 and
E2 in Eq. (4) only has even orders of α, β, while only
odd orders of α, β contribute to E1.

The 4× 4 matrix response equation (48) can be solved
numerically, within the ALDA, to yield the spin-wave
dispersions.14,15 However, much physical insight can be
gained by an analytic treatment, which can be done for
small wave vectors q: the spin-wave dispersion then takes
on the form of Eq. (4), and our goal is to determine the
coefficients E0 and E2 and compare them to experiment.
We have done this analytically for E0 and numerically
for E2, as discussed below.

Instead of the spin-density-matrix response (48), it is
convenient to work with the density-magnetization re-
sponse (especially for the calculations carried out in Ap-
pendix A, where we obtain corrections to second order
in SOC): we replace the spin-density matrix nσσ′ , de-
fined in Eq. (12), with the total density n ≡ m0 and the
three components of the magnetization mx,y,z as basic
variables. In the following, we replace the labels (x, y, z)
with (1, 2, 3) to streamline the notation.

The connection between the two sets of variables is
made via the Pauli matrices:

mi(r) = tr{σ̂in(r)} , i = 0, . . . , 3. (50)

We can also express this through a 4× 4 transformation
matrix T , connecting the elements mi and nσσ′ arranged
as column vectors: ~m = T~n. In detail, m0

m1

m2

m3

 =

 1 0 0 1
0 1 1 0
0 i −i 0
1 0 0 −1


 n↑↑
n↑↓
n↓↑
n↓↓

 . (51)

In a similar way, one can transform the spin-density-
matrix response equation (48) into the response equation
for the density-magnetization:

m
(1)
i (q, y, ω) =

3∑
k=0

∫
dy′Πik(q, y, y′, ω)V

(1)
k (q, y′, ω) ,

(52)
where Π = 2T χT−1 is the noninteracting density-

magnetization response function, and ~V (1) = 1
2T~v

(1)eff

is the effective perturbing potential.
We are only interested in the spin-flip excitations,

which are eigenmodes of the system: hence, no external
perturbation is necessary. Furthermore, the Hartree con-
tributions drop out in the spin channel, so the effective
potential only consists of the xc part:

V
(1)
k (q, y, ω) =

3∑
l=0

∫
dy′hxc

kl (q, y, y
′, ω)m

(1)
l (q, y′, ω) .

(53)
In the ALDA, the xc kernels hxc

kl do not depend on fre-
quency and wave vector.14 Once we have the density-
magnetization response, we can multiply it with the xc
matrix. The xc matrix has a simple form, because in this
reference frame the spin polarization direction is along z:

Hxc =

 hxc
00 0 0 hxc

03

0 hxc
11 0 0

0 0 hxc
22 0

hxc
30 0 0 hxc

33

 (54)

where

hxc
00 = 2

∂exc

∂n
+ n

∂2exc

∂n2
− 2ζ

∂2exc

∂n∂ζ
+
ζ2

n

∂2exc

∂n2
(55)

hxc
03 = hxc

30 =
∂2exc

∂n∂ζ
− ζ

n

∂2exc

∂ζ2
(56)

hxc
11 = hxc

22 =
1

nζ

∂exc

∂ζ
(57)

hxc
33 =

1

n

∂2exc

∂ζ2
. (58)

All quantities are evaluated at the local density n(y) and
spin polarization ζ(y) and multiplied with δ(y−y′). Here,
exc is the xc energy per particle of the 3D electron gas.38
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To find the collective modes, we can recast the response
equation (52) in such a way that the y-dependence goes
away; the xc kernels hxc

kl are then replaced by their aver-
ages over φ4(y). We need to determine those frequencies
where the matrix

M(q, ω) = Hxc(q, ω)Π(q, ω) (59)

has the eigenvalue 1. In other words, we solve the 4× 4
eigenvalue problem

M(q, ω)~x = λ(q, ω)~x (60)

and find the mode frequencies by solving λ(q, ω) = 1
for ω, where q is fixed. In general there will be 4 solu-
tions. This is in principle exact, provided we know the
exact Hxc matrix, which, in general, depends on (q, ω).
In ALDA, it is a constant (for given density and spin
polarization).

