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The change of shape under illumination by visible light, called photostriction, is investigated in
the classical ferroelectrics barium titanate and lead titanate. By means of the ∆SCF method, the
use of first-principle calculations confirms that the converse piezoelectric effect is the main driving
force of the photostriction of the polar axis in those materials. As a result, when compared to
barium titanate and bismuth ferrite, lead titanate is a better photostrictive material in the direction
of the polar axis, due to its larger longitudinal piezoelectric constant. On the other hand, in
directions transverse to the polar axis, photo-induced electronic pressure can also become a sizable
contribution that can either compete or cooperate with the piezoelectric effect, depending on the
transitions involved. A simple Landau model is further developed and shows reasonable qualitative
agreement with results from ∆SCF calculations, which is promising for a fast screening of materials
with high photostrictive effects.

PACS numbers: 77.65.-j,78.20.H-,78.20.Pa

I. INTRODUCTION

Photostriction is the strain induced in a material un-
der illumination. Interest in that effect has been aim-
ing so far at designing devices exploiting the coupling of
light and strain. It was proposed (and demonstrated) as
early as the 1990’s that photostriction could be applied
to the design of optically controlled relay, micro-walking
robots or photophones using PLZT-based bimorph struc-
tures1. More recently, the generation of acoustic waves
in pump-probe experiments2–4 may drive the develop-
ment of ultra-fast, optically controlled, acoustic trans-
ducers. Similar experiments have shown the possibility
of generating strong strain gradients in bismuth ferrite
thin films5, opening the way to a possible optical control
of polarization switching or domain writing through the
flexoelectric effect6. The interplay of strain and magnetic
degrees of freedom through magneto-elastic couplings has
also been used recently in order to control optically the
magnetic hysteresis loop of a nickel film deposited on top
of a bismuth ferrite crystal7.

So far most works on photostriction have been based
on experiments. Being able to employ first-principles
in order to investigate and predict photostriction phe-
nomena is important, in order to, e.g., design efficient
photostrictive materials, or for instance assess the im-
pact of defects and domain walls on photostrictive prop-
erties. Also, disentangling which mechanism between
thermal dilatation caused by sample heating when light
is absorbed, potential deformation (the strain generated
by the electronic redistribution of photo-excited carri-
ers), electrostriction (the quadratic response of strain to
an electric field) or piezoelectricity8,9 is the main driv-
ing force of photostriction is a critical step to tailor the
photostrictive properties of a material. As a first step
towards that goal, we recently presented a work em-
ploying the ∆SCF method to describe photostriction in

bismuth ferrite10. It was proposed that the piezoelec-
tric effect is the main driving force of photostriction in
such material. Although bismuth ferrite has been the
most studied material with respect to photostriction due
to its relatively small bandgap as compared to other
common ferroelectric materials, it has a relatively small
piezoelectric constant (d33 ≈ 25 − 70 pC.N−1 accord-
ing to calculations11 and experiments12). To compare
with, single crystals of barium titanate have been mea-
sured to have a piezoelectric constant d33 of 85.6 pC.N−1

at room temperature13, and lead titanate-lead magne-
sium niobate solid solution have piezoelectric constants
that can exceed 1000 pC.N−1 near their Morphotropic
Phase Boundary14. A recent computational work on 2D
monochalcogenides films has further shown that, owing
to their significant piezoelectric constants, a larger pho-
tostriction effect than in BiFeO3 was expected in these
films15 . Although such ultra-thin films may be appealing
for their potential ultrafast response time, their integra-
tion in actual devices may be challenging. The pursuit
of highly photostrictive bulk materials must therefore
continue. The ability to understand the origin of pho-
tostriction in terms of simple concepts (piezoelectricity
vs electronic pressure), and the ability to design simple
analytical models to quickly screen for high photostric-
tive materials, are key milestones in the pursuit of this
goal. As a step towards these objectives, we used here the
∆SCF method, which is detailed in Section II alongside
technical details. The following Section III demonstrates
that the classical ferroelectric oxides barium and lead ti-
tanates show appreciable photostrictive behavior. The
mechanisms ruling photostriction in those materials are
then revealed and discussed in Section IV, and a Landau
model of photostriction is then developed and detailed
as a qualitative tool for the prediction of photostriction
from ground-state calculations. Finally, Section V con-
cludes this work.



2

II. METHODS

A. The ∆SCF method

When performing Density Functional Theory (DFT)
calculations, one is typically minimizing the energy func-
tional with respect to density by self-consistently resolv-
ing the ground state density, in accordance with the two
Hohenberg-Kohn theorems at the foundation of DFT16.
There are several schemes to achieve such calculations,
however one simple, popular and practical way is to as-
sume that one can find a system of non-interacting elec-
trons with the same energy and ground state density as
the true system of fully interacting electrons. Such ap-
proximation is called the Kohn-Sham (KS) ansatz17, and
provides us with a physically intuitive one-electron pic-
ture, within which one is left to fill monoelectronic orbital
states (determined from a monoelectronic Schrödinger
equation) by increasing levels of energy. As described
in Fig. (1), a KS calculation would start by guessing an
input potential Vin, thereby fully determining the one-
electron Hamiltonian. This Hamiltonian is then solved,
resulting in a set of monoelectronic orbitals ϕi with eigen-
values εi. The lowest energy lying states would then be
filled in order to determine the ground state, and the new
potential Vout generated by the distribution of electrons
in these occupied orbitals becomes the input for a new
cycle, until convergence of the ground state density is
reached up to a desired accuracy.

The ∆SCF method18 is essentially analog to a regu-
lar Kohn-Sham calculations: starting from an input po-
tential Vin, the monoelectronic Schrödinger equation is
solved. The main difference arises when the filling of the
orbitals is performed. As sketched in Fig. (1.b), some
electrons are constrained to occupy excited states in the
conduction band, while leaving holes in the valence band.
Therefore, the system is converged under the constraint
of having some electrons lying in higher energy states,
and holes in lower energy states. This rather simple ap-
proach has proved rather successful in describing reso-
nance level in finite systems such as molecules adsorbed
on metallic surfaces19, or the ligand-field splitting in Fe-
phtalocyanine20. In infinite systems however, the ∆SCF
method does not improve much the description of excited
states energies such as the bandgap energy when using
traditional functionals21. One should resort to more ac-
curate models, such as the GW approximation22 or Time
Dependent DFT (TD-DFT)23, which are rather compu-
tationally expensive. Nevertheless, since our main fo-
cus is photostriction, we are not particularly interested
in excitation energies, but rather into the relaxation of
the lattice under excitation. Furthermore, we note that
many GW calculations are typically used as corrections
to eigenenergies and wavefunctions determined with a
more traditional functional24. Thus, we consider the
∆SCF method as being a good approximation for our
purpose, as it has given reasonable values for photostric-
tion compared to experiment in earlier works10.
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FIG. 1. (a) Regular Kohn-Sham calculation to find the
ground state electronic density: from an input potential Vin,
the now known Kohn-Sham Hamiltonian can be diagonalized.
Its lowest eigenstates (”orbitals”) are then filled with elec-
trons, and a new potential is calculated based on the latter
electronic distribution. The output potential is then plugged
in as input potential until convergence to a reasonable accu-
racy is reached. (b) ∆SCF calculation: at filling, not all low
energy lying eigenstates are filled, but some electrons are im-
posed to occupy excited orbitals. An output potential is then
calculated based on this electronic distribution, and the den-
sity is self-consistently solved under the constraint of certain
occupation numbers.

