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Abstract 

Topological semimetals represent a new class of quantum materials hosting Dirac/Weyl 

fermions. The essential properties of topological fermions can be revealed by quantum 

oscillations. Here we present the first systematic de Haas–van Alphen (dHvA) oscillation studies 

on the recently discovered topological Dirac nodal-line semimetal ZrSiS. From the angular 

dependence of dHvA oscillations, we have revealed the anisotropic Dirac bands in ZrSiS and 

found surprisingly strong Zeeman splitting at low magnetic fields. The Landé g-factor estimated 

from the separation of Zeeman splitting peaks is as large as 38. From the analyses of dHvA 

oscillations, we also revealed nearly zero effective mass and exceptionally high quantum 

mobility for Dirac fermions in ZrSiS.  These results shed light on the nature of novel Dirac 

fermion physics of ZrSiS.   
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I. Introduction 

The recent discoveries of three-dimensional (3D) topological Dirac and Weyl semimetals 

[1-14] have stimulated enormous interest. These materials are characterized by symmetry-

protected discrete band touching points in the momentum space, at which the electron energy 

bands display linear crossing near the Fermi level [1, 3, 7-8]. The exotic properties resulting 

from Dirac and Weyl fermions hosted by Dirac/Weyl cones, such as extremely high bulk carrier 

mobility [15], large magnetoresistance [15], and potential topological superconductivity [16], 

hold tremendous potential for technological applications. In 3D Dirac semimetals such as Na3Bi 

[1-2] and Cd3As2 [3-6], the four-fold degenerate band crossings at Dirac nodes are protected by 

the crystal symmetry. When the spin degeneracy is lifted by broken time-reversal or spatial 

inversion symmetry, a Dirac state evolves to a Weyl state where each Dirac cone splits to a pair 

of Weyl cones with opposite chirality[1, 3, 7-8]. The inversion symmetry broken Weyl states 

were demonstrated in transition metal monopnictides (Ta/Nb)(As/P) [7-14], photonic crystals 

[17], and (W/Mo)Te2 [18-27]. The spontaneous time reversal symmetry breaking Weyl state has 

been reported in YbMnBi2 [28] and predicted in magnetic Heusler alloys [29-33] and the 

magnetic members of R-Al-X (R=rare earth, X=Si, Ge) compounds [34]. 

In addition to the aforementioned topological semimetals with discrete Dirac/Weyl nodes, 

a new type of topological semimetal with Dirac bands crossing along a one-dimensional line in 

momentum space has also been predicted [35-43] and experimentally observed in several 

compounds such as PbTaSe2 [44], ZrSiS [45-46], and PtSn4 [47]. Among these materials, ZrSiS, 

which possesses layered tetragonal structure (see Fig. 1a) [43, 45, 48], shows distinct properties. 

Firstly, the energy bands crossing the Fermi level in ZrSiS are all Dirac bands [45], making it an 
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ideal system to study novel physics of Dirac electron without interference of normal electrons. 

Secondly, this material harbors two types of unusual Dirac cones [45]: one forms a closed loop 

of Dirac nodes near the Fermi level in Brillouin zone and has a much wider energy range of 

linear dispersion (up to 2eV) compared with other known Dirac/Weyl materials. The other has an 

isolated Dirac node below EF near the X point in the Brillouin zone and represents the first 

example of a two-dimensional (2D) Dirac cone generated by a square lattice and protected by the 

non-symmorphic symmetry [45, 49], which does not open a gap regardless of the spin-orbit 

coupling strength [49]. Previous studies also showed the 2D Dirac state is hybridized with an 

unusual surface state [45]. These unique features make ZrSiS a particularly interesting platform 

for the study of novel Dirac fermion physics.    

The magneto-transport and quantum oscillation measurements are important techniques 

for extracting the relativistic natures of Dirac fermions in topological quantum materials. High 

mobility and light effective mass in ZrSiS has been probed in previous Shubnikov-de Hass (SdH) 

oscillation studies [50-53]. However, electron transport in metals is governed by scattering 

mechanisms. The scattering probability varies with the number of available states that electron 

can be scattered into [54], therefore it oscillates in concert with the oscillations of density of state  

near Fermi level DOS(EF) and gives rise to SdH oscillations. Because SdH oscillations originate 

from the oscillating scattering rate, it can be complicated by the detailed scattering mechanisms, 

particularly in materials with lower dimensionality. For example, in some layered organic 

conductors, oscillations of the interlayer velocity in the SdH effect can interfere with the DOS(EF) 

oscillation, which leads the observed resistivity oscillations to substantially deviate from the 

prediction by the standard quantum oscillation theory, i.e. the Lifshitz-Kosevich (LK) theory (see 

Ref [55] and references therein). In contrast, the de Haas-van Alphen (dHvA) effect can always 
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be well fitted to the LK model [55], since the oscillating magnetization directly originates from 

the oscillations of electrons’ free energy. As a result, the dHvA effects can provide more direct 

information on Fermi surface (FS), particularly for those materials that are not exactly three 

dimensional (3D), such as ZrSiS which possesses a layered structure (Fig. 1a). 

In this work, we report the first observation of dHvA quantum oscillations in ZrSiS single 

crystals under low magnetic fields, from which we have found important Dirac fermion 

properties that were not revealed in previous SdH studies [50-52]. In contrast with the SdH 

oscillations which attenuate quickly when the field is rotated close to the crystallographic ab-

plane, the dHvA oscillations in ZrSiS were found to be strong under arbitrary field orientations. 

