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We propose a strong-disorder renormalization-group approach to study the Anderson localization
transition in disordered tight-binding models in any dimension. Our approach shifts the focus from
the lower to the upper critical dimension, thus emphasizing the strong-coupling/strong-disorder
nature of the transition. By studying the two-point conductance, we (i) show that our approach is
in excellent agreement with exact numerical results, (ii) confirm that the upper critical dimension for
the Anderson transition is d+

c = ∞, (iii) find that the scaling function shows a previously reported
‘mirror symmetry’ in the critical region, and (iv) demonstrate that the range of conductances for
which this symmetry holds increases with the system dimensionality. Our results open an efficient
avenue to explore the critical properties of the Anderson transition using the strong-coupling high-
dimension limit as a starting point.

PACS numbers: 71.10.Fd, 71.23.An, 71.30.+h, 72.15.Rn

Introduction. — The Anderson localization transition
is a nontrivial consequence of interference effects in dis-
ordered quantum systems [1]. Its simplest realization
is provided by the tight-binding model which describes
electronic states in a “dirty” conductor by mimicking
the effect of impurities through a random onsite poten-
tial. One main challenge in investigating the transition
is the limited range of applicability of well-known ana-
lytical techniques. The traditional “weak-localization”
approach [2, 3] is based on the fact that, in the vicin-
ity of the lower critical dimension d−

c = 2, the transition
is found at weak disorder and, therefore, perturbative
methods can be used (for a review, see, e.g., Ref. 4).
More recent numerical results (see, e.g., Ref. 5 and ref-
erences therein), however, demonstrated that predictions
from such 2 + ǫ expansions provide poor guidance even
in d = 3, as in other theories that start from the lower
critical dimension [6–10].

On the other hand, although for most critical phe-
nomena the upper critical dimension d+

c has provided a
much better starting point, so far this approach has not
been available for the Anderson localization transition.
Even the value of d+

c is controversial: there are reports
of d+

c = 4, 6, 8 and d+
c = ∞ [11–16]. More importantly,

since in high dimensions the transition point shifts away
from weak disorder, an appropriate strong-disorder ap-

proach is required.

In this letter, we show how a Strong-Disorder
Renormalization-Group (SDRG) method is able to im-
plement this program, through which quantitatively ac-
curate results can be obtained in all dimensions. We
will thereby show compelling evidence that (i) d+

c = ∞,
(ii) already at d = 3 the critical behavior is governed
by strong-disorder, and (iii) there is a remarkable ‘mir-
ror symmetry’ of the scaling function close to criticality,
whose region of validity grows with the dimension but
remains quite sizable even at d = 3. The computational

cost grows as N ln N , where N is the number of sites,
making this the method of choice for the much sought-
after strong-disorder approach to the Anderson localiza-
tion transition.

Model and method. — We study the d-dimensional
tight-binding model

H = −
∑

i,j

(tijc†
i cj + h.c.) +

∑

i

εic
†
i ci , (1)

where c†
i (ci ) is the canonical creation (annihilation) op-

erator of spinless quantum particles at site i, tij = tji

is the hopping amplitude between sites i and j, and εi

is the onsite energy. The energies εi are independently
and identically distributed random variables drawn from
a uniform distribution of zero mean and width W , and
the hoping amplitude tij = 1 if sites i and j are connected
(which is model-dependent), otherwise it is zero.

We will focus on the dimensionless conductance defined
as

g ≡ gtyp = 〈T 〉geo /
(

1 − 〈T 〉geo

)

, (2)

where T is the transmittance, and 〈· · ·〉geo = exp 〈ln · · ·〉
denotes the geometric average. In this work, we will only
consider leads that are connected to single sites of the
sample. Therefore, g is the two-point conductance.