B. Computational details

As mentioned in the introduction, we consider bar-
ium and lead titanates, of formula unit BaTiO3 and
PbTiO3, respectively. We use the Abinit25 plane-wave
code with the PAW method26,27 to describe those two
materials. As shown in previous studies, the Local
Density Functional (LDA) functional17,28 captures most
physical traits of those materials29,30, and is in particu-
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LDA PBESol LDA GGA HSE06 Exp.
This work This work Ref.32 Ref.33,a Ref.34 Ref.35

a (Å) 3.8693 3.8882 3.86 3.892 3.855 3.904
c/a 1.0455 1.0739 1.047 1.073 1.071 1.065
δzTi -0.0322 -0.0385 -0.0348 -0.030 -0.038
δzO1 -0.1011 -0.1183 -0.1035 -0.110 -0.112
δzO3 -0.0895 -0.1104 -0.0922 -0.105 -0.117

TABLE I. Summary of structural parameters in P4mm
PbTiO3: basal lattice constant a, c/a ratio, and shift of the
ions with respect to lead, given in units of the tetragonal axis
c.

LDA, This Work LDA Expt. a

aBTO (Å) 3.9462 3.94330 3.98036

aPTO (Å) 3.8950 - 3.92637

TABLE II. Lattice constant of the Pm3̄m high temperature
phase of BaTiO3 (BTO) and PbTiO3 (PTO).

lar able to describe their ground state as polar, of sym-
metry R3m and P4mm, respectively. The plane wave
cut-off was taken as 952 and 1088 eV for BaTiO3 (BTO)
and PbTiO3 (PTO). We used non-shifted 16 × 16 × 16
and 18 × 18 × 18 k-meshes respectively. The use of a
non-shifted grid is required to retain the high-symmetry
points of the band structure, which are usually local ex-
trema. During Self-Consistent Field (SCF) calculations,
the density was considered converged when the differ-
ence of the forces on the ions between two SCF itera-
tions did not exceed 5 × 10−7 eV.Å−1. Subsequently,
the structural relaxation (both ionic positions and cell
shape) was considered achieved when the maximum force
on the ions was smaller than 2.6× 10−5 eV.Å−1 and the
stress tensor components smaller than 1.5×10−3 kbar.
Such strict convergence criteria was necessary to avoid
physically wrong results, especially at small concentra-
tion of excited electrons. Overall, the large plane-wave
cut-off, dense k-meshes, and strict convergence criteria
ensure that lattice constants are converged to less than
10−3 %, which is necessary given how small the photo-
striction effect is, experimentally, in bulk materials (typi-
cally, ∆L

L ≈ 10−2−10−4 %8,31). Note that, in the case of
lead titanate, calculations using the PBESol functional
were also carried out to check the influence of the func-
tional on the results. Both the ground states (R3m and
P4mm, respectively) and the paraelectric Pm3̄m phase
of barium and lead titanates were investigated, in order
to compare the respective magnitude of the piezoelectric
and potential deformation effects as driving force of pho-
tostriction in these materials. The structural parameters
for the four structures considered in this work are sum-
marized in Tables I, II & III. Overall, the agreement with
previous works is rather good, and the lattice constant
calculated within LDA underestimates the experimental
values by 1-2 % as expected.

LDA LDA Exp.
This work Ref.30 Ref.38

a (Å) 3.9594 4.001 4.0036
α (◦) 89.91 89.87 89.839

δxTi (units of a) -0.0100 -0.0110 -0.0128
δxO3 (units of a) 0.0098 0.0133 0.0109
δzO3 (units of a) 0.0152 0.0192 0.0193

TABLE III. Lattice constant of the R3m rhombohedral phase
of BaTiO3, and displacement of ions from their ideal position
along the pseudo-cubic axes with respect to the barium ion.

C. Band structure and considered transitions

Band structure dispersion curves were generated, and
are plotted in Fig. (2). The band structure of lead ti-
tanate in its ground state phase, depicted in Fig. (2.a),
shows two main valleys in the valence band, at the
X = (1/2, 0, 0) and Z = (0, 0, 1/2) points located the
edges of the Brillouin zone. Overall, the X point is the
top of the valence band, while the Z point, in the tetrag-
onal direction, has a slightly lower energy. The bottom of
the conduction band is made by the Z and Γ points, and
the dispersion along the path joining those two points
is quasi-flat, indicating strong localization onto the tita-
nium d-states. When moving to the centrosymmetric cu-
bic phase Pm3̄m, plotted in Fig. (2.b), one observes that
Z and X have degenerate energies, which is expected ow-
ing to the recovered cubic symmetry. The Kohn-Sham
bandgap is respectively indirect (X → Z) with value
1.49 eV, and direct (X → X and Z → Z) with value
1.45 eV for the P4mm and Pm3̄m structures.

The cubic structure of barium titanate has a band
structure (in Fig. (2.c)) fundamentally different from that
of lead titanate, because of the presence of the lead 6s2

lone pair of the former, as noted by Erhart et al.40. In
BaTiO3, valleys in the valence band are located at the Γ
and R points, while the bottom of the conduction band
is at Γ. The Kohn-Sham bandgap of the Pm3̄m struc-
ture is indirect (R → Γ), with a value of 1.71 eV. The
R3m structure also has an indirect Kohn-Sham bandgap
(Z → Γ) of 2.06 eV. Note that in the Brillouin zone of
the rhombohedral cell, Z = (1/2, 1/2, 1/2), and therefore
lies in the direction of the polar axis. For more informa-
tion about the Brillouin zone of the different structures,
the reader can refer to Ref.39.