B. Beyond Larmor’s theorem: leading SOC
corrections

In the presence of SOC, the spin-wave dispersions are
modified in an interesting and subtle manner. For small
values of q, the spin-wave dispersion has the quadratic
form given in Eq. (4). Our goal is now to obtain the coef-
ficient E0 to leading order in the Rashba and Dresselhaus
coupling strengths α and β. To do this, we carry out a
perturbative expansion of the eigenvalue problem (60) in
orders of SOC. At q = 0, the matrix can be written as

M(0, ω) = M (0) +M (2) + . . . (61)

where superscripts indicate the order of SOC (the linear
order vanishes at q = 0).

We first solve the zero-order eigenvalue problem

M (0)~x(0) = λ(0)~x(0). The zero-order spin-flip response
function is

Π(0)(0, y, y′, ω) =
Z∗φ2(y)φ2(y′)

π(ω2 − Z∗2)

 0 0 0 0
0 Z∗ −iω 0
0 iω Z∗ 0
0 0 0 0

 .

(62)
Defining

fT =

∫
dy

φ4(y)

πn(y)ζ(y)

∂exc

∂ζ

∣∣∣∣
n(y),ζ(y)

, (63)

where fT < 0, we obtain

M (0) =
Z∗fT

ω2 − Z∗2

 0 0 0 0
0 Z∗ −iω 0
0 iω Z∗ 0
0 0 0 0

 . (64)

This matrix has eigenvalue 1 for

ω = Z∗ + Z∗fT = Z (65)

(we discard the negative-frequency solution) in accor-
dance with Larmor’s theorem. The associated eigenvec-
tor is ~x(0) = 2−1/2(0,−i, 1, 0).

To obtain the change of the collective spin precession
caused by the presence of SOC, we need to determine
λ(2). Using perturbation theory we obtain the second-
order correction of the eigenvalue as

λ(2) = [~x(0)]†M (2)~x(0) , (66)

To construct M (2) we need Π(2)(0, ω), the spin-flip re-
sponse matrix expanded to second order in α and β,
which requires a rather lengthy calculation (see Appendix
A). We end up with

λ(2) =
2πNs

Z∗2f2
T

[
(α2 +β2)(3fT + 2) + 2αβ sin(2ϕ)(fT + 2)

]
(67)

The condition 1 = λ(0) +λ(2) gives the final result for E0,
see Eq. (6).

Let us now turn to the other two coefficients in Eq.
(4). The leading contribution to the linear coefficient E1

is in first order in α and β, see Eq. (5), and was already
obtained in Ref. 20. The quadratic coefficient E2 de-
scribes the renormalization of the spin-wave stiffness Ssw

due to SOC. We did not attempt to derive an analytical
expression for E2, as it was done without SOC in Eq.
(29), although this could in principle (and with much ef-
fort) be done along the same lines as for E0. Instead, we
extract E2 from a fully numerical solution of the linear-
response equation for the spin waves, which includes all
orders of α and β.

V. RESULTS AND DISCUSSION

According to the theory presented above, the spin-flip
excitations in a 2DEG in the presence of SOC depend
on the direction of the applied magnetic field (direction
z in Fig. 1). Figure 3 depicts the spin-excitation spectra
for ϕ = 45o and ϕ = 135o, calculated using ALDA, for
the same quantum well as in Fig. 2. Clearly, the spin-
wave dispersions and single-particle spin-flip continua dif-
fer drastically, depending on the direction of the in-plane
momentum. In the following, we will compare our theory
with experiment.

A. Electronic Raman scattering

We use electronic Raman scattering, whereby a well-
controlled in-plane momentum q is transferred to the
spin excitations of the 2DEG. Under the quasi-scattering
geometry shown in Fig. 4a, the transferred momentum
is given by q = κi,‖ − κs,‖ ' 4π

λ sin θ ex, where κi and
κs are the wave vectors of the linearly cross-polarized in-
coming and scattered photons, and λ ' 769.0 nm is the
incoming wavelength. Our setup allows us to vary q both
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FIG. 3. (Color online) Spin-flip excitation spectra with SOC
for ϕ = 45o and ϕ = 135o, calculated using the ALDA for the
same quantum well as in Fig. 2. Solid black lines: boundaries
of the single-particle spin-flip continuum. Blue dashed lines:
spin-wave dispersions.

in magnitude (with θ) and in-plane orientation (with ϕ),
while the magnetic field Bext is applied in the plane of
the well and always kept perpendicular to q.