By taking advantage of this, we were able to investigate anisotropic behavior of Dirac cone states 

in ZrSiS and found that the FS enclosing the Dirac nodal line is highly anisotropic and of 

significant 3D character. In addition, we observed a very small Fermi pocket of strong 2D 

characteristic. The Dirac fermions hosted by this pocket exhibit distinct properties, including 

nearly zero effective mass (~0.025m0) and exceptionally high quantum mobility (104 cm2/Vs). 

These superior Dirac fermion properties, combined with a large Landé g-factor (~38), result in 

surprisingly strong Zeeman splitting of Landau levels (LLs) at low magnetic fields. These new 

findings pave a way for further understanding novel physics of Dirac fermions in ZrSiS. 

II. Experiments 

The ZrSiS single crystals were prepared by a chemical vapor transport method. The 

stoichiometric mixture of Zr, Si, and S powder was sealed in a quartz tube with iodine used as a 

transport agent (2 mg/cm3). Plate-like single crystals with metallic luster (Fig. 1a, inset) were 

obtained via the vapor transport growth with a temperature gradient from 950 °C to 850 °C. The 
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composition and structure of ZrSiS single crystals were checked by using X-ray diffraction and 

an energy-dispersive X-ray spectrometer. The magnetization measurements were performed by a 

7T SQUID magnetometer (Quantum Design). The angular-dependence of dHvA oscillations 

were measured using a home-made sample holder. The magnetotransport measurements, 

including resistivity and Hall effect measurements, were performed using a standard four- and 

five- probe technique in a Physics Properties Measurement System (PPMS, Quantum Design). 

III. dHvA oscillations in ZrSiS 

In Fig. 1b, we present the isothermal out-of-plane (B//c) magnetization measured up to 

7T of a ZrSiS single crystal, which exhibits strong dHvA oscillations superimposed on a 

paramagnetic background. The oscillations become much more visible after removing the 

background (Fig. 1c); they extend to a field as low as ~ 0.7 T near 2K and can sustain up to 20K. 

From Fig. 1b, it can be seen clearly that the oscillations consist of two components with distinct 

frequencies. The higher frequency component, obtained by filtering the lower frequency 

component, is shown in Fig. 1d. From the Fast Fourier transform (FFT) analyses of the 

oscillatory magnetization ΔM, we have derived two oscillation frequencies which are 8.4 T (Fα) 

and 240 T (Fβ) respectively (Fig. 2a). We note similar low and high frequencies have also been 

observed in previous SdH [50-53] and thermoelectric oscillation studies [56].  As will be 

discussed later, both the low and high frequency oscillations originate from the Fermi surface 

(FS) comprised of the nodal-line bands, The extreme FS cross section areas AF estimated using 

the Onsager relation F = (Φ0/2π2)AF (Φ0 = h/2e is the magnetic flux quantum) are ~0.08 and 

2.3nm-2, respectively, for the Fermi surface pocket associated with Fα and Fβ. Additionally, we 

also note that the Fα component exhibits a remarkable 2nd harmonic peak in its FFT spectrum 
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(Fig. 2a), while the Fβ component does not. The Fα component also has a much greater 

oscillation amplitude than the Fβ component (see Fig. 1c). A large quantum oscillation amplitude 

and strong high harmonic components are generally expected for 2D/quasi-2D band structures 

[55]. Indeed, the angular dependences of Fα and Fβ  presented below have revealed that the FS 

comprised of the Fβ  band is of 3D nature, whereas the FS comprised of the Fα band is of 

remarkable quasi-2D character though overall it is 3D.  

For the Fα component, the dHvA oscillations exhibit a surprisingly strong Zeeman effect 

at low fields, which manifests itself as broadening and splitting in the oscillation peaks, as shown 

in the upper inset to Fig. 1c where the split peaks are indicated by arrows. With increasing 

temperature from 1.8K to 12K, the split peaks gradually merge into a single one, consistent with 

the general expectation for the Zeeman effect, i.e. the thermal broadening of LLs would smear 

out the Zeeman splitting. The strong Zeeman splitting of oscillation peaks is shown more clearly 

in the susceptibility dM/dB oscillations, as seen in the lower inset of Fig. 1c where the high 

frequency oscillation component (Fβ) has been filtered out for clarity. The threshold field for 

discernible peak splitting is as low as 1.7 T, which, to the best of our knowledge, is the smallest 

among all known topological semimetals (e.g., B > 17T for Cd3As2 [57-59] and TaP [60]). Such 

surprisingly strong Zeeman splitting reflects the superior topological Dirac fermion properties, 

including nearly zero effective mass and exceptionally high quantum mobility. The value of the 

Landé g-factor can be evaluated from the peak splitting. In the case of the Zeeman energy being 

smaller than the half of LL spacing [54], g is estimated to be ~38 using 
*
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and free electron mass (~0.025, see below), and F is the quantum oscillation frequency. 

Alternatively, from the spin-zero method which is frequently used in quantum oscillation studies 

of organic conductors [55] and High-Tc cuprates [61-63], a similar g-factor (g=37.4) can also be 

obtained from the angular dependence of the dHvA oscillation amplitude (see Supplementary 

Material for the discussions of spin-zero method).  

