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We use the poor man’s scaling approach to study the phase boundaries of a pair of quantum
impurity models featuring a power-law density of states ρ(ε) ∝ |ε|r, either vanishing (for r > 0) or
diverging (for r < 0) at the Fermi energy ε = 0, that gives rise to quantum phase transitions between
local-moment and Kondo-screened phases. For the Anderson model with a pseudogap (i.e., r > 0),
we find the phase boundary for (a) 0 < r < 1/2, a range over which the model exhibits interacting
quantum critical points both at and away from particle-hole (p-h) symmetry, and (b) r > 1, where
the phases are separated by first-order quantum phase transitions that are accessible only for broken
p-h symmetry. For the p-h-symmetric Kondo model with easy-axis or easy-plane anisotropy of the
impurity-band spin exchange, the phase boundary and scaling trajectories are obtained for both
r > 0 and r < 0. Throughout the regime of weak-to-moderate impurity-band coupling in which poor
man’s scaling is expected to be valid, the approach predicts phase boundaries in excellent qualitative
and good quantitative agreement with the nonperturbative numerical renormalization group, while
also establishing the functional relations between model parameters along these boundaries.

PACS numbers: 71.10.Hf, 72.15.Qm, 73.23.-b, 05.10.Cc

I. INTRODUCTION

The Kondo problem—the question of how an impu-
rity local moment becomes screened at low temperatures
by the conduction electrons of a host metal—has been
highly influential in stimulating the development of the-
oretical and numerical methods for treating strongly cor-
related condensed matter [1]. Perturbative treatments
of the spin-flip scattering between local and delocal-
ized spins necessarily break down below a characteris-
tic Kondo temperature scale, giving rise to a complex
many-body problem. Nonetheless, much valuable under-
standing of the Kondo problem has come from perturba-
tive renormalization-group (RG) [2, 3] and perturbative
scaling [4, 5] approaches. These were distilled into their
simplest form in the poor man’s scaling of Anderson [5].

In poor man’s scaling, electron states far from the
Fermi energy are progressively eliminated as the effective
bandwidth is reduced with a compensating adjustment
of a dimensionless measure of the effective impurity-band
exchange coupling. The evolution of this coupling to ever
larger values with decreasing bandwidth is suggestive of
approach to a fully screened strong-coupling fixed point,
although the scaling approach breaks down once the ef-
fective bandwidth drops below the order of the Kondo
temperature. More sophisticated but generally less in-
tuitive methods (the first historically being the numer-
ical renormalization group or NRG [6]) were devised to
confirm that the infrared fixed point indeed corresponds
to infinite exchange [1]. Poor man’s scaling was subse-
quently extended to the Anderson model with impurity

Coulomb interaction U = ∞ [7, 8], and the n-channel
Kondo model [9], where it correctly predicts the exis-
tence of a stable RG fixed point at an intermediate value
of the exchange coupling that lies within the perturbative
domain for n� 2.

More recently, there has been much interest in Kondo
physics in settings where the band density of states has
a power-law variation ρ(ε) ∝ |ε|r in the vicinity of the
Fermi energy ε = 0. Pseudogaps described by expo-
nents r > 0 can be found in a variety of materials in-
cluding heavy-fermion unconventional superconductors
[10, 11], zero-gap bulk [12] and engineered [13] semi-
conductors, and various (quasi) two-dimensional systems
like graphite [14, 15] and graphene [16]. An exponent
r <= − 1

2 arises near a band-edge in one dimensional
leads, while values −1 < r < 0 can describe disordered
Dirac fermions in two dimensions [17, 18]. Several theo-
retical techniques that have proved powerful for describ-
ing quantum impurities in metallic hosts, including Bethe
ansatz, bosonization, and conformal field theory, can-
not be applied for a power-law density of states. How-
ever, power-law variants of the Kondo impurity model
and the corresponding Anderson model have been ex-
tensively studied using other techniques such as per-
turbative scaling [19–23], large-N approaches [19, 24–
27], the NRG [22, 28–35], the perturbative RG [36–38],
and the local-moment approach [39–41]. Due to the de-
pletion of the conduction-band density of states near
the Fermi energy, these pseudogap models feature quan-
tum phase transitions [19] between a local-moment phase
for weak impurity-band couplings, in which the impu-
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rity spin survives unscreened down to zero temperature,
and one or more strong-coupling Kondo phases in which
the impurity spin undergoes complete or partial many-
body screening (depending on the presence or absence of
particle-hole symmetry) [31].