Cross-polarized Raman scattering measurements have
been successful to evidence SOC effects on single-particle
excitations in the absence of external magnetic fields, like
in Ref. 39 for a 2DEG confined in highly doped GaAs
quantum wells, or in the more recent Ref. 40, where the
specific case α = β has been addressed. Here, by con-
trast, we focus on the collective spin-precession mode,
the spin-flip wave, appearing when the 2DEG is spin-
polarized with negligible Landau quantization.17–20,23

This possibility is offered in quantum wells polarized by
a magnetic field applied in the plane.23,41

Our sample is an asymmetrically modulation-doped,
20 nm-thick Cd1−xMnxTe (x ' 0.13%) quantum well,
grown along the [001] direction by molecular beam epi-
taxy, and immersed in a superfluid helium bath at tem-
perature 2 K. The density of the electron gas is Ns =
2.6×1011 cm−2 and the mobility is 1.7×105 cm2V−1s−1.
The small concentration of Mn introduces localized mag-
netic moments into the quantum well, which are polar-
ized by the external B-field, and act to amplify it.28,42

In Refs. 41 and 43 we measured the dispersion of the
spin-flip wave in samples of the same type. In Refs. 17
and 18, we evidenced Rashba and Dresselhaus SOC ef-
fects on this collective mode. In these earlier works, we
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FIG. 4. (Color online) (a) Electronic Raman scattering ge-
ometry: κi and κs are the incoming and scattered light wave
vectors, respectively; q is the transferred momentum, of in-
plane orientation measured by the angle ϕ from [100]. An
external magnetic field Bext is applied in the 2DEG’s plane
and is always perpendicular to q. (b) Raman spectra of the
spin wave, obtained at Bext = 2 T and q = 0, for a series of
in-plane angles ϕ. (c) Momentum dispersion of the spin wave
for different in-plane angles.

described these effects by the action of an effective col-
lective spin-orbit field driving the spin precession, and
found it to be enhanced by interactions. In Ref. 20, we
examined the microscopic behavior of the spin wave in
presence of SOC more closely and found that the SOC
acts as a dynamical twisting of the spins resulting in a
simple momentum shift of the spin waves.

Here we focus on the zone-center spin-wave mode,
which is the one subject to Larmor’s theorem. Figure
4b shows a series of spin-wave Raman lines obtained at
fixed Bext = 2 T and q = 0, and for various in-plane an-
gles ϕ. We observe a clear modulation of the spin-wave
energy with ϕ, evidencing the above predicted breakdown
of Larmor’s theorem. A simultaneous strong modulation
of the peak height and linewidth is also observed. Both
are related to the damping of the zone-center spin-wave
mode and are beyond the scope of this paper.

To better understand the zone-center energy modula-
tion, we measured the full spin-wave dispersion by vary-
ing the transferred momentum q. Fig. 4c shows the
dispersions for three different values of ϕ: they exhibit
a quadratic dependence with q, with a maximum shifted
away from the zone center. This shift from the zone cen-
ter is well understood in the frame of the spin-orbit twist
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FIG. 5. (Color online) Coefficients E0, E1, and E2 of the spin-
wave dispersion, Eq. (4), as a function of angle ϕ. Dots: ex-
perimental data. Lines: theoretical results using Z∗ = 0.573
meV obtained with ALDA, and α = 1.6 meVÅ and β = 3.1
meVÅ obtained by fitting E0 and E1. The red lines follow
from the fully numerical solution of Eq. (60), the dashed blue
lines follow from the analytical formulas (6) and (5).

model:20 SOC produces a rigid shift of the spin-wave dis-
persion by a momentum −q0, see Eq. (35), which de-
pends on ϕ. This produces the linear term in q in the
energy dispersion of Eq. (4).

We have systematically measured the spin-wave disper-
sions for angles ϕ between zero and 360o; for each angle,
the data are fit to a parabola (as in Fig. 4c), which allows
us to extract the coefficients E0,1,2(ϕ). The experimental
results are shown in both Figs. 5 and 6 (dots), clearly
exhibiting the predicted sinusoidal modulations.