The nature of Dirac electrons participating in quantum oscillations can be revealed from 

further quantitative analyses of dHvA oscillations. If higher harmonic frequency is not 

significant, the oscillatory magnetization can be described using the 3D Lifshitz-Kosevich (LK) 

formula [54, 64] which takes Berry phase into account for a Dirac system [65]: 

1/2 sin[2π( )]T D S
FM B R R R
B

γ δΔ ∝ − − −  (1) 

where RT =αTμ/[Bsinh(αTμ/B)], RD =exp(-αTDμ/B), RS =cos(πgμ/2), and μ=m*/m0. TD is Dingle 

temperature, and α = (2π2kBm0)/(he). Both the thermal and Dingle damping factors, i.e. RT and 

RD, are due to LL broadening, caused by the finite temperature effect on the Fermi-Dirac 

distribution and the electron scattering respectively. The spin reduction factor RS due to Zeeman 

splitting, however, is field-independent and cannot describe any peak splitting in Eq. 1. To 

reproduce the spin-splitting of oscillation peaks, a more complicated LK formula with higher 

harmonic terms being included is necessary [54]. The oscillation of ΔM is described by the sine 

term with the phase factor γ δ− − , in which 
1
2 2

Bφγ
π

= −  and φB is Berry phase. The phase shift δ, 

which is determined by the dimensionality of FS, is 0 and ±1/8, respectively for 2D and 3D cases. 

For the 3D case, the sign of δ depends on whether the probed extreme cross-section area of the 
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FS is maximal (-) or minimal (+) [64]. We will show below that our observed dHvA oscillations 

can be well fitted to the above LK formula.   

The fit of the temperature dependence of the FFT amplitude to the thermal damping 

factor RT (Fig. 2b) yields an effective cyclotron mass of m*
α = 0.025m0 for the low-frequency 

component Fα and m*
β = 0.052 m0 for the high-frequency component Fβ, much lower than those 

obtained from the SdH oscillations (0.1~0.27 m0) [50-52]. Such a discrepancy is likely due to the 

fact that the LK formula cannot always precisely describe the SdH oscillations in low layered 

materials [55] as indicated above. Furthermore, for the Fα-band, the previous analyses of SdH 

oscillations did not take the Zeeman splitting effect into account [50-52], as will be discussed 

later. The inverse magnetic field 1/B used in the RT fit is the average inverse field used for FFT 

analysis. The nearly zero effective mass for the Fα-band derived from our dHvA analyses is 

comparable with that of the gapless Dirac semimetal Cd3As2 [15, 57-59, 66]. By fitting the field 

dependence of the oscillation amplitude normalized by RT to RD (Fig. 2c), the Dingle temperature 

TD was determined to be 8.8 K for the Fα band at 1.8K (note that due to the strong Zeeman 

splitting of oscillation peaks, the oscillation amplitude used in fitting is taken from the oscillation 

minima). The quantum relaxation time τq [= ħ/(2πkBTD)] corresponding to TD = 8.8K is 1.4 ×10-13 

s, from which the quantum mobility μq [= eτ/m*
α] is estimated to be 10000 cm2/Vs. Increasing 

temperature leads to an enhanced scattering rate, which gives rise to increased TD (Fig. 2c) and 

suppressed μq; e.g.  μq estimated from the Dingle plots (Fig. 2c) for 5 K and 10 K drops to 5600 

and 3255 cm2/Vs respectively. For the Fβ oscillation component without showing Zeeman 

splitting effect, the oscillation pattern can be fitted directly using the LK formula (Eq. 1) with the 

fixed parameters of an effective mass (0.052m0) and frequency (240T). As shown in Fig. 1d, the 

LK formula reproduces the oscillations at T=2K very well, yielding TD ~6 K and a mobility of 
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6868 cm2/Vs. The extracted quantum mobilities for both types of Dirac states are much higher 

than those obtained from the SdH oscillations (μq=1~6×103 cm2/Vs) [50, 52], but are 

comparable to those  of Dirac semimetals Cd3As2 [57] and Na3Bi [67]. The underestimated μq 

from the SdH analyses may be caused by the Zeeman effect not being taken into consideration 

and the possible breakdown of the LK formula for the SdH oscillations in layered materials as 

indicated above. 

In addition to light effective mass and high mobility, the Berry phase of π accumulated 

along cyclotron orbits is another key feature of Dirac fermions. The Berry phase is manifested in 

the phase shift in quantum oscillations, which can be determined either directly from the fit to 

the LK formula (Eq. 1) or the LL index fan diagram. From the LK-fit of oscillations with Fβ = 

240T (Fig. 1c), a phase factor of γ δ− − =1.21 is obtained, from which the Berry phase φB is 

determined to be -0.83π (δ = -1/8) or -0.33π (δ = 1/8), as shown in Table 1, which is clearly non-

trivial. This is consistent with the previous SdH [50-51, 53] and thermoelectric [56] quantum 

oscillation studies from which non-trivial Berry phase for the high frequency band has also been 

obtained by fitting the oscillation patterns or by using the LL fan diagram (i.e. the LL index n as 

a function of the inverse of magnetic field 1/Bn). As for the oscillations with Fα = 8.4T, a direct 

fit to the above LK formula is impossible due to strong Zeeman splitting, but the Berry phase can 

be evaluated using the LL fan diagram. According to customary practice, the integer LL indices 

n should be assigned when the Fermi level lies between two adjacent LLs [68-69] , where the 

density of state near the Fermi level DOS(EF) reaches a minimum. Given that the oscillatory 

magnetic susceptibility is proportional to the oscillatory DOS(EF) (i.e. d(ΔM)/dB ∝ Δ(DOS(EF)) 

and that the minima of ΔM and d(ΔM)/dB are shifted by π/2, the minima of ΔM should be 
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assigned to n-1/4. The established LL fan diagram based on this definition is shown in Fig. 2d. 