Of all the techniques so far applied to the pseudogap
Anderson and Kondo models, only the NRG has proved
capable of capturing all the key features of the phase
diagram, including the existence of four qualitatively dif-
ferent ranges of the band exponent r [31]. However, as is
true for many computational methods, the NRG’s relia-
bility comes at the price of laborious implementation and
a loss of physical transparency. Together, these make it
difficult to obtain simple intuition about how two fun-
damentally opposing tendencies—growth of host correla-
tions engendered by a local dynamical degree of freedom,
and the weakening of host-impurity interaction due to
depression of the low-energy density of states—compete
to create nontrivial temperature dependences of physical
properties and to shape phase boundaries. The local-
moment approach [42] reproduces rather well the phase
boundaries of the pseudogap Anderson model with band
exponents 0 < r < 1, but its analytical insights are
confined to situations of strict particle-hole symmetry
[39, 40] or the limit r → 0+ [41].

It is highly desirable to identify another primarily an-
alytical approach that can shed light more widely on
the functional relations describing the phase boundaries
in challenging quantum impurity problems that feature
both (i) more than one independent coupling that flows
under the reduction of the effective bandwidth, and (ii)
unstable quantum critical points arising from competing
flows in the multi-dimensional parameter space of effec-
tive couplings. A promising candidate is poor man’s scal-
ing [5], which has previously been established to account
well for the possible ground-states of many quantum im-
purity problems and to provide an approximate descrip-
tion of the physics on different energy/temperature scales
in terms of a flow through a space of renormalized Hamil-
tonian couplings. The method yields a set of ordinary
differential equations describing the renormalization of
Hamiltonian couplings. These differential equations can
in some cases be integrated in closed form; failing that,
their solutions can be explored numerically via numerical
iteration from different choices of bare couplings.

In this paper, we critically evaluate the adequacy of
poor man’s scaling for describing phase boundaries in
the Anderson model (with an arbitrary on-site repul-
sion U) and in the particle-hole-symmetric Kondo model
with easy-axis or easy-plane anisotropy of the impurity-
band exchange coupling. For each model, we generalize
previous treatments to obtain coupled differential equa-
tions for the evolution of effective couplings under pro-
gressive reduction of the conduction bandwidth. These
equations are valid for any density of states of the form
ρ(ω) ∝ |ω|r, whether r is positive, negative, or zero. (The
case r = 0 describes conventional metallic hosts.) We
obtain analytical expressions for the locations of phase

boundaries for different parameter ranges of the pseudo-
gap (r > 0) Anderson and power-law (r 6= 0) anisotropic
Kondo models. Comparison with nonperturbative NRG
results shows that throughout the perturbative regime
where the method is well-founded, poor man’s scaling
correctly captures the functional relations between model
parameters along various parts of the phase boundaries,
and also reproduces the absolute location of the bound-
aries with good quantitative accuracy. The availability of
proven analytical expressions obviates the need for fur-
ther NRG calculations to understand and make predic-
tions about possible realizations of these models.

The rest of the paper is organized as follows. Section
II treats the Anderson model with a power-law density
of states. Section II A defines the model and summarizes
the phase diagram that has been established through pre-
vious work. The poor man’s scaling equations are derived
in Sec. II B. Section II C compares analytic approxima-
tions for the phase boundary with NRG results for super-
linear (r > 1) densities of states and various ranges of the
other model parameters, while Sec. II D does the same for
0 < r < 1. The anisotropic Kondo model is the subject
of Sec. III. Section III A presents the poor man’s scal-
ing equations along with a preliminary analysis. Phase
boundaries are analyzed for 0 < r < 1

2 and −1 < r < 0
in Secs. III B and III C, respectively. Section IV contains
a brief discussion of strengths and weaknesses shown by
the poor man’s scaling approach.