The modulation of E0, with a relative amplitude of
about 6%, demonstrates the breakdown of Larmor’s the-
orem. This effect is of second order in the SOC. By con-
trast, the modulation of E1 is a first-order SOC effect.
Another second-order SOC effect is the modulation of
the curvature of the spin-wave dispersion, i.e. the spin-
wave stiffness Ssw. The bottom panels of Figs. 5 and
6 show the curvature E2 = Ssw/2 as a function the in-
plane angle ϕ. Again, a sinusoidal variation is observed,
with a relative amplitude of about 10%; the phase of the
modulation is opposite to that of E0 and E1.

B. Comparison with theory

In Figures 5 and 6, the experimental data for E0(ϕ),
E1(ϕ), and E2(ϕ) is compared with theory (lines). In our
calculations, we consider, as before, a CdTe quantum well
of width 20 nm and density Ns = 2.6× 1011 cm−2. The
value of bare Zeeman splitting Z is extracted from the
data as follows. According to Eq. (6), E0 can be written
in the form E0(ϕ) = Z − a − b sin(2ϕ). For the range
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FIG. 6. (Color online) Same as Fig. 5, but using Z∗ = 0.63
meV, α = 2.2 meVÅ, and β = 3.9 meVÅ obtained from a
best fit to the experimental data.

of input parameters α, β, Z and Z∗ under consideration
(see below), the ratio b/a ≈ 1.5 is almost constant. We
temporary fix this ratio, and a fit with the data from
the top panel of Fig. 5 then yields Z = 0.40 meV and
b = 0.024 meV to within about 3 µeV. We can then
calculate Z∗ using the ALDA xc kernel [see Eq. (65)],
where Z∗ALDA = Z/(1 + fT ) = 0.573 meV. Now fixing
Z, Z∗ and letting b/a = 1.5, we fit α and β from E0(ϕ)
and E1(ϕ). An optimal agreement with the experimental
results for E0 and E1 is achieved with α = 1.6 meVÅ
and β = 3.1 meVÅ.44

Having determined the set of parameters Z, Z∗, α
and β, we run the fully numerical solution of the linear-
response equation (60) for the spin-flip waves, and fit
the small-q dispersion to a parabola for a given angle ϕ
to extract E0, E1, and E2. As shown in Fig. 5, both
the analytical formulas of Eqs. (5) and (6) and the nu-
merical solutions (the dashed blue and solid red lines,
respectively) are in very good agreement with the exper-
imental data for E0 and E1, apart from a small shift in
the phase of the experimental modulation of E0, which
is not accounted for by the theory.

An additional observation from Fig. 5 is that the ana-
lytical formulas and the numerical results for E0 and E1

are extremely close to each other. This is not surpris-
ing, since the next higher-order corrections to E0 and E1

are of fourth and third order in α, β, respectively (as we
showed in Section IV.A), and hence negligible.

On the other hand, the bottom panel of Fig. 5 shows
that the calculation dramatically fails to reproduce E2.
Therefore, we repeated the calculations, but now using
a renormalized Zeeman energy Z∗ that does not follow
from the ALDA, but from a numerical fit. We fit the
numerical solutions with Z∗, α and β and find that using
α = 2.2 meVÅ, β = 3.9 meVÅ and Z∗fit = 0.63 meV
we obtain an excellent agreement with the experimental
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results for all three modulation parameters, E0, E1, and
E2, as shown in Fig. 6.

The comparison between theory and experiment of
the spin-wave modulation parameters thus demonstrates
that the ALDA underestimates Z∗ by about 10%, which
seems to be a relatively minor deviation. However, E0,
E1, and E2 depend very sensitively on Z∗, which suggests
a need for a more accurate description of dynamical xc
effects beyond the ALDA.

We finally mention that additional contributions to
the angular modulation of the spin-wave dispersion could
arise from an in-plane anisotropy of the g-factor of the
form gxy sin(2ϕ), where gxy is the off-diagonal compo-
nent of the g tensor.45–47 However, by slightly varying
the applied magnetic field around 2 T, we have found
that this effect contributes less than 15% of the modula-
tion amplitude of E0, and leads only to ∼ 7% changes of
the parameters α and β used to fit the data in Figs. 5
and 6; details are given as supplementary material.48