In order to compute g, we use the SDRG method
[17–19], which has been successful in describing the low-
energy behavior of a plethora of random quantum spin
systems (for a review, see Ref. 20). The method consists
of an iterative elimination of the strongest local energy
scale Ω = max{|εi|, |tij |} in the system (with the excep-
tion of those connected to the external wires) and renor-
malizing the remaining ones in the following fashion [21]:
if Ω = |εi|, then site i is eliminated from the system and
the remaining couplings are renormalized to

ε̃k = εk − t2
ik/εi, (3)

t̃kl = tkl − tkitil/εi; (4)
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on the other hand if Ω = |tij |, then sites i and j are
removed, yielding the renormalized couplings

ε̃k = εk −
εit

2
ik − 2tijtiktjk + εjt2

jk

t2
ij − εiεj

, (5)

t̃kl = tkl +
εjtiktil − tij(tiktjl + tiltjk) + εitjktjl

t2
ij − εiεj

. (6)

In this way, we progressively eliminate sites until there is
a single renormalized link ε̃α-t̃α,β-ε̃β connecting the leads
at sites α and β from which the transmittance T can be
computed straightforwardly. Note that, under the SDRG
flow, disorder in the tij ’s is generated even if initially they
are not random.

These transformations have the following interpreta-
tion. When a site is decimated, it means that a particle
is strongly repelled (attracted) to it if the local potential
is positive (negative). A “localized” particle on this site
then corresponds to a state on the top (bottom) of the
band which makes no contribution to the conductance
(we set the Fermi energy at the band center). Similarly,
two sites must be removed from the system when con-
nected by a strong hopping because a particle resonating
between them corresponds to states far away from the
band center.

It is interesting to note that, although relations
(3)—(6) are computed in perturbation theory and thus,
in principle, are justified only in the strong-disorder limit,
they are in fact exact transformations since they pre-
serve the Green’s functions [22, 23]. For this reason,
one could simply perform the real-space RG transfor-
mations (3)—(6) without worrying about searching for
the highest local energy scale Ω. However, as can be
seen from Eqs. (4) and (6), the reconnection of the lat-
tice requires an increasing amount of memory and the
procedure would quickly become impractical. For this
reason, we adopt the SDRG philosophy, which is indeed
an energy-space RG. It allows us to keep the amount
of memory small by disregarding renormalized hoppings
that are simply too small. In our adaptation, therefore,
we set a maximum coordination number kmax per site,
i.e., we implement the SDRG procedure but only keep
track of the strongest kmax hoppings out of each site.
In the literature, one can find other proposed schemes
for disregarding unimportant couplings [24–26]. As we
show below, setting kmax = 20 is sufficient for obtaining
accurate results in all dimensions. A detailed study com-
paring the exact (in which no coupling is disregarded)
and the modified SDRG will be given elsewhere.

Infinite-dimensional limit. — Let us start by apply-
ing our SDRG method to the Erdős–Rényi (ER) random
graph [27]. We consider a system of N ≫ 1 sites in
which two given sites i and j are connected with proba-
bility p (tij = 1) and disconnected with probability 1 − p
(tij = 0). Since the average number of sites at a “dis-
tance” L from a particular site increases exponentially

with L, it effectively corresponds to the limit of d → ∞.

In order to have a well-defined length scale, the contact
leads are attached to two sites at the average shortest
“distance” LER = ln N/ ln 〈k〉 [28]. Here, 〈k〉 = p (N − 1)
is the average coordination number which is chosen to be
greater than the percolation threshold kc = 1 [29]. We
verified that our final results do not depend on the exact
value of 〈k〉 as long as it is near and above kc.

The transition between the conducting and insulat-
ing phases manifests itself in the different behavior of
the two-point conductance when varying the disorder
strength W [see Fig. 1(a)]. In order to pinpoint the crit-
ical point Wc, we noted it is more convenient to study
the “weighted” two-point conductance gw(L) = N(L)g
[30], from which we also obtain the localization “length”
ξ′ by fitting ln gw ∼ −L/ξ′ in the localized phase [see
Fig. 1(b)]. The extra factor N(L) = 〈k〉 (〈k〉 − 1)L−1

counts the number of sites located at the “distance” L
from a given site. We find the critical disorder value
Wc = 14.5(3) (exact SDRG) and Wc = 13.0(3) (mod-
ified SDRG). Our estimate for the localization length
exponent (defined via ξ′ ∼ |W − Wc|−ν′

and consider-
ing only ξ′ that are less than LER in order to diminish
the finite-size effects) is ν′ = 0.98(4) (exact SDRG) and
ν′ = 1.01(5) (modified SDRG) which is consistent with
the exact value ν′ = 1 in d → ∞ limit [30, 31]. In the
metallic phase, the correlation length is obtained by di-
viding LER by ξ′ such that all the curves gw/gwc collapse
onto a single curve. This procedure is precise up to an
irrelevant global pre-factor. In this way, we confirm that
ν′ is the same in both localized and delocalized phases
(within the statistical error).