II. POWER-LAW ANDERSON MODEL

A. Model Hamiltonian

The Anderson impurity model is described by the
Hamiltonian [43]

ĤA = Ĥband + Ĥimp + Ĥhyb , (1)

where

Ĥband =
∑
k,σ

εkc
†
kσckσ (2)

with σ = ±1 (or σ = ↑, ↓) describes a noninteracting
conduction band having dispersion εk;

Ĥimp = εd n̂d + Un̂d↑n̂d↓ (3)

with n̂d = n̂d↑ + n̂d↓ and n̂dσ = d†σdσ describes an impu-
rity having level energy εd and on-site Coulomb interac-
tion U ; and the hybridization term

H̃hyb =
1√
Nk

∑
k,σ

(
Vkd

†
σckσ + H.c.

)
(4)

accounts for impurity-band tunneling. Nk is the num-
ber of unit cells in the host metal, i.e., the number of
inequivalent k values. Without loss of generality, we
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take the hybridization matrix element Vk to be real and
non-negative. For compactness of notation, we drop all
factors of the reduced Planck constant ~, Boltzmann’s
constant kB , and the impurity magnetic moment gµB .

A mapping to an energy representation where

Ĥband =
∑
σ

∫
dε ε c†εσcεσ, (5)

Ĥhyb =
∑
σ

∫
dε
√

Γ̄(ε)/π
(
εc†εσdσ + H.c.

)
, (6)

shows that the conduction-band dispersion εk and the hy-
bridization matrix element Vk affect the impurity degrees
of freedom only in combination through the hybridization
function [44]

Γ̄(ε) ≡ π

Nk

∑
k

V 2
k δ(ε− εk). (7)

To focus on the most interesting physics of the model,
we assume a simplified form

Γ̄(ε) = Γ |ε/D|r Θ(D − |ε|), (8)

where Θ(x) is the Heaviside function and Γ is the hy-
bridization width. The primary focus of this work is
cases r > 0 in which the hybridization function exhibits a
power-law pseudogap around the Fermi energy. We will
also briefly discuss r = 0, representing a conventional
metallic host.

One way that a hybridization function of the form of
Eq. (8) can arise is from a purely local hybridization ma-
trix element Vk = V ≥ 0 combined with a density of
states (per unit cell, per spin orientation) varying as

ρ(ε) ≡ N−1
k

∑
k

δ(ε− εk) = ρ0|ε/D|rΘ(D − |ε|) (9)

with ρ0 = (1 + r)/(2D), in which case Γ = πρ0V
2. How-

ever, all results below apply equally to situations in which
the k dependence of the hybridization contributes to the
energy dependence of Γ̄(ε).

The assumption that Γ̄(ε) exhibits a pure power-law
dependence over the entire width of the conduction band
is a convenient idealization. More realistic hybridization
functions in which the power-law variation is restricted
to a region around the Fermi energy exhibit the same
qualitative physics, with modification only of nonuniver-
sal properties such as the location of phase boundaries
and the value of the Kondo temperature.

In the metallic (r = 0) Anderson model, any value
Γ > 0 places the system in its strong-coupling phase,
where the impurity degrees of freedom are completely
quenched at T = 0. The situation for pseudogapped
hybridization functions (r > 0) is much richer, as sum-
marized in the phase diagrams shown in Fig. 1 for cases
U > 0 of on-site Coulomb repulsion. The most notable
feature is the existence within a region −U < εd < 0, Γ <
Γc(r, U, εd) of a local-moment (LM) phase within which
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FIG. 1. Schematic εd-Γ phase diagrams of the pseudogap
Anderson model [Eqs. (1)–(8)] for band exponents (a) 0 <
r < 1