C. Density dependence of E0

To further test our theoretical prediction for the break-
down of Larmor’s theorem [Eq. (6)], we will now explore
the density dependence of the parameter E0. In order
to vary the electronic density in our sample, we shine
an additional continuous-wave green laser beam (514.5
nm) on the quantum well. This illumination is above
the band gap and generates electron-hole pairs in the
barrier layer: the electrons neutralize some donor ele-
ments of the doping plane, while the holes migrate to the
quantum well where they capture free electrons. This
leads to a depopulation of the electron gas, which can
be precisely controlled by the power of the above-gap
illumination.18 Using this technique, the density in our
sample can be reproducibly reduced by up to a factor 2.
We measured E0(ϕ) for different values of Ns, and plot
in Fig. 7 the amplitude of the q = 0 modulation (solid
circles), ∆E0 = (MaxE0−MinE0)/2, as a function of the
electron density.

Again, the data is well reproduced by the analytical
result of Eq. (6) (blue line). The red circle represents
the amplitude of E0 for the reference density N ref

s =
2.6 × 1011 cm−2, obtained from our numerical fit in the
top panel of Fig. 6. To generate the blue line, we need
Z∗ as a function of Ns, which we approximate as

Z∗(Ns) ≈ Z∗fit(N
ref
s )

Z∗ALDA(Ns)

Z∗ALDA(N ref
s )

= 1.10Z∗ALDA(Ns) ,

(68)
i.e., we approximate the density scaling using the ALDA.
We also need the density dependence of the Rashba and
Dresselhaus parameters α, β. We approximate their den-
sity scaling using the k · p results of Ref. 18. Both ap-
proximations are well justified by the excellent agreement
between theory and experiment in Fig. 7.
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FIG. 7. (Color online) Amplitude of the modulation of the
q = 0 spin-wave energy, ∆E0 = (MaxE0 − MinE0)/2, as a
function of the sheet density Ns of the electron gas in the
quantum well. Black dots: experimental data. Blue line:
analytical results using Eq. (6).

VI. CONCLUSIONS

In this paper, we presented a detailed theoretical and
experimental study of spin-wave dispersions in a 2DEG
in the presence of Rashba and Dresselhaus SOC. In ear-
lier work20 we had limited ourselves to the leading (first-
order) SOC effects, which causes a momentum-dependent
shift of the spin-wave dispersions, but leaves the spin-
wave stiffness as well as Larmor’s theorem intact. We
have now discovered some subtle corrections which arise
when second-order SOC effects are taken into account:
Larmor’s theorem is broken, and the spin-wave stiffness
is modified. Both corrections are relatively small (of or-
der 10% or less) but experimentally detectable.

We presented a linear-response theory, based on
TDDFT, to fully account for SOC effects to first, second
and higher orders in SOC. A detailed comparison with
experimental data, obtained using inelastic light scatter-
ing, confirmed the accuracy of the theory and allowed us
to extract the SOC parameters α and β, as well as the
renormalized Zeeman splitting Z∗.

A major outcome of our study is that we discovered
that the ALDA does not lead to a quantitatively satis-
factory description of the second-order SOC modulation
effects of the spin waves. At present, there are only few
approaches in ground-state DFT for noncollinear mag-
netism that go beyond the LDA, such as the optimized
effective potential (OEP)49 or gradient corrections.50–52

This provides motivation for the search for better xc func-
tionals in TDDFT for noncollinear spins. In particular,
any such new xc functional should be well-behaved in the
crossover between three-and two-dimensional systems.53

The study of spin waves in electron gases confined in
semiconductor quantum wells under the presence of SOC
is also of practical interest. Manipulation of the Rashba
and Dresselhaus coupling strengths can be used to control
the spin-wave group velocity.20 Since spin waves can be
used as carriers of spin-based information, this may lead
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to applications in spintronics. Here we have provided a
suitable theoretical framework to describe these effects.
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Appendix A: Derivation of Eq. (6)

In this Appendix we provide the derivation of Eq. (6),
using the linear-response formalism described in Sec. IV.