The extrapolation of the linear fit in the fan diagram yields an intercept n0 ≈ 0.63, which appears 

to correspond to a Berry phase of φB=2π(0.63+δ) for the Fα-band. However, from a careful 

inspection of the LL index plot in Fig. 2d, one can see a slight deviation from linear-dependence 

at high field (i.e. low 1/B), which can be attributed to the strong Zeeman effect as previously 

predicted [70]. The large Zeeman energy arising from the large g-factor (~38) causes the FS to 

be strongly field-dependent. Particularly, for a small FS pocket like the α-FS in ZrSiS, a Lifshitz 

transition associated with the suppression of the spin-down FS can be expected at a moderate 

field. Therefore, a more reliable Berry phase might be obtained from the low field oscillation 

data. Indeed, we found n0 decreases when the field range used for the fit shrinks toward the low 

field end (inset to Fig. 2d); n0 drops to 0.34 when we used only the oscillation data below 1T for 

the linear fit, as shown by the red fit line in Fig. 2d. These results suggest that the actual Berry 

phase accumulated in the cyclotron orbits should be close to 2π(0.34+δ) for the Fα band (i.e. 

0.43π for δ = -1/8 or 0.93π for δ = 1/8, as listed table 1). Of course, the fit made below 1T covers 

limited data points, which may give rise to larger uncertainty for the fitted Berry phase. The 

nontrivial Berry phase for the low frequency (8.4T) band obtained from our dHvA oscillation 

studies is in contrast with that obtained from the thermoelectric oscillations, in which the 

intercept of the LL index plot is nearly zero [56]. Such inconsistency may be caused by the fact 

that the integer LL index was assigned when DOS(EF) reaches a minimum in our work but 

maximum (i.e., maximum thermopower) in Ref. [56]. 

In order to further examine the dimensionality of Dirac cones in ZrSiS, we measured the 

angular dependence of dHvA oscillations and observed strong oscillations for any field 

orientations. This contrasts sharply with the SdH oscillations, which became hardly observable 
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when the magnetic field was rotated close to the ab-plane [51-52]. Such inconsistency between 

SdH and dHvA effects, which is often observed in materials with low dimensionality [55], is 

possibly caused by the anisotropic scattering rate, which is expected for ZrSiS due to its layered 

structure. Given that the SdH effect is dependent on specific scattering mechanism as noted 

above, the higher scattering rate along the interlayer direction is likely responsible for the 

suppression of SdH oscillations for B//ab. Strong dHvA oscillations for any field orientation 

provide us with an opportunity to investigate the anisotropic Dirac fermion properties of ZrSiS. 

In Fig, 3a and 3b, we show dHvA oscillations superimposed on a diamagnetic background and 

their oscillatory components, respectively, for B//ab. The diamagnetic background seen here as 

well as the paramagnetic background seen in the out-of-plane magnetization measurements (Fig. 

1b) should be attributed to the different sample holders used for these two sets of measurements. 

Compared with the dHvA oscillations of B//c which exhibit only two frequencies (Fα = 8.4 T and 

Fβ = 240T), the dHvA oscillations of B//ab consist of more frequencies. Figs. 3e and 3f display 

separated low and high frequency components respectively. Both components display clear beat 

patterns, indicating that both contain multiple frequencies. Indeed, FFT analyses (Fig. 3c) reveal 

two small frequencies (F′α1 =17.6T and F′α2 =24.5T) and three large frequencies (Fη1=168T, 

Fη2=171T, and Fη3=181T). Similar multi-frequency oscillations for B//ab have also been 

observed in the isostructural compound ZrSiSe [71]. Both ZrSiS and ZrSiSe, as well as recently-

reported Dirac material ZrGeM [72], ZrSnTe [73], and HfSiS [74-76], belong to a larger family 

of materials WHM with the PbFCl-type structure (W=Zr/Hf/La, H=Si/Ge/Sn/Sb, M=O/S/Se/Te) 

[43].  

Similar to the in-plane cyclotron motions for B//c, electrons participating in the interlayer 

cyclotron motions for B//ab are also Dirac electrons, featuring light effective mass, high quantum 
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mobility, and a non-trivial Berry phase. Compared with the case of B//c, electron cyclotron 

masses for B//ab (Fig. 3d) are slightly larger and in the range of 0.027-0.068m0 for all probed 

oscillation frequencies (Table 1), whereas the quantum mobility is reduced significantly. Due to 

the presence of beat patterns in both low and high frequency oscillation components (Figs. 3e 

and 3f), quantum mobility cannot be obtained through the conventional Dingle plot, but can be 

through the direct fit of the oscillation pattern to the LK formula (Eq.1). The fits were performed 

using the multiband LK formula for which the multiple-frequency oscillations are treated as 

linear superposition of several single-frequency oscillations. Such an approach has been shown 

to be effective for analyzing the SdH oscillations of multiband Weyl semimetal TaP [60] and the 

dHvA oscillations of the isostructural ZrSiSe/ZrSiTe [71]. Here we fit the low- and high- 

frequency oscillation components separately to reduce the number of fitting parameters. As seen 

in Figs. 3e and 3f, with the effective mass and frequency as the known parameters, the multiband 

LK model reproduces the oscillation patterns very well. From the obtained Dingle temperatures 

of 4-16K for various frequencies (see Table 1), we have derived quantum mobilities ranging 

from ~2000 to ~7000 cm2/Vs, which is considerably lower than that of the in-plane electron 

cyclotron motions for B//c (Table 1). Such anisotropic quantum mobility is consistent with the 

layered structure of ZrSiS (Fig. 1a). From the LK fits, we also obtained a non-trivial Berry phase 

for each band as listed in Table 1. We cannot use the widely adopted LL fan diagram method in 

this case, because the precise determination of the LL index field for each frequency is difficult 

for such multi-frequency oscillations [60].  