2
, (b) r ≥ 1

2
. Generically, the system falls into either a

local-moment phase (LM) or one of two asymmetric strong-
coupling phases (ASC±). However, there is also a symmetric
strong-coupling phase (the line labeled SSC) that is reached
only for 0 < r < 1

2
under conditions of strict particle-hole

symmetry (εd = − 1
2
U) and for sufficiently large hybridization

widths Γ.

the impurity retains an unquenched spin degree of free-
dom down to T = 0. There are also three different strong-
coupling phases, distinguished by their ground-state elec-
tron number Q (measured from half filling): a symmetric
strong-coupling (SSC) phase with Q = 0, reached only
for 0 < r < 1

2 under the condition εd = − 1
2U for strict

particle-hole (p-h) symmetry; and a pair of asymmetric
strong-coupling phases ASC+ and ASC− having Q = 1
and Q = −1, respectively. The ranges 0 < r ≤ 1

2 and

r ≥ 1
2 can both be further subdivided based on the nature

of the quantum phase transitions separating the phases.
For a compact summary, the reader is referred to Sec. II
B1 of Ref. 45.

B. Derivation of poor man’s equations

This section presents a poor man’s scaling treatment of
the Anderson Hamiltonian with a power-law hybridiza-
tion function. Jefferson [7] and Haldane [8] provided scal-
ing treatments of the metallic case r = 0 valid in the
limit U � D. These were subsequently extended to gen-
eral values of U (Ref. 1), although the analysis neglected
the renormalization of U . Reference 21 presented scaling
equations for the pseudogap case r > 0 with U =∞. Be-
low, the scaling analysis is generalized to arbitrary val-
ues of r and U . Two of us have previously presented
a similar poor man’s scaling analysis of the Anderson-
Holstein impurity model with a power-law hybridization
[45]. The treatment of the Anderson model is somewhat
simpler, and as we will see, the resulting scaling equa-
tions are amenable to approximate integration in several
physically interesting limits.

We start with the Anderson Hamiltonian written in
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the form

Ĥ ′A = Ĥband + Ĥimp + Ĥ ′hyb , (10)

where Ĥband and Ĥimp are as defined in Eqs. (2) and (3),

respectively, but with Ĥhyb in Eq. (4) replaced by

Ĥ ′hyb =
1√
Nk

∑
k,σ

{[
V0,k(1− n̂d,−σ)

+ V1,k n̂d,−σ
]
d†σckσ + H.c.

}
, (11)

with hybridization functions

Γ̄τ (ε) =
π

Nk

∑
k

V 2
τ,k δ(ε− εk) = Γτ |ε/D|r Θ(D − |ε|)

(12)
for τ = 0, 1 having the same power-law dependence as
Γ̄(ε) defined in Eq. (8). At the bare Hamiltonian level,
one expects the hybridization V0,k between the empty
and singly occupied impurity configurations to be iden-
tical to the matrix element V1,k between the singly occu-
pied and doubly occupied impurity configurations. How-
ever, this degeneracy might be broken under the scaling
procedure.

Following Haldane [8], we focus on many-body states

|0〉, |σ〉 = d†σ|0〉, and |2〉 = d†↑d
†
↓|0〉 formed by combin-

ing the conduction-band ground state (having Nk elec-
trons of energy εk < 0) with one of the four possible
configurations of the impurity level. Neglecting for the
moment the effect of the hybridization (Ĥ ′hyb), the ener-
gies of these states are denoted E0, E1 = E0 + εd, and
E2 = E1 + εd + U = 2E1 − E0 + U .

We now consider the effect of an infinitesimal reduc-
tion in the half-bandwidth from D to D̃ = D+dD, where
dD < 0. The goal is to write a new Hamiltonian H̃ ′A sim-

ilar in form to Ĥ ′A but retaining only conduction-band

degrees of freedom having energies |εk| < D̃ and with

parameters ε̃d, Ũ , and Ṽτ,k adjusted to account pertur-
batively for the band-edge states that have been elimi-
nated.