Finally, we argue that the correct value of the corre-
lation length exponent is the mean-field value ν = 1/2.
Our reasoning is similar to the one given for the Bethe
lattice in Ref. 32. The embedding of an ER random
graph into an infinite-dimensional lattice implies that ev-
ery two sites that are directly connected may be seen as
defining a different lattice direction. Therefore, if one
propagates between sites that are separated by L direct
connections, no two consecutive steps of this propagation
lie in a straight line, but rather in different orthogonal di-
rections. It follows that the actual distance between the
sites is

√
L. Therefore, the actual correlation length is

ξ =
√

ξ′ implying a mean-field exponent ν = ν′/2 = 1/2.

Cubic lattice in 3D. — We now apply the SDRG
method to the cubic lattice in d = 3. Here, tij = 1 if
i and j are nearest neighbors, and tij = 0 otherwise. We
have used systems of linear sizes L = 8, 10, 12, 15, and 20
with periodic boundary conditions and the leads were at-
tached to the corner and to the center sites of the sample
(maximum possible distance). In the inset of Fig. 2(a),
we plot g for various disorder strengths W . From the fit
ln g ∼ −L/ξ, we were able to produce the scaling plot
shown in the main panel. We find Wc = 16.5(5) (exact
SDRG) and Wc = 17.5(5) (modified SDRG). In Fig. 2(b),
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Figure 1. (a) The typical two-point conductance g of the ER
random graph with 〈k〉 = 3.0 and N = 3LER , LER = 4, . . . , 7
for several disorder parameters W using the exact SDRG pro-
cedure (colorful solid lines) and our modified algorithm using
kmax = 20 (colorful symbols). We average over as many dis-
order realizations as needed to reach 5% of precision. Inset:
the weighted conductance gw as a function of LER. The leg-
end corresponds to the inset, not the main panel. (b) The
inverse localization length ξ′ (Lyapunov exponent) near the
localization transition.

we plot the inverse localization length ξ (Lyapunov ex-
ponent) for different distances from the transition point
which allowed us to obtain the exponent ν = 1.57(1), in
agreement with previous results [5, 33–35]. This result
is obtained by fitting only those data in which ξ < 20 in
order to diminish the finite-size effects, but it turns out
to fit quite well the entire data set.

Finally, we compare the required CPU time of the
methods of exact (full) diagonalization (ED) of the
Hamiltonian (1), the exact and the modified SDRG in
the inset of Fig. 2(b). As expected, the ED method scales
∼ N3 where N = L3. For small systems, the exact SDRG
method is considerably faster but becomes comparable
to ED for larger systems due to the proliferation of hop-
pings. The modified SDRG method, on the other hand,
is far more efficient, with CPU time scaling ∼ N ln N , as
in other methods that target only a single state. This re-
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Figure 2. Same as in Fig. 1 for a 3D cubic lattice of sizes L =
8, 10, 12, 15, and 20 with periodic boundary conditions. The
inset of panel (b) shows the CPU time (in arbitrary units) for
systems of N = L3 sites in the critical regime W = 17 when
using the methods of exact diagonalization, exact SDRG, and
modified SDRG.

sult holds both in the localized and in the metallic phases
(provided one is not too far from criticality in the latter
case) [36].

Comparing different theories. — In Fig. 3 we present
our results for the dimensional dependency of ν in which
we considered d = 3, 4, 6, 10 and ∞. For comparison, we
also plot the recent numerical results by Ueoka and Slevin
[5] and García-García and Cuevas [37]. Our results are
consistent with theirs for d = 3 and interpolates between
them for higher d. In addition, we plot the results of
well-known theories, namely, the 2+ǫ expansion [38], the
self-consistent theory proposed by Vollhardt and Wöllfle
(which yields 1/ν = d − 2 for 2 < d < 4, and ν = 1/2
for d ≥ 4) [8], the phenomenological proposal by Shapiro
[which assumes β = d−1−(1+g) ln(1+g−1), from which
ν can be obtained via β ≈ ν−1 ln(g/gc) near criticality]
[39], the improved Borel-Padé analysis of Ref. 5, and the
semiclassical theory ν−1 = 2 − 4/d [40]. Except for the
last two, it is apparent how these theories lead to very
poor results away from lower critical dimension d−