During our calculations, we typically fill some valleys
in the conduction band with electrons, and some holes
in the valleys of the valence band. We call ”transition
A → B” when some holes are constrained to be in the
valence band at the point A in the Brillouin zone and
electrons are constrained at B in the conduction band.
Such ”transitions”, depicted in Fig. (2), are: Z → Z,
Z → Γ, X → Γ and X → Z for PbTiO3 in the fer-
roelectric phase, X → X and X → Γ in the Pm3̄m
phase, Γ → Γ and R → Γ for Pm3̄m barium titanate,
and Z → Γ and Γ→ Γ for rhombohedral BaTiO3. Note
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FIG. 2. Band structure of PbTiO3 in the P4mm ferroelec-
tric (a) and Pm3̄m paraelectric (b) phases, and BaTiO3 in
the paraelectric Pm3̄m (c) and ferroelectric R3m (d) states.
Definition of k-points used can be found in Ref.39 Arrows
represent the different ”transitions” considered here.

that those are not necessarily optical transitions. Our
assumption here is that the electron-phonon interaction,
which thermalizes the photoexcited electrons and relax
them to the lowest energies of the conduction band, is
fast enough compared to the recombination time of the
electron-hole pair. As a result, we fill only valleys with
electrons and holes in the conduction and valence bands.

According to Ref.9, the relaxation time of the electron
to the bottom of the conduction band is typically of the
order of 1 ps, while recombination has a much larger
(1 ns-1 µs) relaxation time, justifying this approximation.
Note that, therefore, we are only concerned with steady
photostriction here, and do not investigate the ultra-fast
response observed in picosecond or sub-picosecond pump-
probe experiments41–44.

Eventually, note that we determine the concentration
of photoexcited electrons, denoted ne, by summing over
the electronic population of different k−points in the the
conduction band,

ne =
1

V0

∑
k

wk,CBnk,CB, (1)

with V0 being the volume of the unit cell in the ground
state, wk,CB the weight of the k-point k in the Brillouin
zone, and nk,CB the number of electrons in the conduc-
tion band with wavevector k.

III. RESULTS

In the following section, we present the results obtained
from our ∆SCF calculations.

A. Photostriction in the ferroelectric ground state

In ferroelectric lead titanate, we considered the four
transitions Z → Z, Z → Γ, X → Γ and X → Z. The
results, presented in the right panel of Fig. (3), show
that for all considered transitions, the c axis of the unit
cell shrinks linearly with increasing concentration of pho-
toexcited electrons ne. Interestingly, among the two in-
vestigated position of the photoexcited electron in the
Brillouin zone, Z and Γ, no major difference is found
in the photo-induced change of lattice constants, most
likely due to the very similar nature of the involved con-
duction states, which are both d-orbitals located on ti-
tanium (see Kohn Sham states of the conduction band
depicted in Fig. (4)). Rather, the position of the hole,
whether it is placed at X or Z, results in drastically dif-
ferent results: the change in the c axis lattice constant
is six times larger if the photoinduced hole sits at the Z
point rather than at the X point. In addition, the basal
lattice constant a increases when the hole is placed at Z,
but slightly decreases when placed at X. Looking at the
nature of the states involved in Fig. (4), one notes that
the valence Kohn-Sham state at X involves the four oxy-
gens perpendicular to the x direction, with 2px orbitals.
On the contrary, the valence band Kohn-Sham state at Z
only includes the four oxygen lying in the plane orthog-
onal to the tetragonal axis, with lobes pointing along the
tetragonal axis.

In ferroelectric barium titanate, the investigation of
the two transitions Γ→ Γ and Z → Γ show that in both
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FIG. 3. Evolution of the a (left panel) and c (right panel) lat-
tice constants in ferroelectric lead titanate for Z → Z (black
squares), Z → Γ (blue circles), X → Z (green triangles) and
X → Γ (red diamonds).

X Z

Z

CB

VB

Γ

FIG. 4. 10% isosurface of the amplitude of the monoelectronic
wavefunctions for states in the valence band located at X and
Z in the Brillouin zone, and in the conduction band at Z and
Γ, in tetragonal lead titanate.

cases, the pseudo-cubic lattice constant of the five atom
unit cell decreases with increasing ne, but the decrease
is more than 15 times larger in the case of the Γ → Γ
transition, as shown in the left panel of Fig. (5). The
right panel of the same figure shows that the pseudocubic
angle α increases towards 90◦ with rather similar rate
for both transitions. The decrease of the pseudocubic

FIG. 5. (left panel) The pseudo-cubic lattice constant a of
rhombohedral barium titanate decreases with increasing con-
centration of photoexcited electrons ne, for both transitions.
(right panel) Concurrently, the pseudocubic angle α increases.

lattice constant, with an increasing pseudocubic angle,
is a feature that was already observed in rhombohedral
bismuth ferrite10.

Note that, in the case of lead titanate, the change of
lattice constant along the tetragonal axis is potentially
stronger than in barium titanate; at least the Z → Z
transition considered in lead titanate leads to a photo-
strictive effect that is at least 3 times as large than that
of the Γ→ Γ transition in BaTiO3.

B. Photostriction in the paraelectric phase

In order to probe how important is the existence of the
polarization and related properties such as piezoelectric-
ity, we also performed ∆SCF calculations on the high-
symmetry paraelectric Pm3̄m phase of lead and barium
titanates.

Let us start with BaTiO3. As shown in Fig. (6),
upon increasing the number of electrons in the conduc-
tion band, the cubic phase of barium titanate increases
its unit cell volume for the two valley transitions Γ→ Γ
and R→ Γ. In the case of lead titanate, the situation is
opposite: both the X → Γ and X → X transitions lead
rather to a decrease in volume.

Firstly, it is rather surprising that lead and barium
titanates, two very similar compounds, a fortiori con-
sidered in the same Pm3̄m phase, exhibit so drastically
different behaviors, one leading to an increase of lattice
constant, the other to a decrease. In order to properly
compare those two materials, we consider two additional
transitions in the paraelectric cubic phase: X → Γ in
BaTiO3, and Γ → Γ for PbTiO3. Figure (6) shows that
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FIG. 6. Change of lattice constant of cubic BaTiO3 (red) and
cubic PbTiO3 (blue) for different transitions.

