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General degeneracy in density functional perturbation theory

Mark C. Palenik∗ and Brett I. Dunlap
Code 6189, Chemistry Division, Naval Research Laboratory, Washington, DC 20375, United States

Degenerate perturbation theory from quantum mechanics is inadequate in density functional the-
ory (DFT) because of nonlinearity in the Kohn-Sham potential. Herein, we develop the fully general
perturbation theory for open-shell, degenerate systems in Kohn-Sham DFT, without assuming the
presence of symmetry or equal occupation of degenerate orbitals. To demonstrate the resulting
methodology, we apply it to the iron atom in the central field approximation, perturbed by an elec-
tric quadrupole. This system was chosen because it displays both symmetry required degeneracy,
between the five 3d orbitals, as well as accidental degeneracy, between the 3d and 4s orbitals. The
quadrupole potential couples the degenerate 3d and 4s states, serving as an example of the most
general perturbation.

I. INTRODUCTION

When a small, perturbing potential is applied to a sys-
tem with degeneracy, quantum mechanics tells us that
the the eigenvalues typically split. The first-order split-
ting can be found by diagonalizing the perturbing poten-
tial, V (1), within the degenerate subspace [1].
In contrast, we [2] and others [3] have proven that

for symmetry required degeneracy in open shell systems,
the eigenvalues in Kohn-Sham (KS) [4] density functional
theory (DFT) [5] do not split. KS DFT allows for frac-
tional occupation numbers at the Fermi-level, and the
application of a small, symmetry-breaking potential in-
duces a fractional transfer of Fermi-level electrons that
restores the original degeneracy.
Herein, we will develop the perturbation theory that

also applies to systems with accidental degeneracy. We
impose no assumptions about the occupation numbers
of the initial state or its symmetry. We only note that
some, but not necessarily all, degenerate orbitals may be
equally occupied.
The resulting methodology is not simply the applica-

tion of coupled-perturbed Kohn-Sham (CPKS) [6–8] to
the equations from degenerate, quantum mechanical per-
turbation theory. Solving for the perturbed orbitals in
CPKS requires the inversion of a large matrix with di-
mension equal to the product of the number of occupied
and virtual orbitals, which is typically done through an
iterative procedure. This is due to the nonlinearity of
the Coulomb and exchange-correlation (XC) potentials,
which we collectively refer to as νks. However, careful
analysis of the degenerate problem shows that the KS-
DFT solution requires perturbed occupation numbers in
addition to perturbed orbitals, which is not a feature of
CPKS.
Perturbation theory allows for electronic states and en-

ergies to be differentiated with respect to some change in
the Hamiltonian. In molecular physics, it can be used to
differentiate the energy with respect to nuclear coordi-
nates and to find vibrational modes. Along these lines,
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Jahn-Teller distortions can be understood by applying
perturbation theory to a degenerate state, which results
in a Taylor series of the energy with respect to nuclear
displacements [9]. Despite the importance of the Jahn-
Teller effect we are aware of no commercial computer
codes capable of treating it as a perturbation.

As we know of no Jahn-Teller system with accidental
degeneracy, we demonstrate the applicable, general per-
turbation theory using the fractionally-occupied atomic
iron ground state in the central field approximation. Its
equally occupied 3d orbitals are accidentally degenerate
with the differently occupied 4s orbital. A quadrupole
electric field can couple all of the degenerate states,
demonstrating the differences between the treatment of
the symmetry required and accidental degeneracies. Al-
though the initial SCF solution for the iron atom is per-
formed in spherical symmetry, this is not a requirement
of the general theory we outline in section II.

Symmetry required degeneracy in KS DFT only oc-
curs when the orbitals of a given spin within each irre-
ducible representation of the symmetry group are equally
occupied, giving νks the same symmetry as the external
potential. For the specific case of equally occupied Fermi-
level orbitals, we previously generated a perturbation se-
ries using an imaginary-time propagator in the limit that
t → ∞, normalized to preserve the number of Fermi-level
electrons [2]. This is equivalent to the zero-temperature
limit of a thermal state and selects the lowest lying eigen-
state meeting the normalization conditions.