The anisotropic characteristics of the electronic structure of ZrSiS are further clarified by 

systematic magnetization measurements with the magnetic field being rotated from the out-of-

plane (B//c) to the in-plane (B//ab) direction (Fig. 4b). As shown in Fig. 4a, after the background 
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subtraction, the oscillation pattern of ΔM displays a clear evolution with the rotation of the 

magnetic field. From the FFT analyses (see Supplemental Material), we have determined the 

angular dependence of the oscillation frequencies, as shown in Fig. 4c. The lower frequency 

component (shown by the black data points in Fig. 4c) exhibits a smooth evolution from B//c to 

B//ab though it bifurcates to two slightly different frequencies for 47° ≤ θ  ≤  90°. The higher 

frequency component (shown by the blue data points in Fig. 4c) also exhibits a systematic 

angular evolution and splitting for 47° < θ  ≤  90°, but its magnitude of splitting is much more 

significant than the lower frequency bifurcation. The Fη branch, which bifurcates from the Fβ 

branch near θ = 47°, shows very weak angular dependence and further small splitting, while Fβ 

continues to increase until it disappears for θ  > 75°. These angular dependences of dHvA 

oscillation frequencies clearly indicate that the overall FS morphology of ZrSiS has complex 3D 

character despite its layered crystal structure. Such observations are consistent with previous 

theoretical studies, which found that Zr atoms in a S-Zr-Si-Zr-S slab (see Fig. 1a) are not only 

bonded to neighboring S and Si layers within the slab, but also bonded to S atoms in the adjacent 

slabs (see Fig. 1a) [43, 48]. The 3D FS is also likely the cause of the “butterfly-shaped” 

anisotropic angular-dependence of magnetoresistance [51-52, 71] seen in ZrSiS. By substituting 

Te for S, thereby reducing the dimensionality [43], such “butterfly-shaped” anisotropy evolves to 

a simple two-fold anisotropy expected for a 2D system [71]. 

To gain more quantitative information on the Fermi surface pocket associated with the Fβ 

band, we have fitted the angular-dependence data Fβ(θ) to F = F3D+F2D/cosθ where both the 2D 

and isotropic 3D components are considered. We find that Fβ(θ) at lower angles (< 62˚) can be 

well fitted (Fig. 4c, red line), with the relative weight F2D/F3D being ~1.3, suggesting 
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dimensionality between 2D and 3D. Taking the whole angular range (0˚ < θ < 90˚) into 

consideration, the continuous evolution of Fβ(θ) and remarkable bifurcation implies a 

complicated 3D FS morphology. Such 3D signature is in agreement with the calculated 3D Fermi 

surface enclosing the Dirac nodal-line [53, 77]. Indeed, the extreme cross-section area of the FS 

corresponding to Fβ for B//c (2.3nm-2) matches well with the size of the Fermi pocket enclosing 

Dirac nodal line near X point seen in ARPES measurements [45]. A similar result was also 

obtained in recent high field SdH oscillation studies and first principle calculations [53], in 

which the 240T frequency (Fβ ) band is attributed to the petal-like Fermi surface pocket near R 

point (overlapped with the X point when projected to the kx-ky plane in ARPES observations) of 

the Brillouin zone.  

 For the Fα band, although SdH studies have shown a field orientation-independent 

oscillation frequency [51], we found that Fα(θ) at lower angles (< 62˚) can be fitted to F2D/cosθ 

without considering a 3D term (Fig. 4c). At high incline angles, Fα(θ) continues to evolve and 

persist for B//ab. These results imply that the α-FS is 3D in nature, but very anisotropic, 

exhibiting significant 2D character. The 2D feature of the Fα band is also manifested in the 

presence of a strong harmonic peak in the FFT spectrum [55] as indicated above (Fig. 2a). Such 

2D characteristics are reminiscent of the surface state observed in the ARPES experiments, 

which is hybridized with the non-symmorphic symmetry-protected Dirac state [45]. However, 

given its large oscillation amplitude (up to 7 emu/mol near B = 4T, see Fig. 1c) and overall 3D 

nature, the Fα-band probed in our dHvA experiments should be from a bulk state, rather than 

surface states. Given the nearly zero effective mass and ultra-high quantum mobility (Table 1), 

one might ascribe the Fα band to the non-symmorphic 2D Dirac band in ZrSiS, which are 
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expected to display superior Dirac fermion properties due to gapless Dirac crossings protected by 

the non-symmorphic symmetry [45, 49]. However, though ZrSiS has been known as be the first 

material hosting such a non-symmorphic Dirac state [45], the non-symmorphic Dirac node is ~ 

0.5 eV below the Fermi level, and thus is not expected to generate observable effects in quantum 

oscillations. Furthermore, the first principle calculations show that the entire Fermi surface of 

ZrSiS is comprised of only the nodal-line Dirac bands [53, 77]. As a result, the Fα band should 

also be attributed to the nodal-line Dirac band. The calculated FS for ZrSiS seems highly 

anisotropic and the neck of the vertical leg of the FS enclosing the nodal loop is comprised of 

2D-like bands [53, 77]. Given that the cross-section areas of those necks are very small, our 

observed low frequency quantum oscillation component (Fα) most likely originates from this 

section of Fermi surface.  

IV. Magnetotransport in ZrSiS 

We have also conducted magnetotransport measurements, which provide useful 

information on the electronic state of ZrSiS. Our results revealed an important, previously 

unnoticed characteristic associated with nodal-line Dirac states – high Dirac fermion density, 

which holds potential for technological applications. In general, the Dirac fermion density is 

expected to be small when the Dirac node is close to the Fermi level. However, compared with 

other Dirac semimetals with discrete Dirac nodes, nodal-line Dirac semimetals are expected to 

have much higher Dirac fermion density due to Dirac crossings along a line/loop [71]. In order to 

evaluate the Dirac fermion density of ZrSiS, we measured its longitudinal resistivity ρxx(B) and 

Hall resistivity ρxy(B). As shown in Fig. 5a, ρxy(B) exhibits significant non-linearity at low 
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temperatures, implying a multiband nature, so the carrier density of ZrSiS has to be estimated 

from the simultaneous fits of ρxx(B) and ρxy(B) to a two-band model [78]:  

2
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where ne(h) and µe(h) are carrier density and mobility for electrons (holes), respectively. In such a 

simplified model, only two bands of independent carriers with characteristic density and mobility 

were considered [78]. The contribution of each band to the conduction process was assumed to 

be additive.  