Transition Pm3̄m BaTiO3 Pm3̄m PbTiO3

R→ Γ Increase
Γ→ Γ Increase Increase
X → Γ Increase Decrease
X → X - Decrease

TABLE IV. Qualitative behavior of the lattice constant for
various transitions in cubic paraelectric barium and lead ti-
tanates.

the X → Γ transition in BaTiO3 has the same qualitative
behavior as the R→ Γ and Γ→ Γ transitions, and causes
BTO to expand. On the other hand, in lead titanate, the
newly considered Γ → Γ transition presents an opposite
behavior to that of the previousX → Γ andX → X tran-
sitions: now, the lattice constant is increasing with ne.
This is summarized in Table IV. Comparing Table IV and
Fig. (7), in which the valence band states at Γ and X are
depicted for both compounds, one immediately notices
that, for the transition X → Γ which behaves oppositely
in BaTiO3 and PbTiO3, there is a striking difference in
the nature of the valence band state involved: at the X
point, the lead atom 6s orbital hybridizes with the 2p
orbitals of the oxygen atoms in lead titanate, while bar-
ium does not strongly hybridize with oxygen in barium
titanate. On the contrary, at the Γ point in the valence
band, neither PbTiO3 nor BaTiO3 exhibit hybridization
of the A cation with oxygen, and both compounds show
the same behavior in this case. One can therefore con-
clude that hybridization of the 6s orbital of lead with
oxygen 2p orbitals is the driving force leading to a de-
crease of lattice constant with increasing concentration
of excited carriers, while the absence of hybridization in
BaTiO3 leads to an opposite behavior.

Secondly, we observe that the reported change of lat-
tice constant is one to two orders of magnitude smaller
in the paraelectric phase compared to the ferroelectric
phases of BaTiO3 and PbTiO3. The presence of polar-

Γ

X

BaTiO3 PbTiO3

FIG. 7. Isosurface of the wavefunction amplitude of the va-
lence band Kohn-Sham orbital at X and Γ for cubic BaTiO3

(left) and PbTiO3 (right).

ization (and associated properties, such as piezoelectric-
ity), is therefore an important factor in the deformation
mechanism of ferroelectrics under illumination.

C. Role of the functional: comparison
LDA/PBESol

We also checked whether the results obtained using the
LDA functional could be reproduced with the PBESol
functional45. In the case of the PBESol exchange-
correlation functional, we had to employ a plane-wave
cut-off of 55 Ha, and a k-mesh of 20 × 20 × 20 to en-
sure convergence of the ground state lattice constant with
an accuracy of 10−3 %. The results, shown in Fig. (8),
demonstrate that both the LDA and the PBESol func-
tionals give qualitatively similar results. However, we
note that the photostriction effect predicted in PBESol
is typically larger than in LDA, and that it becomes non-
linear at large concentration of photoexcited carriers.
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FIG. 8. Change of lattice constant δa and δc with increas-
ing number of photo-excited electrons ne in tetragonal lead
titanate calculated from ∆SCF calculations, for LDA and
PBESol functional.
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FIG. 9. ∆SCF calculations for two different k-meshes, and
for a 2 × 2 × 2 supercell (SC) calculated using a 9 × 9 × 9
k-mesh, performed in PbTiO3 in its P4mm phase.

D. Influence of the cell size and k-mesh

We also tested how changing the k-mesh affects the
results. Since the use of aNk×Nk×Nk mesh is equivalent
to simulate a solid made of Nk×Nk×Nk unit cells, being
able to tune the k-mesh density is important if one wants
to investigate a large range of concentration of photo-
induced carriers. We therefore tested, on the Z → Z
transition of tetragonal lead titanate, if the results with
a 24× 24× 24 k-mesh were consistent with our previous
calculations using a 18×18×18 k-mesh. Figure (9) shows
that they are perfectly matching.

We also considered the case of 2×2×2 supercell, with
a 9×9×9 k-mesh, in order to investigate the same range
of concentration of photo-excited carriers as our calcula-

tions with a single unit cell and a 18 × 18 × 18 k-mesh.
We considered a Γ→ Γ transition in the supercell, which,
because of Brillouin zone folding of the band structure of
the supercell, is equivalent to a X → Z transition in the
unit cell. One can observe in Fig. (9) that the results in
the supercell match rather well with the unit cell calcu-
lations.

IV. DISCUSSION

As mentionned in the Introduction, photostriction is
the change of shape induced under illumination. One
obvious contribution to photostriction is of thermal ori-
gin that is sample heating caused by illumination gen-
erates thermal dilatation, and has been ruled out as the
main cause of photostriction in ferroelectrics53. There are
however other significant contributions to the photostric-
tive properties of a material which are essentially non-
thermal, such as potential deformation (the strain gen-
erated by the electronic redistribution of photo-excited
carriers), or the electrostriction and piezoelectric effects
(quadratic and linear response of strain to change in po-
larization)8,9. In particular, polar materials are particu-
larly suited to control the shape of a material with light.
Owing to their non-centrosymmetric nature, they are
piezoelectric and naturally exhibit a Bulk Photovoltaic
Effect (BPVE)46–51. As a result, the photo-induced
change in polarization creates another source of stress
mediated by the converse piezoelectric effect. Such mech-
anism is considered to be the main driving force of pho-
tostriction in ferroelectric perovskite oxides such as bis-
muth ferrite52,53 or lead titanate-based compounds1,54,55,
in which large piezoelectric coefficients exist. In this sec-
tion, we discuss the significance of those mechanisms, and
in particular lead an in-depth investigation of the respec-
tive contributions of the piezoelectric effect and potential
deformation mechanism to the photostriction properties
of lead and barium titanate.

A. Estimates of the photo-induced strain in polar
phases

Let us now focus on two main mechanisms that have
been invoked in ferroelectrics to explain photostriction
3,52,53: (i) the converse piezoelectric effect generated by
a photoinduced field, and (ii) the electronic pressure cre-
ated by the redistribution of electrons during excitation.

1. Piezoelectric contribution

First, we note that the ionic relaxation occurring un-
der excitation of electrons in the conduction band in our
∆SCF calculations can be translated, to a certain ap-
proximation, into a change of polarization δP , by us-
ing the Born effective charge approximation56 (see Ap-
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PbTiO3 BaTiO3

FIG. 10. Change of polarization with the increasing number
of photoexcited electrons (left panel) along the tetragonal axis
in P4mm lead titanate, and (right panel) along the pseudocu-
bic [001] direction of R3m BaTiO3.

pendix A for details and discussion about this approxi-
mation). One can observe, in Fig. (10), that the total
polarization decreases in the case of lead titanate in its
P4mm state, while the polarization along the pseudocu-
bic [001] direction of BaTiO3 increases in the polar R3m
state. We also note that the absolute rate of change of
the polarization is larger for the Z → Z transition than
for the X → Z transition in lead titanate, and in bar-
ium titanate, the Γ → Γ transition shows larger rate of
change than the Z → Γ one. This hierarchy between the
transitions correlates well with the relative magnitudes
and signs of the strains photo-induced by different tran-
sitions for each material when comparing Fig. (10), and
Figs. (3) and (5) respectively. This is the first indication
that the piezoelectric effect may largely contribute to the
photostriction effect in barium and lead titanates.