We will now do the same for systems where the degen-
erate orbitals do not have to be equally occupied, and
prove that the lack of eigenvalue splitting is not unique
to symmetry required degeneracy. We will then show
that the resulting equations can always be solved, pro-
vided that the Coulomb and XC potentials are a func-
tion of the density, by a change in occupation numbers
combined with a series of orthogonal transformations be-
tween groups of degenerate orbitals. Next, we will apply
the resulting methodology to atomic iron. Conclusions
follow.
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II. THEORY

Consider a system of electrons with a degenerate Fermi
level where the Fermi-level orbitals can each have any
occupation numbers between zero and one. If the system
is open-shell, there can be non-trivial orbital mixing and
electron-transfer within the degenerate space.
The nonlinearity of KS DFT means that under a per-

turbation, these Fermi-level occupation numbers must
necessarily change. We previously showed that this is
true for the specific case when the initial occupation num-
bers are equal [2]. As we noted, when the degenerate
states start out equally occupied, V (1) can be diagonal-
ized without changing the unperturbed density. How-
ever, this is not sufficient to solve the perturbation prob-
lem, because V (1) will cause the previously degenerate
levels to split, resulting in fractionally occupied excited
states. Therefore, to find the ground state, the occupa-
tion numbers must be allowed to change.
Now, we note that the unperturbed, accidentally de-

generate orbitals need not be equally occupied. If, for
example, two degenerate orbitals have different occupa-
tion numbers, a unitary transformation cannot be made
between them without changing the density, which inval-
idates the original self-consistent field (SCF) calculation.
Therefore, the perturbing potential cannot be diagonal-
ized, and without diagonalization, the initial state will
evolve into a linear combination of states with different
eigenvalues. We will show that once again, the remedy to
this problem involves changing the fractional occupation
numbers.
Perturbation theory builds a differentiable map from

a state in the unperturbed system to an adiabatically
connected state in the perturbed system. We wish to
build a map between the ground states. Because this map
is differentiable, quantities such as occupation numbers
and orbital rotation matrices must change continuously
with the strength of the perturbing potential. The only
way to build such a map in KS DFT is by conserving the
number of electrons at the Fermi-level.
A general perturbation will cause a degenerate Fermi-

level to split. To ensure that the system remains in
the ground state, we must transfer electron density into
the lowest available state that is not fully occupied. In
the standard formulation of quantum mechanics, this is
equivalent to diagonalizing the perturbing potential and
filling the lowest states in order. However, in KS DFT,
as we begin to rotate the degenerate orbitals into one
another and transfer electrons into the lowest possible
states, the eigenvalues simultaneously shift.
Orbital eigenvalues are the derivatives of the energy

with respect to occupation numbers [10]. Although in
the exact functional as defined by Perdew [11, 12], eigen-
values are constant, except for discontinuous shifts at in-
teger occupation numbers, this behavior is not shared by
existing, commonly used approximate functionals. Typi-
cal expressions for the XC energy-density are continuous,
differentiable functions of the electron-density. Further-

more, in the exact functional as defined by Cohen and
Wasserman, eigenvalues change continuously as a func-
tion of occupation number [13], and this is also a property
of Fermi liquids [14–17].
The derivative of the eigenvalues with respect to occu-

pation numbers is the Hessian of the energy. This matrix
determines how the eigenvalues change as electrons are
transferred between orbitals. If the unperturbed state is
the ground state, it is an energy minimum, meaning that
the Hessian of the energy is positive definite. Therefore,
an eigenvalue derived from a fully variational SCF cal-
culation will increase as the occupation number of the
corresponding orbital is increased.
In addition to its own occupation number, the eigen-

value of a given orbital depends on the occupation num-
bers of all other orbitals. If the number of electrons
is to be conserved, electrons that are added to one or-
bital must be removed from another. Therefore, the off-
diagonal elements of the Hessian also play a role in the
behavior of the eigenvalues.
Still, we can paint a qualitative picture of degenerate

perturbation theory as a two step process. First, a per-
turbing potential is applied, which causes the degenerate
levels to split. Next, electrons are transferred from or-
bitals with higher eigenvalues to those with lower eigen-
values until degeneracy is restored, at which point no
more electrons can be transferred. Because we are not
requiring the degenerate orbitals to be equally occupied,
we will show that orbital rotations within the degenerate
space will also be required at first-order and higher to
zero the off-diagonal matrix elements. This also has an
impact on the eigenvalues.
We can additionally think of the fact that the number