As shown in Fig. 5b, the fit of ρxx(B) shows a small deviation for the data taken at 2K, but 

looks excellent for high temperatures (e.g. T=50K). This can probably be attributed to the fact 

that the low temperature quantum effect is not included in the classical two-band model [78]. 

From these fits we have extracted high carrier density, 3.64×1020 and 3.59×1020 cm-3, for 

electron and hole bands respectively, which are significantly higher than those of other Dirac 

systems such as Cd3As2 (~1018 cm-3 [15, 57-59, 66]), Na3Bi (~1017 cm-3 [79]), topological 

insulators (~1010-12 cm-3 [69]), as well as graphene (1010-12 cm-3
 [80-81]). Furthermore, from the 

two-band model fitting we also estimated a transport mobility of ~13,700 cm2/Vs for holes and 

12,300 cm2/Vs for electrons. These values are higher than quantum mobility, since the transport 

relaxation time is not significantly affected by small angular scattering, while the quantum 

relaxation is [54]. 
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 Given the relatively small quantum oscillation frequencies in ZrSiS (e.g., 8.4T and 240T 

for B//c), the obtained high carrier density appears to suggest that the entire Fermi surface is not 

probed. According to the first principle calculations [53, 77], both the electron and hole pockets 

of ZrSiS exhibit multiple extreme cross-sections, which is in contrast with the only two 

frequencies observed in dHvA oscillations for B//c. This discrepancy might be due to the limited 

magnetic field range (B ≤ 7T) in our experiments. Indeed, though only two oscillation 

frequencies were probed in our dHvA experiments and several other previous low field SdH 

studies (B ≤ 9T) [50-51], the recent thermoelectric [56] and high field (B ≤ 33T) SdH [53] 

experiments  have revealed additional frequency around 600T, which is attributed to the electron 

pocket [53].  

V. Discussions 

Compared with other topological semimetals, ZrSiS exhibits the coexistence of two types 

of Dirac states, i.e. the 3D nodal-line Dirac state and the 2D Dirac state protected by non-

symmorphic symmetry. As stated above, the non-symmorphic symmetry-protected Dirac 

crossing is located well below the Fermi level, thus hardly contributing to quantum oscillations 

and electron transport. As has been revealed by Andreas et al [82], the position of the non-

symmorphic Dirac node in WHM (W=Zr/Hf, H=Si/Ge, M=S/Se/Te) materials is determined by 

the crystallographic c/a ratio. It is located well below the Fermi level in ZrSiS because of the 

smaller c/a ratio (~ 2.27), but right at the Fermi level in ZrSiTe due to the “right” c/a ratio 

(~2.57), which allows for investigating the transport properties of the Dirac fermions protected 

by the non-symmorphic symmetry in ZrSiTe [82]. Nevertheless, under such a circumstance, the 

zeroth Landau level of the relativistic fermions is pinned at the Dirac node, and other Landau 
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levels would not pass through the Fermi level upon increasing magnetic field [83], so the 

quantum oscillations due to the non-symmorphic Dirac fermions were not detected in our dHvA 

experiments on ZrSiTe [71].  

Although the non-symmorphic Dirac fermions in ZrSiS cannot be probed in low energy 

measurements such as quantum oscillations, the nodal-line fermions in ZrSiS also exhibit distinct 

properties as mentioned above, such as high Dirac fermion density, nearly zero effective mass 

and ultrahigh mobility. These properties may lead to enhanced electrical and thermal 

conductivity and other possible exotic phenomena. In addition, the surprisingly strong Zeeman 

splitting at low magnetic fields also distinguishes ZrSiS from other Dirac materials.   

Quantum oscillation peak splitting due to the Zeeman effect is widely seen in topological 

semimetals such as Cd3As2 [57-59] and TaP [60], which is caused by the superposition of 

oscillations from the split spin-up and spin-down sub LLs. Generally, it occurs at high magnetic 

fields (e.g. above 17T for Cd3As2 [57-59] and TaP [60]) when the separation of the split energy 

levels (= gμBB) exceeds the breadth of LLs (∝1/τq). In ZrSiS, Zeeman peak splitting can be 

observed in the low- frequency oscillation component (Fα band) at fields as low as ~1.7T (see 

the bottom inset in Fig. 1c), reflecting unusual properties of the nodal-line fermions. To 

understand the origin of the low field Zeeman effect, we must first consider the quantum 

relaxation time τq which affects the LL breadth. As listed in Table 1, τq for the Fα band is ~0.14 

ps, comparable with τq ~0.2 ps for the Fβ band and that of other topological semimetals [57-59]. 