In order to gain further quantitative comparison, we
note that the change of polarization δP can be directly
translated into a change of strain δη through the piezo-
electric tensor g (given in Appendix B), as

δη = g.δP . (2)

Let us start by analyzing the case of barium titanate,
plotted in Fig. (11), in which the changes in pseudo-
cubic lattice constant obtained from ∆SCF calculations
are shown in filled symbols alongside the estimates (open
symbols) resulting from the change of polarization shown
in Fig. (10) and the converse piezoelectric effect calcu-
lated from Eq. (2). The results are quite satisfying, espe-
cially in the case of the Γ→ Γ transition, while the piezo-
electric model tends to slightly overestimate the (weak)
rate of change in the case of the Z → Γ transition. Still,
the agreement is good, and the piezoelectric model is able
to predict that the Z → Γ transition generates a smaller
photostrictive effect than the Γ→ Γ transition.

0 5 10

ne (×1018 cm−3)

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

δa
(×

10
−

2
%

)

Γ→ Γ

Piezo, Γ→ Γ

Z → Γ

Piezo, Z → Γ

FIG. 11. Change of pseudo-cubic lattice constant in rhom-
bohedral ferroelectric BaTiO3, as calculated in ∆SCF (filled
symbols), and as estimated from the converse piezoelectric
effect (open symbols).

Let us now move to the Z → Z and X → Z transitions
in lead titanate, depicted in Figs. (12) & (13). In the
case of the Z → Z transition, the estimates given by
the converse piezoelectric effect resulting from a change
of the polarization (see Eq. (2), and the corresponding
open diamond symbols in Fig. (12)) are in rather good
agreement with the calculated values (black squares) for
both a and c. In the case of the X → Z transition, the
agreement continues to be good for the lattice constant
c along the tetragonal axis (see Fig. (13)). On the other
hand, in the left panel of Fig. (13), the lattice constant a
in the plane orthogonal to the tetragonal axis is predicted
to (slightly) expand using this piezoelectric model, while
raw ∆SCF calculations show an opposite behavior. We
shall return to that feature in the next section.

2. Electronic pressure contribution

It is only natural to wonder whether the other source of
photo-induced strain, caused by the electronic pressure
mechanism, is the missing part that could explain, for
instance, why the piezoelectric model fails to predict the
right sign of the photogenerated strain for the a lattice
constant for the X → Z transition in lead titanate. We
therefore conducted ∆SCF calculations in P4mm lead ti-
tanate, but with frozen atomic positions. In other words,
only the cell is allowed to relax. Since atomic coordinates
are kept fixed, the ionic contribution to the polarization
is (approximately) frozen, and only the effect of the elec-
tronic pressure and of the induced electronic dipole (dis-
cussed in Appendix A) are accounted for. The results,
presented in Figs. (12) and (13) as blue empty circles for
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FIG. 12. Relative change of (left panel) basal lattice con-
stant and (right panel) tetragonal lattice constant with in-
creasing concentration of electrons in the conduction band for
a Z → Z transition in lead titanate, for (filled black squares)
∆SCF calculations, (empty black diamonds) estimates from
the change of polarization and the converse piezoelectric ef-
fect from Eq. (2), (blue empty circles) ∆SCF calculations with
frozen atomic positions, (red dashed line) Deformation Poten-
tial in the Landau model, (green dashed dotted line) Piezo-
electric effect induced by the photo-induced electric field in
the Landau model, (yellow line).

the transitions Z → Z and X → Z respectively, exhibit
marked differences for the two transitions for both the
a and c lattice constants. In the case of the Z → Z
transition, the electronic pressure induces a photogener-
ated strain that has the same sign than the piezoelectric-
induced photo-strain, and thus the two effects cooperate.
On the other hand, in the case of the X → Z transition
(see Fig. (13)), the two mechanisms actually compete. In
particular, for the latter transition, the change of polar-
ization and transverse piezoelectric constant d31 are too
weak and are overpowered by the deformation potential
mechanism, generating a contraction in the plane orthog-
onal to the tetragonal axis, rather than an expansion.

Overall, one can argue that the photo-induced change
of polarization, coupled to the converse piezoelectric ef-
fect, is the main mechanism driving photostriction in fer-
roelectric materials, although the deformation potential
mechanism may be significant for some transitions, in
particular in directions orthogonal to the polar axis, for
which the transverse piezoelectric constants are smaller
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−0.25

0.00

0.25

0.50
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(×

10
−

2
%

)

∆SCF

Piezoelectric

Fixed Ion ∆SCF

DP, Landau

Piezo, Landau

Total, Landau

0 5 10

ne (×1018 cm−3)

−1.50

−1.25

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

δc
(×

10
−

2
%

)

FIG. 13. Relative change of (left panel) basal lattice con-
stant and (right panel) tetragonal lattice constant with in-
creasing concentration of electrons in the conduction band
for a X → Z transition in PbTiO3, for (filled black squares)
∆SCF calculations, (empty black diamonds) estimates from
the change of polarization and the converse piezoelectric ef-
fect from Eq. (2), (blue empty circles) ∆SCF calculations with
frozen atomic positions, (red dashed line) Deformation Poten-
tial in the Landau model, (green dashed dotted line) Piezo-
electric effect induced by the photo-induced electric field in
the Landau model, (yellow line).

than the longitudinal ones. For instance, in lead titanate,
g33 is six times larger than g13 (see Appendix B).

B. A Landau approach to photostriction

The model and results described in Section IV.A ex-
plicitly take into account the responses of properties
(such as polarization or strain) to electrons being ejected
into the conduction states and to the existence of holes
in the valence states. Let us now investigate if photo-
striction can also be described by a simpler and original
model that consists in focusing on the linear response of
some ground-state properties and for which the sole con-
tribution of electrons in the conduction states and holes
in the valence states resides in their counting. For that,
we first recall that the appearance of ferroelectricity upon
approaching the paraelectric-to-ferroelectric transition is
often described by a phenomenological approach57–59 in-
volving a thermodynamic potential ΦF (T,P ,η) which,
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close to the transition, can be expanded in a power se-
ries of its order parameters (polarization P and strain η)
with respect to the high-symmetry paraelectric phase,

ΦF (T,P ,η) = ΦP (T ) +
α(T )