of Fermi-level electrons is held constant in another way.
The denominator that results in this normalization is the
only possible choice that causes the fractionally occupied
excited states produced by Fermi-level splitting to van-
ish, while scaling the remainder so that the total number
of electrons is conserved. Conserving the number of elec-
trons is necessary in DFT perturbation theory because of
the nonlinearity of νks. Typically, in quantum mechan-
ical perturbation theory, the intermediate normalization
is often used, which makes the overlap of the perturbed
and unperturbed orbitals equal to unity, but this causes
the integral of the perturbed electron density to change,
which would affect the computation of the Coulomb and
XC energies if it were used.
We can build a properly normalized, differentiable map

between the unperturbed and perturbed states by writing
each Fermi-level orbital φi as a function of λ, which scales
the strength of the perturbing potential. We again use
an imaginary-time propagator in the limit that t → ∞
[2]. This is most easily done in the interaction picture,
where the perturbed KS potential is given by

H ′

IP = e−Hkst

(

λV (1) +
∞
∑

n=1

λnν
(n)
ks

)

eHkst. (1)

Here, Hks is the unperturbed operator from the KS equa-
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tion Hksφi = ǫiφi. The Coulomb and XC potentials, be-
cause they are functions of the density, change at all or-
ders of perturbation theory, leading to the infinite sum.
Our interaction picture imaginary-time propagator can
then be written as

|φi(λ)〉 =

∑

k |φk〉〈φk|T e−
∫

∞

0
H′

IP
dt|φi〉

∑

m
nm(λ)
Ne

√

∑

j |〈φj |T e−
∫

∞

0
H′

IP
dt|φm〉|2

,

(2)
where T is the time ordering operator, nm(λ) is an occu-
pation number as a function of λ, and Ne is the number
of Fermi-level electrons. The index m runs over the de-
generate orbitals, and j and k run over all orbitals at or
above the Fermi level.
This normalization is nearly identical to the one we

used in our derivation for equally occupied orbitals, ex-
cept that the factor of 1/Nd, where Nd is the number
of degenerate orbitals, has been replaced by nm(λ)/Ne.
The normalization we have chosen here ensures that
∑

m nm(λ)〈φ∗

m(λ)|φm(λ)〉 = Ne, thus conserving the
number of electrons. The old normalization only con-
serves the number of electrons if each Fermi-level orbital
is equally occupied.
In addition to holding the number of electrons con-

stant, we can see that the denominator will cause any ex-
cited states in the numerator to vanish. In the limit that
t → ∞, the denominator goes as e−ǫ(λ)t, where ǫ(λ) is
the smallest eigenvalue adiabatically connected to any of
the Fermi orbitals. The numerator goes as e−ǫi(λ)t, which
is the eigenvalue of the state adiabatically connected to
φi(λ). Therefore, the entire equation goes as e[ǫ(λ)−ǫi(λ)]t,
which approaches zero as t → ∞ if ǫi(λ) > ǫ(λ).
The first-order orbitals are the first term in the Tay-

lor series of φi(λ) at λ = 0. Therefore, we need to dif-
ferentiate Eq. (2) once. When there is no degeneracy,
this reproduces the standard RSPT sum over states ex-
pression. We define degenerate perturbation theory by
imposing the requirement that the matrix elements be-
tween degenerate orbitals approach a well defined value
as t → ∞. We do this by setting the time-derivative of
these matrix elements to zero in that limit. For degener-
ate orbitals φk and φi at first order, this yields

〈φk|V
(1)+ν

(1)
ks |φi〉 = δik

∑

m

nm

Ne

〈φm|V (1)+ν
(1)
ks |φm〉. (3)

As we proved for equal occupation numbers, Eq. (3)
says that the first-order potential is diagonal within the
degenerate subspace and that the first-order eigenvalues
are identical. Because all of the diagonal elements are
identical, the weighting factors of nm/Ne on the right
hand side can be replaced with 1/Nd, arriving at

〈φk|V
(1) + ν

(1)
ks |φi〉 =

δik
Nd

∑

m

〈φm|V (1) + ν
(1)
ks |φm〉, (4)

which is exactly the same result we found for symmetry
required degeneracy [2].