LetK+ be the set of wave vectors k describing particle-
like states having energies D̃ < εk < D, and K− be the
set of wave vectors describing hole-like state with energies
−D < εk < −D̃. Virtual tunneling of an electron from
a K− state into the empty impurity level transforms the
state |0〉 to

|0̃〉 = |0〉+
∑
σ

1√
Nk

∑
k∈K−

V0,k

|εk|+ E1 − E0
ckσ|σ〉+O(V 2)

(13)
with energy

Ẽ0 = E0 −
2

Nk

∑
k∈K−

V 2
0,k

|εk|+ E1 − E0
+O(V 3)

' E0 −
|dD|
π

2Γ̄0(−D)

D + εd
+O(V 3) . (14)

Here, O(V n) schematically represents all processes in-
volving a product of least n factors Vτj ,kj

. Similarly, vir-
tual tunneling of an electron from the doubly occupied
impurity level into a K+ state transforms |2〉 to

|2̃〉 = |2〉+
∑
σ

σ√
Nk

∑
k∈K+

V1,k

εk + E1 − E2
c†kσ|−σ〉+O(V 2)

(15)
with energy

Ẽ2 = E2 −
2

Nk

∑
k∈K+

V 2
1,k

εk + E1 − E2
+O(V 3)

' E2 −
|dD|
π

2Γ̄1(D)

D − U − εd
+O(V 3) . (16)

Finally, virtual tunneling of an electron into the singly
occupied impurity from a K− state or from the singly
occupied level into a K+ state transforms |σ〉 to

|σ̃〉 = |σ〉 − σ√
Nk

∑
k∈K−

V1,k

|εk|+ E2 − E1
ck,−σ|2〉

− 1√
Nk

∑
k∈K+

V0,k

εk + E0 − E1
c†kσ|0〉+O(V 2) (17)

with energy

Ẽ1 = E1 −
1

Nk

∑
k∈K−

V 2
1,k

|εk|+ E2 − E1

− 1

Nk

∑
k∈K+

V 2
0,k

εk + E0 − E1
+O(V 3)

' E1 −
|dD|
π

[
Γ̄1(−D)

D + U + εd
+

Γ̄0(D)

D − εd

]
+O(V 3).

(18)

The O(V 2) terms in each of the above states |φ̃〉 in-

clude ones required to enforce normalization, i.e., 〈φ̃|φ̃〉 =
〈φ|φ〉 = 1.

The modified energies can be used to define effective
Hamiltonian parameters ε̃d = Ẽ1−Ẽ0 and Ũ = Ẽ2+Ẽ0−
2Ẽ1. At the same time, for each k in the retained portion
of the band (i.e., satisfying |εk| < D̃), the hybridization
matrix element V0,k must be replaced by

Ṽ0,k =

{√
Nk 〈0̃|ckσĤ ′A|σ̃〉 for εk > 0

−
√
Nk 〈σ̃|c†kσĤ ′A|0̃〉 for εk < 0,

(19)

and V1,k must be replaced by

Ṽ1,k =

{
−σ
√
Nk 〈σ̃|ck,−σĤ ′A|2̃〉 for εk > 0

σ
√
Nk 〈2̃|c†k,−σĤ ′A|σ̃〉 for εk < 0.

(20)

It is straightforward to show that

Ṽτ,k = Vτ,k +O(V 3). (21)
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The leading corrections to Ṽτ,k involve numerous terms

arising from the V 2 terms in the states |φ̃〉. Since these
corrections are too small to be of much practical impor-
tance, we shall not evaluate them here.