2
P 2 +

β

4
P 4

+ +
γ

6
P 6 +

C

2
η2 +

Q

2
P 2η. (3)

In the above equation, ΦP (T ) is the thermodynamic
potential of the reference paraelectric phase, α(T ) is a
temperature-dependent second-rank tensor, β and γ are
4th- and 6th-rank tensors, considered to be temperature
independent here. C is the 2nd-rank stiffness tensor, and
Q is the 4th-rank electrostrictive tensor. We adopted
the short-hand notation P n to account for the tensorial
product P ⊗· · ·⊗P . At equilibrium, the thermodynamic
potential must be stationary, and must therefore obey the
following equations,

∂ΦF
∂P

= 0 = α(T )P + βP 3 + γP 5 +QPη, (4)

∂ΦF
∂η

= 0 = Cη +
1

2
QP 2. (5)

This set of equations can be solved for P and η and
yields finite values P0 and η0 in the ferroelectric phase,
for temperatures below the Curie temperature. So far,
no excitation by light has been considered, and it is le-
gitimate to wonder how one can introduce the effect of
photoexcitation in this Landau model. Following the pi-
oneering work of Pasynkov53,60, we add the contribution
of the system of free holes and electrons by considering
the total thermodynamic potential Φ(T,P ,η)

Φ(T,P ,η) = ΦF (T,P ,η) + Φph(T,P ,η), (6)

with

Φph(T,P ,η) =
∑
n,k

δnnkεnk. (7)

In Eq. (7), δnnk is the change of occupancy of the
Bloch state nk with respect to the system in the dark,
and εnk is the energy of that state. Since photon ab-
sorption creates the same amount of holes and electrons,
the condition

∑
n,k δnnk = 0 must be satisfied. Let us

now consider a system in which only two levels, εv (a va-
lence band state) and εc (a conduction band state), are
involved in the absorption process. In that case, Eq. (7)
reduces to

Φph(T,P ,η) = δneEv→c, (8)

with δne being the number of photoexcited electrons
in the conduction band, and Ev→c = εc − εv. The latter

is a function of temperature, polarization and strain. As-
suming that the perturbation induced under illumination
is small enough to write P = P0 + δP and η = η0 + δη,
one can re-write Eq. (8) as a Taylor expansion in terms
of δP and δη,

Φph(T,P ,η) = Φph,0 + δne
∂Ev→c
∂η

∣∣∣∣
P0,η0

δη

+ δne
∂Ev→c
∂P

∣∣∣∣
P0,η0

δP . (9)

In this latter expression, the definition of a photo-
induced stress and a photo-induced electric field can im-
mediately be recognized,

σphoto = −δne
∂Ev→c
∂η

∣∣∣∣
P0,η0

(10)

Ephoto = −δne
∂Ev→c
∂P

∣∣∣∣
P0,η0

(11)

The photo-induced stress σphoto is generated by the
well-known deformation potential mechanism61,62, in
which deformation and electronic density spatial redistri-
bution alter the band structure. Such stress is obviously
a source of photo-induced strain, as now the equilibrium
conditions for the system under illumination must be
written

∂Φ

∂P
= 0 = α(T )P + βP 3 + γP 5 +QηP −Ephoto,(12)

∂Φ

∂η
= 0 = Cη +

1

2
QP 2 − σphoto. (13)

There is a second, more subtle source of photo-induced
strain. The photo-induced electric field Ephoto generates
a shift of the polarization at equilibrium by δP . This
shift couples to the electrostrictive term in Eq. (13), gen-
erating another source term of photo-induced strain. As-
suming that δP and δη are indeed small responses com-
pared to P0 and η0, Eqs. (12-13) can be linearized and
solved for δP and δη. Remembering that P0 and η0 are
solutions of Eqs. (4-5), it is found that,

δP = χphEphoto + dTphσphoto, (14)

δη = Sphσphoto + dphEphoto. (15)

In the latter equations, χph =(
χ−1

0 −QP0C
−1QP0

)−1
is a modified dielectric sus-

ceptibility, while χ0 =
(
α+ 3βP 2

0 + 5γP 4
0 +Qη0

)−1

is the dielectric susceptibility in the dark. Similarly,

Sph =
(
C−1 + C−1QP0χphQP0C

−1
)−1

is a modified

compliance, and dph = −C−1QP0χph is the piezoelectric
tensor, modified by illumination. The two previously
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Transition Z → Z X → Z
∂Ev→c
∂η1

(eV) -1.3606 3.4014
∂Ev→c
∂η3

(eV) 5.4423 -1.3606
∂Ev→c
∂P3

(eV.m2.C−1) 2.0581 1.7150

TABLE V. Partial derivatives of Ev→c of different transitions,
and estimated photo-induced strain by Deformation Potential
(DP) or converse piezoelectric effect (Piezo) from the Landau
model.

mentioned terms inducing strain under illumination now
appear obvious in Eq. (15).

To be complete, one should also add the energy of the
lattice/phonon gas, ΦL =

∑
n,q δnph,nq~ωnq, in which

δnph,nq and ~ωnq represent the change in population and
energy of the n−th phonon mode at wavevector q9. This
last term accounts for the thermal expansion due to heat-
ing of the lattice by electron-phonon interaction. How-
ever, DFT calculations are performed at 0 K, and we shall
not take that term into account. This can be justified, be-
yond the mere practical impossibility, by acknowledging
that this effect is at most of the same order of magnitude
as the potential deformation term9.

It is interesting to note that the photo-induced strain
and electric fields defined in Eqs. (10-11) are directly re-
lated to partial derivatives of the difference in monoelec-
tronic energies Ev→c obtained from ground state calcula-
tions. As a result, there is an easy way of comparing the
Landau model detailed in section IV B with ∆SCF cal-
culations. The derivatives of the difference in monoelec-
tronic energies involved were calculated here using the
finite difference method, and are reported in Table V, in
the case of lead titanate, for the transitions Z → Z and
X → Z.

Using Density Functional Perturbation Theory
(DFPT)63,64, we obtained the elastic constants
S11 = 4.997×10−3 GPa−1, S12 = −8.586×10−5 GPa−1,
S13 = 7.62 × 10−3 GPa−1, S33 = 1.665 × 10−3 GPa−1,
and the piezoelectric constants d33 = −11.88 pC.N−1

and d33 = 74.19 pC.N−1. From those, we estimated
the photo-induced strain resulting from the Landau
model (see Eqs. (14,15)), for both the deformation
potential mechanism (denoted ”DP”; see red dashed
line in Figs. (12 & 13)) and the converse piezoelectric
effect generated by the photo-induced electric field
(denoted ”Eph +Piezo”; see green dashed-dotted line in
Figs. (12 & 13)) in tetragonal lead titanate. Results are
also summarized in Table VI. Looking at the separate
contributions of the piezoelectric effect and deformation
potential in the Landau model, we observe that it
qualitatively matches previous conclusions of Section
IV.A, that is that the deformation potential cooperates
with the piezoelectric effect for the Z → Z transition,
but competes in the case of the X → Z. We also observe
that the Landau picture also keeps the relative ordering
in terms of magnitude of photo-induced strain between
the two transitions, Z → Z and X → Z. However, it

predicts an expansion of the lattice constant a for the
X → Z transition, while ∆SCF calculations indicate
that an in-plane contraction should rather occur. In this
specific case, the deformation potential and piezoelectric
contributions are very close in magnitude, and of
opposite sign, and so any small numerical inaccuracy
may result in this incorrect prediction. Note also that
we used the ground state values of the elastic and
piezoelectric constants, while according to Eq. (15), they
should be modified under illumination. We must also
remark that, for the X → Z transition, the predicted
magnitude of the change of lattice constant c along
the tetragonal axis within the Landau model, although
qualitatively correct, is much larger than that calculated
using ∆SCF.