The non-linear νks operator is responsible for the fun-
damental differences between the behavior the KS DFT
model system and the quantum mechanical wave func-
tion. As long as it is present, the eigenvalues can be
made equal by adjusting occupation numbers and orbital
rotations within the degenerate space. The change in oc-
cupation numbers required to restore degeneracy when
a perturbation is applied reduces the symmetry of the
unperturbed electron density. Because the eigenvalues
depend on the occupation numbers, this also means that
despite the presence of degeneracy, the perturbed state
is unique [2, 3]. Attempting to adjust the occupation
numbers away from the values prescribed by the pertur-
bation series breaks the eigenvalue degeneracy and moves
the system away from the ground state.
If we take the limit of a noninteracting system by scal-

ing νks with a small constant, the first-order occupation
numbers and orbital rotations will grow outside of the
range of physically reasonable values, approaching infin-
ity as νks goes to zero. To see this, we note that the
first-order density in Eq. (4) is implicitly contained in

ν
(1)
ks , which is defined as

ν
(1)
ks (r) =

∫

δνks(r)

δρ(r′)
ρ(1)(r′)dr′ ≡

∂νks
∂ρ

ρ(1). (5)

The variation of νks with respect to ρ is the Hessian of the
electron-electron interaction energy. Although we will
more rigorously solve Eq. (4) in Section III, we can note
that if we rearrange its terms to solve for the matrix
elements of ρ(1), they will be proportional to the inverse
of this Hessian.
If the electron-electron interaction is scaled by a con-

stant, k, the inverse of its Hessian will go as 1/k. At
k = 0, the Hessian will become singular and the matrix
elements of ρ(1) within the degenerate space will become
infinite [2].
The first-order density is given by

ρ(1) =
∑

i



n
(1)
i φ∗

i φi + ni

∑

j

2ReU
(1)
ij φ∗

iφj



 , (6)

where ni is the occupation number of orbital i and a
lack of a superscript indicates an unperturbed quantity.

The indices i and j run over all orbitals, but n
(1)
i is only

nonzero at the Fermi level. The matrix U
(1) is the first-

order unitary transformation that mixes orbitals. There-
fore, if the matrix elements of ρ(1) become infinite, the

quantities U
(1)
ij and n

(1)
i that define them must become

infinite as well.
Qualitatively, this means that a weaker electron-

electron interaction requires a larger shift in electron-
density to restore the degeneracy that is broken by the
external perturbing potential. For a given perturbation,
the required change in occupation numbers may fall out-
side the limits imposed by Fermi statistics. At this point,
the occupation numbers will cease to change, whether
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degeneracy has been restored or not. However, as λ
is made smaller, the change in occupation numbers be-
comes smaller as well. Therefore, we should expect this
perturbation series to provide a physically meaningful
mapping between states as long as the perturbation is
weak enough that Fermi statistics are obeyed.

The perturbed orbitals, occupation numbers, and
eigenvalues were all generated by taking their derivatives
with respect to the strength of the perturbing poten-
tial. These quantities can, then, always be interpreted
as derivatives at λ = 0, regardless of the strength of the
perturbation. Fermi statistics only limits the range of λ
over which these derivatives can be used to form a Taylor
series connecting the perturbed and unperturbed states.
At the point where one or more occupation numbers can
no longer change, a derivative discontinuity will occur.

The tendency of the first-order orbital rotations and
occupation numbers toward infinity as the equations ap-
proach linearity is a function of the fact that the differ-
entiability of the unperturbed state is lost. For the true
wave function, which is an eigenstate of a linear opera-
tor, an arbitrary initial state cannot be perturbed into an
eigenstate. Rather, only appropriate linear combinations
of the unperturbed, degenerate eigenstates correspond to
eigenstates of the perturbed system. It is the nonlinearity
of νks that guarantees the differentiability of the initial
state.

We will now show that Eq. (4) can be solved as long as
νks depends on the electron-density. The first-order per-
turbing potential is a Hermitian operator. A real, Her-
mitian operator has Nd(Nd − 1)/2 off-diagonal elements
in the degenerate subspace. Zeroing them results in an
equal number of constraint equations. The requirement
that the diagonal elements are equal produces another
Nd − 1 constraints [18].

Each constraint requires one adjustable parameter for
the equations to be solvable. An orthogonal transforma-
tion can be written as the exponential of an antisym-
metric matrix, which provides Nd(Nd − 1)/2 adjustable
parameters. The first-order Fermi-level occupation num-
bers, which must sum to zero [2], provide Nd− 1. There-
fore, an orthogonal transformation between degenerate
orbitals combined with a change in first-order occupation
numbers provides the appropriate number of parameters
for solving first-order perturbation theory. For a Hermi-
tian V (1) with imaginary components, a unitary, rather
than orthogonal, transformation results in the required
number of parameters.