Thus the presence of low-field Zeeman splitting only in the Fα band cannot be understood only 

in light of long τq. On the other hand, the simple superposition of two sine wave oscillations 

cannot produce any peak splitting, but a modulated oscillation pattern. A necessary requirement 

for peak splitting is the superposition of the non-sinuous oscillations with sharp peaks. 
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Mathematically, such “peaky” oscillations represent harmonic frequency components. Therefore, 

the dHvA/SdH oscillations of spin-up and down electrons must contain harmonic components to 

cause Zeeman peak splitting [54]. Since the rth harmonic term attenuates with 1/B in the form of 

exp[-r2π2kBm*(T+TD)/ehB], when the exponent r2π2kBm*(T+TD)/ehB appreciably exceeds 1, the 

higher harmonics are damped out and the Zeeman effect occurs only through the superposition of 

the simple oscillations with fundamental frequencies for spin-up and down electrons. This leads 

to an amplitude change as described by the spin damping factor Rs in Eq. 1, rather than peak 

splitting [54]. In ZrSiS, for the Fα band, the large Landé g-factor (~38) and long τq (0.14ps at T = 

2 K) ensures well separated spin-up and down LLs. The nearly zero effective quasiparticle mass 

(~0.025m0) causes slower damping of the higher harmonics in low fields. Moreover, the quasi-

2D characteristic of the Fα band also makes the harmonic component stronger as indicated above. 

As shown in Fig. 2a, we indeed observed a strong F2α harmonic component for the Fα band, 

which accounts for our observation of strong Zeeman splitting at low fields in the dHvA 

oscillations of the Fα band. For the Fβ band, the LLs should also be sharp given its longer τq, but 

Zeeman splitting is absent below 7T for this band. This can probably be attributed to the fact that 

the Fβ band is of significant 3D character and the effective mass (0.052m0) is twice as large as 

that of the Fα band (0.025m0), which causes quicker damping of the higher harmonics.  

In addition to rich harmonics, a large g-factor (~38) is also needed to observe strong 

Zeeman splitting in ZrSiS. The spin-orbit coupling introduces an interaction energy of λL⋅S, 

leading to an effective g-factor of geff = g (1±λL⋅S/Δ) where Δ is the crystal field splitting and λ 

is the spin-orbital coupling constant [84]. Spin-orbit coupling is predicted to play a more 

important role in Dirac materials [85-87]. When the spin-orbit coupling and non-relativistic 
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approximation are taken into account, the cyclotron energy is found to be equal to the Zeeman 

splitting energy derived from the Dirac equation[85-87], from which the g-factor is determined 

to be 2m0/mD where m0 and mD represent free electron mass and Dirac electron mass respectively. 

In ZrSiS, such scenario indeed leads to a large g-factor =2m0/mD =80, about twice of the 

measured value. Furthermore, electronic correlations also result in enhanced g-factor, which has 

been widely seen in 2D electron gas systems owing to many-body exchange interactions [88-89]. 

In general, for a system showing Landau level quantization, the increased degeneracy of Landau 

levels leads to enhanced density of state near the Fermi level under high magnetic fields, which 

effectively amplifies the electron correlation effect [90-92]. This effect is expected to be 

particularly strong for the α-Dirac band of ZrSiS since the quantum limit of this band can be 

easily reached due to its low oscillation frequency (Fα ~8.4T). Although our SQUID 

magnetometer can only reach 7T, the second Landau level can be reached and our 

experimentally observed large g-factor in ZrSiS is in line with the anticipated enhanced 

electronic correlation effects, as seen in ZrTe5 [91]. Indeed, the recent high field SdH studies has 

revealed usually mass enhancement at low temperatures, which seems consistent with the 

enhanced correlation in ZrSiS [56]. 

 The low field Zeeman splitting, however, was not clearly observed in SdH oscillations 

[50-52], since the SdH oscillations are much weaker and only 1~2 oscillation periods can be seen 

for the Fα band up to B=9T (see Supplemental Material and Ref. [50-52]). For this reason, the 

split peaks in the SdH oscillations were attributed to individual LLs, which causes the aperiodic 

oscillation pattern, rather broad FFT peaks, higher FFT frequency (14-23T), as well as the 

overestimated effective mass (m*=0.12-0.14m0) and underestimated quantum mobility (μq=5~6×

103 cm2/Vs) [50-52] for the Fα band. However, as shown below, from the comparison between 
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SdH and dHvA oscillation patterns, the SdH oscillation “peaks” are clearly attributed to the 

Zeeman splitting. 

 It has been established the oscillation part of the DOS(EF) is in phase with the oscillatory 

susceptibility (ΔDOS(EF) ∝ Δ(dM/dB)) [55]. In the framework of quantum oscillation theory, 

SdH oscillations are interpreted as the scattering rate oscillations Δ(1/τ) which arise from the 

oscillation of DOS(EF), since 1/τ ∝ DOS(EF) [55, 93-94]. Considering that the longitudinal 

resistivity ρxx (see Supplemental Material for ρxx) is much greater than the transverse (Hall) 

resistivity ρxy (Fig. 4e) in ZrSiS, the matrix conversion of resistivity and conductivity [σxx = 

ρxx/(ρxx
2+ρxy

2)] yields ρxx ≈ 1/σxx ∝ 1/τ. Therefore, Δρxx ∝ Δ(1/τ) ∝ ΔDOS(EF) ∝ Δ(dM/dB). i.e., 

Δρxx and Δ(dM/dB) are in phase.  

Indeed, as shown in Fig. 6, after filtering out the high frequency (Fβ) oscillation 

component, the low frequency (Fα) susceptibility oscillations
d M

dB
Δ

(Fig. 6a) is in phase with the 

low frequency component of the ρxx oscillations (Fig. 6c). Given such an agreement, the 

oscillation minima in both 
d M

dB
Δ

 and ρxx, which was previously thought to originate from 

individual Landau levels in SdH effect studies [50-52], should correspond to the split sub energy 

levels due to the Zeeman effect as revealed in our dHvA effect studies. 