Overall, this Landau model can be thought as a good
preliminary tool to get a qualitative picture of photo-
striction, and may therefore be suited to quickly screen
for efficient photostrictive materials. Nevertheless, the
simplicity of this model cannot render some effects in-
herent to optical excitation, as photo-excited electrons
and holes are treated separately as mere dopants. In
particular, excitonic effects, caused by the mutual inter-
action of the photo-excited electron and hole, cannot be
properly described in this framework, while ∆SCF cal-
culations can better describe those effects (with more or
less accuracy depending on the employed functional). As
a result, such Landau model can only be considered as a
starting point, and must either be further refined, or be
completed with first-principle calculations.

C. Comparison BaTiO3/PbTiO3/BiFeO3

As discussed in the previous section IV A and in Ref.10,
it appears that the photostriction effect in ferroelectrics
mainly originates from the converse piezoelectric effect
generated by the appearance of a photo-induced electric
field, or here, a photo-induced change in polarization8,10.
Although many experiments have been made on bismuth
ferrite, there are better piezoelectric perovskite oxides, in
particular solid-solutions using lead titanate, such as re-
laxor [Pb(Mg1/3Nb2/3)O3]1−x-[PbTiO3]x

14. It is there-
fore foreseeable that the photostrictive effect is larger in
lead and barium titanates than in bismuth ferrite, as they
have larger piezoelectric constants12,13. In order to com-
pare these systems, we ran calculations in bismuth ferrite
in its R3c ground state with LDA+U (U = 3.87 eV65)
using a plane-wave cut-off of 35 Ha and a 12 × 12 × 12
k-mesh. The transition considered in bismuth ferrite was
Z → Z (see our previous work for a sketch of the band-
structure10).

It can be seen from Fig. (14) that both barium titanate
and lead titanate transitions exhibit larger photostriction
than bismuth ferrite, at least for transitions for which
the change of polarization is of the same order of magni-
tude (see Fig. (10)). This confirms that larger piezoelec-
tric constants lead to larger photostrictive effects along
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Transition
δηDP,1

δne

δηEph+Piezo,1

δne

δηLandau,1

δne

δηFixedIons,1

δne

δη∆SCF,1

δne

δηDP,3

δne

δηEph+Piezo,3

δne

δηLandau,3

δne

δηFixedIons,3

δne

δη∆SCF,3

δne

Z → Z 4.13 3.92 8.05 1.51 5.55 −16.01 −24.46 −40.41 −4.16 −24.00
X → Z −3.06 3.26 0.20 −1.75 −0.44 7.64 −20.38 −16.19 2.15 −1.75

TABLE VI. Estimated photo-induced change of strain in tetragonal lead titanate by Deformation Potential (DP) or converse
piezoelectric effect (Eph+Piezo) as well as their sum (Landau) from the Landau model, and comparison with ∆SCF calculations.
All values reported are given in ×10−24 cm−3.

FIG. 14. (left panel) Change of pseudo-cubic lattice constant
and (right panel) change of pseudo-cubic angle for different
concentrations of photoexcited carriers in R3c BiFeO3 (BFO),
P4mm PbTiO3 (PTO) and R3m BaTiO3 (BTO). For PTO,
only the change of lattice constant along the tetragonal axis
[001] is plotted.

their polar axis (which is along [111] for BaTiO3 and
BiFeO3). We note however that, although the pseudocu-
bic change of lattice constant along [100] is much larger
in BaTiO3 as compared to BiFeO3, the larger change of
pseudocubic angle in BFO causes the shrinking of lattice
constant along [111] to be of comparable magnitude for
both materials (although still slightly smaller). As far
as we are aware of, there are very few works on photo-
striction in PbTiO3 and BaTiO3, owing to their large
bandgap (3.4 eV66 and 3.3 eV67). Most steady photo-
striction studies have been performed on bismuth ferrite,
or in PLZT ceramics1,68, a compound related to lead ti-
tanate. Photo-expansion under UV light of the order of
+2.7 × 10−3% was reported along the [101] direction53

in BiFeO3. According our calculations, an expansion
is only possible if this < 101 > direction is actually a
[101̄] direction (i.e., perpendicular to the spontaneous
polarization), in which case such expansion would occur
for a concentration of photoexcited electrons of roughly
1.6 × 1019 cm−3. According the litterature, concentra-
tions of photo-excited electrons ranging from 5× 1017 to
5 × 1019 cm−3 have been reported3,69, thus these esti-

mates are in principle reachable to experiments. In the
case of PLZT ceramics, photostriction of the order of
10−2 % have been achieved1,68, but those studies seem
to indicate an expansion of the material rather than, for
instance, the strong decrease that we predict along the
tetragonal axis. If we assume that the photostriction
measured is along the in-plane lattice constant a, and
that all transitions are of the Z → Z type, that would
correspond in our calculation to a concentration of photo-
excited carriers of roughly 6.6×1019 cm−3. Although this
appears large, this can only be taken as a crude estimate,
for (i) the piezoelectric constant of PLZT at the com-
position considered (that is in the Morphotropic Phase
Boundary) is much larger than that of lead titanate; and
(ii) the reported experiments were performed in ceram-
ics, which in many regards, differ significantly from a
single crystal material. Measurements on single crystals
and careful report of the crystallographic directions along
which photostriction is measured are thus necessary to
allow a direct comparison with the present work.