Unfortunately, it is not possible to make an arbitrary
unitary transformation within the degenerate space in KS
DFT, like it is in standard quantum mechanics. Unless
the unperturbed orbitals are equally occupied, applying a
unitary transformation to the unperturbed system would
cause the electron-density to change, thereby requiring a
new SCF solution. Therefore, we can only use orbital
rotations to diagonalize the first-order potential within
each group of equally occupied degenerate orbitals. If the
off-diagonal elements that couple orbitals with different

occupation numbers are to be zeroed, it must be because

the matrix elements of ν
(1)
ks cancel those of V (1).

Because ν
(1)
ks depends on ρ(1), from Eq. (6), the two

sets of adjustable parameters that can potentially affect

its matrix elements are n
(1)
i and U

(1)
ij . Therefore, if it is

possible to solve Eq. (4), we must be able to show that the
matrix U

(1) has exactly the right number of adjustable
parameters to cancel the remaining off-diagonal elements
of V (1).

We can begin by dividing the matrix U
(1) into two

parts: one that mixes orbitals with different eigenval-
ues and one that acts within the degenerate subspace.
Between nondegenerate orbitals, the matrix elements of
U

(1) are given by the usual Rayleigh-Schrödinger per-
turbation theory sum over states [19]. Between equally
occupied degenerate orbitals, U(1) can be neglected un-
til second order, because the elements of U(N) that mix
equally occupied orbitals do not affect the density until
order N + 1 [2].

However, between orbitals with different occupation
numbers, U(1) does have an effect on the density, and

therefore, on the matrix elements of ν
(1)
ks . Combining

the total number of parameters involved in a series of
orthogonal transformations within each set S of equally
occupied orbitals (typically a particular irreducible rep-
resentation of the symmetry group) and the elements of
U

(1) that mix orbitals from the sets S and S′, which have
different occupation numbers (typically, different repre-
sentations of the symmetry group), the total number of
adjustable parameters in U

(1) is

∑

S

[

1

2
NS (NS − 1) +

∑

S′>S

NSNS′

]

=
1

2
Nd (Nd − 1) . (7)

Adding the Nd − 1 first-order occupation numbers, we
now have enough variables to solve the first-order per-
turbation equations. By the same arguments, it can be
shown that at Nth order, U(N−1) between equally occu-
pied orbitals, U(N) between orbitals with different occu-

pation numbers, and n
(N)
i provide the required number

of parameters to solve the equations.

Substituting the definitions of ν
(1)
ks and ρ(1) from

Eq. (5) and Eq. (6) into Eq. (4) leads to a system of
equations for the first-order occupation numbers, first-
order mixing between degenerate states, and zeroth-order
transformations between equally occupied states. With
these substitutions, we can rearrange Eq. (4) to get:

〈φk|
∂νks
∂ρ

∑

i



n
(1)
i φ∗

i φi + ni

∑

j

2ReU
(1)
ij φ∗

i φj



 |φi〉

= ǫ(1)δik − 〈φk|V
(1)|φi〉,

(8)

where ǫ(1) is a constant equal to 1/Nd times the trace of
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the entire first-order potential in the degenerate space

ǫ(1) =
1

Nd

∑

m

〈φm|V (1) + ν
(1)
ks |φm〉. (9)

III. ATOMIC IRON

To explore Eq. (8) further, we will turn to the VWN
[20] ground state of atomic iron, which has 3d-4s degen-
eracy [21]. Degeneracy between the d states is due to
spherical symmetry, whereas the s-d degeneracy is acci-
dental. Our SCF calculations found fractional occupa-
tion numbers of 0.299 in all five 3d spin up states and
0.504 in the 4s spin up state.
Complex spherical harmonics, Y m

ℓ , were used for the
angular portion of the orbitals. Because we are mainly
interested in the behavior of the degenerate space, we as-
sume that excitations into virtual orbitals can be ignored,
which allows us to avoid the computational complexi-
ties introduced by occupied-virtual mixing [6–8, 22]. We
can then uniquely identify the orbitals by the labels φm

ℓ ,
corresponding to angular momentum ℓ (0 or 2) and az-
imuthal component m (ranging from −ℓ to ℓ). To couple
degenerate states, the perturbing quadrupole potential
V (1) = λY 0

2 /|r|
3 was introduced. This potential is diag-

onal and traceless within the d states, has an s matrix
element of zero, and couples φ0

2 with φ0
0.