VI. Conclusion 

 In summary, we have observed very strong low field dHvA oscillations due to the Dirac 

nodal-line fermions in ZrSiS. The analyses of our experimental data reveal the anisotropic Dirac 

bands hosting nearly massless Dirac fermions in ZrSiS . Furthermore, we have observed 
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extremely strong Zeeman splitting with a large g-factor ~ 38. These findings suggest that ZrSiS 

is unique topological material for seeking and understanding exotic phenomena of Dirac nodal-

line fermions.   
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Figures

 

FIG. 1. (a) Crystal structure of ZrSiS. (b) Isothermal out-of-plane magnetization (M) for ZrSiS at 

various temperatures from T=1.8K to 20K. Inset: an image of a ZrSiS single crystal. (c) The 

oscillatory component of the magnetization ΔM. Upper inset: Zeeman effect at T = 1.8 K and 12 

K. Lower inset: susceptibility oscillation dΔM/dB. The high frequency component is filtered out 

for clarity. Peak splitting is indicated by arrows and discernible above B=1.7 T. (d) the high 

frequency oscillation component (blue data points) and the fit of the oscillation pattern to the LK 
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formula (red solid line). To better illustrate the fitting quality, the zoomed-in data and fitting are 

shown in the inset.  

 

FIG.2. Analyses of the dHvA oscillations for B//c. (a) the FFT spectra of the oscillatory 

component of the dHvA oscillations for B//c at various temperatures. (b) the fits of the FFT 

amplitudes of Fα and Fβ to the temperature damping factor RT of the LK formula. (c) Dingle plot 

for the low frequency oscillation component (Fα =8.4 T) at T=1.8K, 5K and 10K. (d) LL index 

fan diagram for the low frequency oscillation component. n-1/4 (n, integer LL indices) are 

assigned to the ΔM oscillation minima. The black line represents a linear fit to all LL indices, 
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which yields an intercept of n0 = 0.63. The red line represents the linear fit to the LL indices 

obtained below 1T to minimize the influence of the Zeeman effect, which yields an intercept of 

0.34. Inset: the variation of the intercept n0 with the magnetic field range used for the linear fit of 

the LL fan diagram.  

 

FIG. 3. Analyses of the dHvA oscillations for B//ab. (a) Isothermal in-plane magnetization 

measurements for ZrSiS at various temperatures from T=1.8K to 20K. (b) the oscillatory 

component of the magnetization ΔM. (c) the FFT spectra of the oscillatory component of the in-

plane magnetization at various temperatures. (c) the fits of the FFT amplitudes to the temperature 

damping factor RT of the LK formula. (e) and (f): the low (e) and high (f) frequency oscillation 

components of the dHvA oscillations. The red lines show the fits of the oscillation pattern to the 

generalized two-band and three-band LK formula for the low frequency (e) and high frequency (f) 
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oscillations. Inset in (f): the enlarged data and fit within a small field range, which clearly shows 

the data can be best fitted by the three-band LK formula.     

 

 

FIG. 4. Fermi surface morphology of ZrSiS. (a) dHvA oscillations at T=1.8K for different 

magnetic field orientations. Data at different field orientations have been shifted for clarity. (b) 

schematic of the measurement set up. The field is rotated from an out-of-plane direction (B//c, 

defined as θ=0˚) to an in-plane direction (B//ab, defined as θ =90˚). (c) the angular dependence 
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of the oscillation frequencies obtained from the FFT spectra. Error bars are defined as the half-

width at the half-height of FFT peak. The green lines are for eye guides. The red lines are fits to 

F = F3D+F2D /cosθ for Fα and Fβ below 60˚.  

 

 

FIG. 5. Transport properties of ZrSiS. (a) Magnetic field dependence of Hall resistivity ρxy. SdH 

oscillations are seen below 20K. (b) Two-band model fitting to the transverse (ρxx) and Hall (ρxy) 

resistivity at T=2K and 50K. 
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FIG. 6. Comparison of Zeeman effect in dHvA and SdH oscillations. (a) The lower frequency 

dHvA oscillation component of the out-of-plane (B//c) magnetization at T=2K, obtained by 

filtering the higher frequency component. Zeeman splitting is clearly observed. (b) Derivative of 

the lower frequency oscillation component, dΔM/dB. (c) SdH oscillations of the in-plane 

magnetoresistance (Δρxx) at T=2K. Zeeman splitting occurs at the almost same field for both 

dHvA (dM/dB) and SdH (ρxx) oscillations, as denoted by dashed lines. 



37 
 

Table 1 The oscillation frequency F, Dingle temperature TD, effective mass m*/m0, quantum 

relaxation time τq [= ħ/(2πkBTD)], quantum mobility μq (= eτ/m*
α), and Berry phase φB of different 

Dirac bands probed by dHvA oscillations.  

 F  

(T) 

TD  

(K) 

m*/m0 

τq  

(ps) 

μq  

(cm2/Vs) 

φB 

δ = -1/8 δ = 0 δ = 1/8 

B//c 
8.4 8.8* 0.025 0.14 10000 0.43π 0.68π 0.93π 

240 6** 0.052 0.2 6868 -0.83π -0.58π -0.33π 

B//ab 

17.6  14** 0.027 0.084 5469 -0.14π 0.11π 0.36π 

24.5  11.3** 0.045 0.108 4219 -0.39π -0.14π 0.11π 

167.5  16.2** 0.062 0.075 2127 -0.75π -0.5π -0.25π 

170.6  4.4** 0.066 0.277 7378 -0.75π -0.5π -0.25π 

180.7  11.3** 0.068 0.108 2792 -0.75π -0.5π -0.25π 

(* Obtained from Dingle plot; ** Obtained from the LK fitting.) 

 