D. Polaronic effects

This work mainly focuses on the dilute limit. In other
words, we do not consider polaronic effects, which re-
quire to go to large supercells and to use more elabo-
rate functionals. Polarons, which are made of an electric
charge and the surrounding lattice relaxation70, may al-
ter the relaxation of the lattice under illumination. The
LDA functional used in this work does not describe ex-
change and correlation well enough to properly localize
the extra-charge and form a small polaron. Using hybrid
functionals such as HSE06, or the LDA+U correction
may be solutions, at least to study small hole polarons40.
Typically, since small hole polarons are not stable in lead
titanate40, we do not expect it to alter the photostriction
effect in that material. On the other hand, polarons may
be of importance in the relaxation of the lattice under
illumination in BaTiO3. How they may impact the pho-
tostriction is still an unresolved question, and is the topic
of a future work.

V. CONCLUSION

In this work, the ∆SCF method was used to calcu-
late, at a purely ab-initio level, photostriction effects in
two classical ferroelectric materials, namely barium and
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lead titanates. It is found that the pseudo-cubic lattice
constant of R3m BaTiO3 shrinks upon increasing the
number of photoexcited electrons, and so is the lattice
constant of P4mm PbTiO3 along its polar axis, for our
considered transitions. Combined with a previous work
on bismuth ferrite10, it therefore appears to be a gen-
eral trend that directions close or along the polarization
shrink upon photoexcitation, as mostly originating from
the converse piezoelectric effect generated by the photo-
induced change of polarization. In particular, we showed
that lead titanate, which has the strongest piezoelectric
constant among BTO, PTO and BFO, also exhibits the
strongest photostriction effect along the polar axis (for
similar photo-induced change of polarization). On the
other hand, we showed in the case of lead titanate that,
in directions transverse to the polar axis, the deformation
potential mechanism becomes more significant, and its
competition or cooperation with the piezoelectric mech-
anism decides whether the photostriction effect is large
or not for a particular transition.

Moreover, a transparent and rather straightforward
Landau model is developed and presented here. This
model is found to provide a simple and fast method to
screen for photostrictive materials, based on ground state
DFT calculations only. Although its conclusion may so
far only be taken as qualitative, further refinements may
lead to better quantitative estimates to guide the design
of materials with high photostriction conversions.

We therefore hope that the present manuscript is of
benefits to the scientific community, and that our predic-
tions will be experimentally confirmed soon.
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Appendix A: Born charges tensor

In order to access the change of polarization, we com-
puted the Born charges tensor from Density Functional
Perturbation Theory, taking the ferroelectric ground state
phase as the reference. Indeed, the Born charges tensor
allows to calculate the change in polarization with respect
to a reference configuration,

δPα =
e

V

∑
I,β

ZI,αβδuI,β , (A1)

with e being the elementary charge, ZI,αβ the Born
effective charge tensor of atom I, and δuI,β the displace-

ment of the I-th atom in direction β with respect to the
reference configuration. Since we are interested in change
of polarization with respect to the unperturbed ferroelec-
tric ground state in our case, it is only natural to take
the latter as the reference state.

Of course, using Born charges is an approximation to
compute the polarization, since these charges are typi-
cally computed in the ground state while we are dealing
here with excited states. However, note that the number
of electrons effectively excited is typically of the order of

1
Nk,1Nk,2Nk,3

where Nk,α is the number of k-points in the

direction α. Since we use k-meshes which are at least
16 × 16 × 16, the number of excited electrons in a unit
cell is of the order of 4.8×10−4 e. This a very small num-
ber. One can also wonder whether the electronic dipole
associated with the excitation of the electron-hole pair
is important as well. Since the photoexcited electron is
located on the titanium , while the photoexcited hole is
mostly seating on oxygens as seen from Fig. (4), or pro-
jected Density of States or band structures30, the induced
electronic dipole can be estimated as the product of the
electronic charge times the relative displacement of the
titanium with respect to the oxygen. This, divided by the
volume, results in an induced polarization of the order of
2×10−3 µC.cm−2 and 1×10−3 µC.cm−2 in lead titanate
and barium titanate, for concentration of photoexcited
electrons of roughly 7 − 10 × 1018 cm−3, for which the
change of polarization calculated from Born charges is
already of the order 10−1 µC.cm−2 (see Fig. (10)).

Let us now provide the calculated values of the Born ef-
fective charge tensor. In the primitive axes of the tetrago-
nal cell of lead titanate, the Born effective charge tensors
are given by:

Z∗Pb =

4.0641 0 0
0 4.0641 0
0 0 4.0641

 , (A2)

Z∗Ti =

8.0735 0 0
0 8.0735 0
0 0 6.8303

 , (A3)

Z∗O1
=

−2.4581 0 0
0 −5.1882 0
0 0 −2.0071

 , (A4)

Z∗O3
=

−2.0830 0 0
0 −2.0830 0
0 0 −4.3810

 , (A5)

with O1 representing an oxygen with coordinates
(1/2, 0, 1/2 + δzO1

), and O3 being an apical oxygen
(1/2, 1/2, δzO3

).
Moreover, in the primitive axes of the R3m rhombo-

hedral cell of barium titanate, we have
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Z∗Ba =

 2.4255 −0.0103 −0.0103
−0.0103 2.4255 −0.0103
−0.0103 −0.0103 2.425

 , (A6)

Z∗Ti =

 6.7276 −0.2408 −0.2408
−0.2408 6.7276 −0.2408
−0.2408 −0.2408 6.7276

 , (A7)

Z∗O1
=

−1.80487 −0.00070 0.07887
−0.0070 −1.80487 0.07887
0.1700 0.1700 −4.95047

 , (A8)

Z∗O2
=

−1.8048 0.0788 −0.0070
0.1700 −4.95047 0.1700
−0.0070 0.07887 −1.80487

 , (A9)

and

Z∗O3
=

−4.9505 0.1700 0.1700
0.0788 −1.8048 −0.0070
0.0788 −0.0070 −1.8048

 , (A10)

with O1 = (1/2 + δxO, δzO, 1/2 + δxO), O2 =
(δzO, 1/2 + δxO, 1/2 + δxO) and O3 = (1/2 + δxO, 1/2 +
δxO, δzO).

Appendix B: Piezoelectric Tensor

Let us also provide the elements of the piezoelectric
tensors we computed. In tetragonal lead titanate, the
calculated piezoelectric tensor is, in the primitive axes,

gPTO =


0 0 −0.01966
0 0 −0.01966
0 0 0.12280
0 0.04687 0

0.04687 0 0
0 0 0

 m2.C−1. (B1)

In barium titanate, in the primitive rhombohedral
axes, the tensor is

gBTO =


−0.06000 0.01351 0.01351
0.01351 −0.06000 0.01351
0.01351 0.01351 −0.06000
0.00031 −0.00954 −0.00954
−0.00954 0.00031 −0.00954
−0.00954 −0.00954 0.00031

 m2.C−1.

(B2)
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