Because the unperturbed occupation numbers depend
only on the total angular momentum, we will refer to
them by a single index, nℓ. The first-order occupation
numbers depend on ℓ andm, and therefore will be labeled

with two indices, n
m(1)
ℓ .

For this specific problem, we can make several simpli-
fications to Eq. (8) based on symmetries. The first term
on the left-hand side, in our current notation is

〈φk
ℓ |
∑

l,m

n
m(1)
l φm∗

l φm
l |φi

ℓ′〉. (10)

Because both φm∗

l and φm
l have the same azimuthal

component of angular momentum, their matrix elements
must be diagonal in the azimuthal index.
In our current notation, ǫ(1), which appears on the

right-hand side of Eq. (8), is given by

ǫ(1) =
∑

lm

nl〈φ
m
l |V (1) +

∂νks
∂ρ

ρ(1)|φm
l 〉. (11)

We can simplify this expression by noting that the un-
perturbed density is spherically symmetric, meaning that
νks and its derivatives (e.g. ∂νks

∂ρ
) are spherically symmet-

ric as well. Summing the product of φ∗m
l φm

l over m also
results in a spherical function. The second term on the
right hand side of Eq. (11) is, then, the integral of ρ(1)

with a spherically symmetric function. This allows us to
utilize the orthogonality of the spherical harmonics that
appear within ρ(1) itself.

The second term in ρ(1) from Eq. (6) comes from the
first-order unitary transformation within the degenerate
space. In our current notation, it is written as

U
mm′(1)
ℓℓ′ φm∗

ℓ φm′

ℓ′ . (12)

Orthogonality of spherical harmonics means that, when
integrated with a spherical function, this term is zero
unless ℓ,m = ℓ′,m′. However, these terms are also zero
because of the antisymmetry of U(1). This can be shown
by noting that a unitary transformation can be written
as the exponential of i times a Hermitian matrix, M

U = eiM = 1 + iM+ . . . . (13)

From this expansion, it is clear that U
(1) is anti-

hermitian. Any diagonal elements of U(1) are necessarily
imaginary. Because the perturbing potential is an elec-
tric quadrupole, which respects time symmetry, U can
be written as a real, orthogonal transformation. There-
fore, U(1) is antisymmetric, and so, its contribution to
ǫ(1) vanishes.
Finally, we can look at the matrix elements involv-

ing U
(1) on the left-hand side. Because U

(1) is anti-
symmetric, there is cancellation between any terms in
∑

ℓm,ℓ′m′ nℓU
mm′(1)
ℓℓ′ φm∗

ℓ φm′

ℓ′ where nℓ is equal to nℓ′ .

Therefore, U(1) can only mix d and s states, which have
different occupation numbers. Furthermore, angular mo-
mentum addition rules limit the terms that contribute to
each matrix element. Applying all of these simplifications
to Eq. (8), we get

〈φk
ℓ |V

(1)|φi
ℓ′〉+

∑

l,m

n
m(1)
l 〈φk

ℓ |
∂νks
∂ρ

φm∗

l φm
l |φk

ℓ′〉δik

+2(n2 − n0)U
µ0(1)
20 〈φk

ℓ |
∂νks
∂ρ

Reφµ∗
2 φ0

0|φ
i
ℓ′〉 =

δikδℓℓ′

Nd

×
∑

l,m

〈φm
l |V (1) +

∂νks
∂ρ

∑

l′,m′

n
m′(1)
l′ φm′

∗

l′ φm′

l′ |φm
l 〉,

(14)

where µ is equal to i−k, because angular momentum ad-
dition rules specify that only these four-orbital integrals
are nonzero. The U(1) term should additionally be taken
to be zero if i− k is outside of the range -2 to 2.
A first step in solving Eq (14) is to apply an orthogonal

transformation that diagonalizes the left-hand side along
the m index when ℓ = ℓ′. The second term, containing a

factor of n
m(1)
l , will always be diagonal when ℓ = ℓ′ un-

der any orthogonal transformation that mixes azimuthal
components of angular momentum, due to group symme-
tries. Therefore, it is only the first and third terms that
need to be diagonalized.
The potential V (1) has an angular factor of Y 0

2 , and
therefore, couples only φ0

0 and φ0
2, which is the same set

of orbitals coupled by the n
m(1)
l and the U

00(1)
20 terms.