The spin-flip response function, Eq. (49), is given by

χσσ′,ττ ′(q, y, y
′, ω) = Fσσ′,ττ ′(q, ω)φ2(y)φ2(y′) , (A1)

where

Fσσ′,ττ ′(q, ω) = −
±1∑
pp′

∫
d2k

(2π)2

f(Epk)

ω − Epk + Ep′k−q + iη[
δσ↑ψ

p↑
k + δσ↓ψ

p↓
k

] [
δσ′↑ψ

p′↑
k−q + δσ′↓ψ

p′↓
k−q

]
[
δτ↑ψ

p↑
k + δτ↓ψ

p↓
k

] [
δτ ′↑ψ

p′↑
k−q + δτ ′↓ψ

p′↓
k−q

]
+

±1∑
pp′

∫
d2k

(2π)2

f(Epk)

ω + Epk − Ep′k+q + iη[
δσ↑ψ

p′↑
k+q + δσ↓ψ

p′↓
k+q

] [
δσ′↑ψ

p↑
k + δσ′↓ψ

p↓
k

]
[
δτ↑ψ

p′↑
k+q + δτ↓ψ

p′↓
k+q

] [
δτ ′↑ψ

p↑
k + δτ ′↓ψ

p↓
k

]
. (A2)

To second order in SOC, the energy eigenvalues (40) are
given by

Epk =
k2

2
+
ε↑ + ε↓

2
+
p

2

(
Z∗ − k · q0 +

(k · q1)2

2Z∗

)
,

(A3)
where q0 and q1 are defined in Eqs. (35)-(38), which
leads to

k · q0 = 2k[α cos(ϕ− ϕk) + β sin(ϕ+ ϕk)] (A4)

k · q1 = −2k[α sin(ϕ− ϕk)− β cos(ϕ+ ϕk)]. (A5)

The single-particle states (46) and (47) are given to sec-
ond order in SOC by

ψ+ =

 1− (k·q1)2

8Z∗2

k·q1

2Z∗ + (k·q0)(k·q1)
2Z∗2

φ(y) (A6)

ψ− =

 −k·q1

2Z∗ −
(k·q0)(k·q1)

2Z∗2

1− (k·q1)2

8Z∗2

φ(y) . (A7)

In the following, we use the abbreviation h1k = k·q1/Z
∗.

We are interested in the spin-flip waves for small q.
The response function (A2) at q = 0 can be written in
the following way:

F (0, ω) = −
∫

d2k

(2π)2

f(E+k)

ω − E+k + E−k + iη
R+

+

∫
d2k

(2π)2

f(E+k)

ω + E+k − E−k + iη
R−

−
∫

d2k

(2π)2

f(E−k)

ω − E−k + E+k + iη
R−

+

∫
d2k

(2π)2

f(E−k)

ω + E−k − E+k + iη
R+ (A8)

where the matrices R+ and R− are given by

R+ =


h2

1k −h1k 0 −h2
1k

−h1k 1− 2h2
1k −h2

1k h1k

0 −h2
1k 0 0

−h2
1k h1k 0 h2

1k

 (A9)

R− =


h2

1k 0 −h1k −h2
1k

0 0 −h2
1k 0

−h1k −h2
1k 1− 2h2

1k h1k

−h2
1k 0 h1k h2

1k

 . (A10)

Now let us calculate the energy in the denominator and
drop the iη. We have

F (0, ω) =

∫
d2k

(2π)2

f(E+k)− f(E−k)

ω − Z∗ + g0 − g1
R+

+

∫
d2k

(2π)2

f(E+k)− f(E−k)

ω + Z∗ − g0 + g1
R−

=
R+

ω − Z∗

∫
d2k

(2π)2

f(E−k)− f(E+k)

1 + g0−g1
ω−Z∗

+
R−

ω + Z∗

∫
d2k

(2π)2

f(E+k)− f(E−k)

1 + −g0+g1
ω+Z∗

,(A11)

where we abbreviate

g0 = 2k · q0 , g1 =
2(k · q1)2

Z∗
. (A12)

Next, we expand the integrands of Fσσ′,ττ ′(0, ω) up to
second order in SOC, and carry out the integration over
k for each element of the 4× 4 matrices R+ and R−. We

use a notation where F±0 , F±1 , and F±2 come from those
terms containing zeroth, first and second order in h1k,
respectively. After a lengthy calculation, the result is

F (0, ω) = (A13)
F+

2 + F−2 −F+
1 −F−1 −F+

2 − F
−
2

−F+
1 F+

0 − 2F+
2 −F+

2 − F
−
2 F+

1

−F−1 −F+
2 − F

−
2 F−0 − 2F−2 F−1

−F+
2 − F

−
2 F+

1 F−1 F+
2 + F−2


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where

F±0 =
±Z∗

2π(ω ∓ Z∗)
± Ns(a− b)
Z∗(ω ∓ Z∗)