c =
2. The improved Borel-Padé analysis of Ref. 5 rewrites
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Figure 3. The inverse of the critical exponent ν as a function
of 1/d. For comparison, we show the numerical results by
Ueoka and Slevin [5] (red triangles) and García-García and
Cuevas [37] (blue diamonds). Error bars are about the size
of the symbols. Analytical predictions of other well-known
theories are also shown in order to stress their limited range
of reliability (see main text).

the ǫ-expansion for ν at five-loop order [38] in such a
way as to yield ν = 1/2 for ǫ → ∞. Surprisingly, the
outcome seems to follow the trend of our data. Finally,
for comparison, a cubic fit of our data (adding the point
ν−1 = 0 for d = 2) yields the coefficients c0 = 2.00, c1 =
−6.46, c2 = 11.52, and c3 = −13.24.

Mirror symmetry. — In Ref. 41, it was pointed out
that the experimental data on the two dimensional metal-
insulator transition of electron gases [42, 43] showed a
remarkable “mirror symmetry” phenomenon. This is de-
fined by the existence of a range of disorder strengths
δW = W − Wc close to criticality such that g(δW ) =
1/g(−δW ). The significant role of strong coupling (i.e.,
strong disorder) was also emphasized in the study of this
mirror symmetry phenomenon [41]. Let us now analyze
our results in this light. It is useful to define a mirror
symmetry range. Let δWmax > 0 be the maximum dis-
tance from criticality for which mirror symmetry holds
(within our numerical precision). The mirror symmetry
range is then defined as G = gc/g(δWmax). It can be
readily obtained from the main plots in Figs. 1(a) and
2(a) by, for instance, reflecting the localized branch over
the metallic one and identifying the point of mismatch.
In Fig. 4, the mirror symmetry range is plotted as a func-
tion of the dimension. Clearly, the greater the dimension,
the greater the mirror symmetry range. This provides
strong constraints on the form of the beta function in the
critical region, namely, β = ν−1 ln(g/gc) becomes a bet-
ter approximation around the critical point (in a wider
range of conductances) as the system dimensionality in-
creases. This is in strike contrast with weak-disorder ap-
proaches such as the 2 + ǫ expansion in which the mirror
symmetry range, G ∼ 1+ ǫ, is never so large. Our results
can thus be interpreted as evidence that the same slow
logarithmic form of the beta function persists beyond the
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Figure 4. The inverse of the Mirror Symmetry Range G as
a function of 1/d. The dashed line is the best fit for G−1 =
a exp(b/d) where a = 2.1 × 10−6 and b = 31.86.

insulating limit well into the critical regime. This fea-
ture can be used as the basis of a perturbative expansion
around the noninteracting strong-disorder limit.

Discussions and conclusions. — We have devised a
strong-disorder approach to the Anderson localization
transition. We have implemented it numerically in di-
mensions as high as d = 10 and ∞ and verified that the
upper critical dimension of the transition is infinity, and
that the transition itself is in the strong-coupling regime,
with an increasing mirror symmetry range as the sys-
tem dimensionality is increased. Based on this, we pro-
pose strong-coupling (strong-disorder) as the best start-
ing point for a study of this transition and we show how
this program can be efficiently carried out.

Let us discuss the validity of our results. The modi-
fied SDRG method is self-consistently justified only if the
system flows to the infinite-disorder limit, which is not
the case. However, it is known that the SDRG method
can be very accurate even in such cases [44]. Given that
our results for the 3D case are consistent with those of
exact diagonalization, and that the method is expected
to become more accurate in higher dimensions, it is very
plausible to conclude that the results here presented are
exact within our statistical accuracy.

Although we have applied our method to the simplest
tight-binding model, it can be readily generalized for
more general cases such as those with long-range hop-
pings or in the presence of magnetic fields. Moreover,
it is computationally cheap since the computer resources
needed scale only as N ln N with the system volume N .
We expect this method to become a powerful tool in the
study of Anderson transitions in many different physical
situations.
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