Therefore, the only nonzero component of the first-order
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TABLE I. Nonzero parameters from the first-order density

Parameter U
00(1)
20 n

±2(1)
2 n

±1(1)
2 n

0(1)
2 E(2) E(3)

Value 0.455 11.9 -5.94 -11.9 -16.2 8.55×10-3

unitary transformation needed is U
00(1)
20 . The five inde-

pendent first-order occupation numbers and the single in-
dependent component of U(1) provide the six adjustable
parameters needed to equate the diagonal elements of
Eq. (14) and zero the single off-diagonal element.
To solve Eq. (14), we implemented a variable metric

method to minimize the sum of the squares of the left-
hand side minus the right-hand side. The resulting pa-
rameters, rounded to three significant figures, are given
in Table I.
The first-order density can be used to find the first

through third-order energies [3, 23, 24]. In terms of ρ(1),
the general expressions are the same as when the occu-
pation numbers are equal [2]:

E(1)=
∑

i

n
(0)
i 〈φi|V

(1) + ν
(1)
ks |φi〉 (15)

E(2)= −
1

2

∫

δνks(r)

δρ(r′)
ρ(1)(r)ρ(1)(r′) (16)

E(3)= −
1

6

∫

δ2νks(r)

δρ(r′)δρ(r′′)
ρ(1)(r)ρ(1)(r′)ρ(1)(r′′).(17)

E(1) is zero because the trace of the perturbing po-
tential is zero. The second-order energy was found
to be -16.2 hartrees, and the third-order energy is
8.55×10-3 hartrees. The comparatively small value of
E(3) is due to the fact that the contributions from terms
containing three factors of the first-order occupation
numbers sum to zero. All contributing terms have at

least one factor of the much smaller U
00(1)
20 . E(3) is only

nonzero because V (1) mixes the s and d states.
Figure 1 contains plots of the perturbing potential and

first-order density along the radial and θ axes (θ cor-
responding to the axis for which Y m

ℓ is independent of
m). The radial axis is plotted along points used in the
parameter-free 80-point quasi-experimental radial inte-
gration grid of Köster et al. [25] and does not scale lin-
early with distance from the center of the plot. The colors
are relative to the maximum and minimum values of each
individual plot.
In Fig. 1(b), we have isolated the portion of the first-

order density produced by the first-order occupation
numbers. In Fig. 1(c), we have plotted the portion of
the first-order density that is caused by mixing of the
φ0
2 and φ0

0 orbitals. The total density, in (d), is nearly
identical to (b) because the density in (b) is, on average,
three orders of magnitude larger than in (c).
The first-order occupation numbers in Table I are one

to two orders of magnitude larger than the individual d
orbital occupation numbers. However, they scale linearly
with λ, which can be made arbitrarily small as the exter-
nal perturbing field is made weaker. At the point where

the perturbing field becomes strong enough that electrons
can no longer be transferred between degenerate orbitals,
the degeneracy will cease.

IV. CONCLUSIONS

We have generalized our previous work on degenerate
perturbation theory [2] so that equal occupation of all
Fermi-level orbitals is no longer a requirement. As before,
the perturbed eigenvalues do not split. Now, however,
the unitary transformations that mix degenerate orbitals
subdivide into two portions: one in which the occupation
numbers are equal and one in which the occupation num-
bers are different. The first-order perturbing potential
can be diagonalized within each set of equally occupied
orbitals by a zeroth-order unitary transformation. The
remaining off-diagonal matrix elements are zeroed by a
combination of a first-order unitary transformation and
change in first-order occupation numbers, which simul-
taneously restore degeneracy.
The perturbed quantities were generated by differenti-

ating the unperturbed state with respect to the strength
of an external perturbation. The range over which these
derivatives can be used to form a Taylor series connect-
ing the perturbed and unperturbed states is limited, in
part, by Fermi statistics. When the perturbation grows
large enough that the occupation numbers can no longer
change, a derivative discontinuity will occur.
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(a)
(b) (c) (d)

FIG. 1. (a) perturbing external potential V (1) (b) first-order density due to change in occupation numbers (c) first-order density
due to s-d mixing (d) total first-order density. Lighter colors represent higher values and darker colors are lower.
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