+
2Ns(a+ b)

(ω ∓ Z∗)2

+
Ns(a− b)
(ω ∓ Z∗)2

± 2NsZ
∗(a+ b)

(ω ∓ Z∗)3
(A14)

F±1 = ∓cNs
[

1

Z∗(ω ∓ Z∗)
± 1

(ω ∓ Z∗)2

]
(A15)

F±2 =
±Ns(a− b)

2Z∗(ω ∓ Z∗)
(A16)

and a = α2 + β2, b = 2αβ sin 2ϕ and c = 2αβ cos(2ϕ).
Instead of the spin-density-matrix response, we will

work with density-magnetization response, Eq. (52).
Further details of the transformation can be found in the
Appendix of Ref. 14. It follows that all contributions to
the density channel vanish, and the remaining nonvanish-
ing terms of the density-magnetization response function
are

Π11 = χ↑↓↑↓ + χ↑↓↓↑ + χ↓↑↑↓ + χ↓↑↓↑

Π12 = −i(χ↑↓↑↓ − χ↑↓↓↑ + χ↓↑↑↓ − χ↓↑↓↑)
Π13 = χ↑↓↑↑ − χ↑↓↓↓ + χ↓↑↑↑ − χ↓↑↓↓
Π21 = i(χ↑↓↑↓ + χ↑↓↓↑ − χ↓↑↑↓ − χ↓↑↓↑)
Π22 = χ↑↓↑↓ − χ↑↓↓↑ − χ↓↑↑↓ + χ↓↑↓↑

Π23 = i(χ↑↓↑↑ − χ↑↓↓↓ − χ↓↑↑↑ + χ↓↑↓↓)

Π31 = χ↑↑↑↓ + χ↑↑↓↑ − χ↓↓↑↓ − χ↓↓↓↑
Π32 = −i(χ↑↑↑↓ − χ↑↑↓↑ − χ↓↓↑↓ + χ↓↓↓↑)

Π33 = χ↑↑↑↑ − χ↑↑↓↓ − χ↓↓↑↑ + χ↓↓↓↓

and Π00 = Π01 = Π02 = Π03 = Π10 = Π20 = Π30 = 0.
Therefore, the total response function is a 4 × 4 matrix
whose elements defined as follows:

Π11 = F+
0 + F−0 − 4(F−2 + F+

2 )

Π12 = −i(F+
0 − F

−
0 − 2F+

2 + 2F−2 )

Π13 = −2(F+
1 + F−1 )

Π21 = i(F+
0 − F

−
0 − 2F+

2 + 2F−2 )

Π22 = F+
0 + F−0

Π23 = 2i(F−1 − F
+
1 )

Π31 = −2(F+
1 + F−1 )

Π32 = −2i(F−1 − F
+
1 )

Π33 = 4(F+
2 + F−2 ) ,

where each element is multiplied with φ2(y)φ2(y′). In
order to find the collective modes, we need to determine
those frequencies where the matrix

M(q, ω) = Hxc(q, ω)Π(q, ω) (A17)

has the eigenvalue 1, where the xc matrix Hxc is given by
Eq. (54). In other words, we solve the 4 × 4 eigenvalue
problem

M(q, ω)~x = λ(q, ω)~x (A18)

and find the mode frequencies by solving λ(q, ω) = 1
for ω, where q is fixed. Since here our goal is to ob-
tain the coefficient E0 to second order in the Rashba and
Dresselhaus coupling strengths α and β, we carry out a
perturbative expansion of the eigenvalue problem (A18)
in orders of SOC. At q = 0, the matrix can be written as

M(0, ω) = M (0) +M (2) + . . . (A19)

where superscripts indicate the order of SOC (the linear
order vanishes at q = 0).

We now write Π = Π(0) + Π(2), where Π(0) and Π(2)

are in zero and second order in SOC, respectively. Let us
first work out the zero-order case and solve the zero-order
eigenvalue problem M (0)~x(0) = λ(0)~x(0). The zero-order
response function matrix is

Π(0) =
Z∗φ2(y)φ2(y′)

π(ω2 − Z∗2)


0 0 0 0

0 Z∗ −iω 0

0 iω Z∗ 0

0 0 0 0

 . (A20)

Now we need to do the multiplication with the xc kernel
matrix, see Eq. (59):

M (0) = (A21)

Z∗/π

ω2 − Z∗2


hxc

00 0 0 hxc
03

0 hxc
11 0 0

0 0 hxc
22 0

hxc
30 0 0 hxc

33




0 0 0 0

0 Z∗ −iω 0

0 iω Z∗ 0

0 0 0 0


The elements of the xc matrix, hijxc, are given in Eqs.
(55)-(58), averaged over φ4(y). In particular, we find
hxc

11 = hxc
22 = πfT , see Eq. (63). When we work this out,

we find

M (0) =
Z∗fT

ω2 − Z∗2


0 0 0 0

0 Z∗ −iω 0

0 iω Z∗ 0

0 0 0 0

 . (A22)

The spin-flip wave at q = 0 is at that frequency where

the 4× 4 matrix M (0) has eigenvalue 1. Working out the
determinant leads to the following result:

ω0 = Z∗ + Z∗fT = Z (A23)

(there is also a solution with a negative frequency, which
we discard). We substitute ω0 back into Eq. (A22), and
end up with

M (0) =


0 0 0 0

0 1
2+fT

−i 1+fT
2+fT

0

0 i 1+fT
2+fT

1
2+fT

0

0 0 0 0

 . (A24)
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The normalized eigenvector which makes the eigenvalue

of M (0) equal to 1 is

~x(0) =
1√
2

 0
−i
1
0

 . (A25)

To obtain the change of the eigenmodes caused by the
presence of SOC, we need to determine λ(2). In pertur-
bation theory, we obtain the second-order correction of
the eigenvalues as

λ(2) = [~x(0)]†M (2)~x(0), (A26)

where we can construct M (2) by using Π(2):

M (2) =


0 0 0 0

0 hxc
11Π

(2)
11 hxc

11Π
(2)
12 hxc

11Π
(2)
13

0 hxc
22Π

(2)
21 hxc

22Π
(2)
22 hxc

22Π
(2)
23

0 hxc
33Π

(2)
31 hxc

33Π
(2)
32 hxc

33Π
(2)
33

 . (A27)

With the substitution of the terms in second-order in α
and β in the spin-flip response matrix, λ(2) in Eq. (A26)
becomes

λ(2) =
πfT

2
(Π

(2)
11 + Π

(2)
22 + iΠ

(2)
12 − iΠ

(2)
21 )

= πfT (2F+
0 − 4F+

2 )

=
4πNsfT (a+ b)

(ω − Z∗)2
+

2πNsfT (a− b)
(ω − Z∗)2

+
4πNsfTZ

∗(a+ b)

(ω − Z∗)3
. (A28)

To remain within second order of SOC, we substitute ω0

in Eq. (A23) back into λ(2), and get

λ(2) =
6πNsa

Z∗2fT
+

2πNsb

Z∗2fT
+

4πNsZ
∗(a+ b)

Z∗3f2
T

=
2πNs

Z∗2f2
T

[
(α2 + β2)(3fT + 2) + 2αβ sin(2ϕ)(fT + 2)

]
(A29)

The condition for the spin wave at q = 0 is that the
eigenvalue is equal to 1, so to second order perturbation
theory we have

1 = λ(0) + λ(2) , (A30)

where λ(0) is known, so

1 =
Z∗fT
ω − Z∗

+ λ(2) (A31)

which gives

ω − Z∗ = Z∗fT + λ(2)(ω − Z∗). (A32)
To lowest order in SOC, we replace ω on the right-hand
side by ω0:

ω = Z∗ + Z∗fT + λ(2)(ω0 − Z∗) (A33)

and using ω0 = Z∗ + Z∗fT we obtain

ω = ω0 + λ(2)Z∗fT (A34)

Using expression (A29), we obtain the final result

E0 = Z +
2πNs
Z∗fT

[
(α2 + β2)(3fT + 2)

+ 2αβ sin(2ϕ)(fT + 2)
]
, (A35)

which is given as Eq. (6).
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CdMnTe quantum well sample with Ns = 3.5× 1011cm−2

by fitting the single-particle excitation spectrum.
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