The infinitesimal band-edge reduction described in the
previous paragraphs can be carried out repeatedly to re-
duce the half-bandwidth by a finite amount from D to
D̃ < D. Equations (14) and (18) indicate that during this

process, the effective impurity level energy ε̃d = Ẽ1− Ẽ0

evolves according to the scaling equation

dε̃d

dD̃
=

1

π

[
Γ̃0,+

D̃ − ε̃d
− 2Γ̃0,−

D̃ + ε̃d
+

Γ̃1,−

D̃ + Ũ + ε̃d

]
+O(V 3),

(22)

where Γ̃τ,± is the rescaled hybridization function at the

reduced band edges ε = ±D̃. Taking into account Eq.
(16) as well, one sees that the effective on-site repulsion

Ũ = Ẽ2 + Ẽ0 − 2Ẽ1 follows

dŨ

dD̃
=

2

π

[
Γ̃0,−

D̃ + ε̃d
− Γ̃0,+

D̃ − ε̃d
+

Γ̃1,+

D̃ − Ũ − ε̃d

− Γ̃1,−

D̃ + Ũ + ε̃d

]
+O(V 3). (23)

The band-edge values Γ̃τ,± of the hybridization functions

Γ̄τ (ε) rescale both due to the replacement of D by D̃ in
Eq. (8) and due to the perturbative corrections to Vτ,k
in Eq. (21), leading to the scaling equation

dΓ̃τ,±

dD̃
= r

Γ̃τ,±

D̃
+O(V 4). (24)

The scaling equations (22)–(24) have been derived to low-
est order in nondegenerate perturbation theory, and are
strictly valid only so long as |D̃ ± (ε̃d + τU)| � Ṽτ,k for

each k such that εk = ∓D̃.
Equation (24) shows that the band-edge values of the

hybridization functions Γ̄τ (ε) are irrelevant (in the RG
sense) for r > 0 and at most marginally relevant for r =
0. For the p-h-symmetric bare hybridization functions
considered in this work, it is an excellent approximation
to set Γ̃0,± = Γ̃1,± = Γ̃, leading to the simplified scaling
equations

dΓ̃

dD̃
= r

Γ̃

D̃
, (25)

dε̃d

dD̃
' Γ̃

π

[
1

D̃ − ε̃d
− 2

D̃ + ε̃d
+

1

D̃ + Ũ + ε̃d

]
, (26)

dŨ

dD̃
' 2Γ̃

π

[
1

D̃ + ε̃d
− 1

D̃ − ε̃d

+
1

D̃ − Ũ − ε̃d
− 1

D̃ + Ũ + ε̃d

]
. (27)

Equations (25)–(27) with initial conditions ε̃d = εd,

Ũ = U , and Γ̃ = Γ represent the main results of this

section. The equations respect p-h symmetry in that

d(ε̃d + 1
2 Ũ)

dD̃
' 2Γ̃

π

ε̃d + 1
2 Ũ

(D̃ − 1
2 Ũ)2 − (ε̃d + 1

2 Ũ)2
, (28)

so bare couplings satisfying εd = − 1
2U inevitably lead to

rescaled couplings that satisfy ε̃d = − 1
2 Ũ . For r = 0, Eqs.

(25)–(27) reproduce the scaling equations for the metallic
Anderson problem [1], while for r > 0 in the limit U →∞
of extreme p-h asymmetry, Eqs. (25) and (26) reduce to
ones presented previously [21] for pseudogapped systems.

Equation (25) clearly has the solution

Γ̃ = (D̃/D)r Γ. (29)

Substituting this expression for Γ̃ into Eqs. (26) and (27)
creates a pair of coupled differential equations for ε̃d and
Ũ . Analytical or numerical integration of these differen-
tial equations allows one to follow the evolution of the
rescaled couplings under reduction of D̃ until one of the
following conditions is met, signaling entry into a low-
energy regime governed by a simpler effective model than
the full pseudogap Anderson model:

(1) If ε̃d, Ũ + 2ε̃d > D̃ > Γ̃, the system lies in
the empty-impurity region of the ASC− strong-coupling
phase, in which the ground-state impurity occupancy ap-
proaches zero. In this case, T ∗ = min(ε̃d, Ũ + 2ε̃d) sets
the scale for crossover into a low-energy regime of (for
r > 0, generalized) Fermi-liquid behavior.

(2) If −(Ũ + ε̃d), −(Ũ + 2ε̃d) > D̃ > Γ̃, the sys-
tem belongs in the full-impurity region of the ASC+

strong-coupling phase, in which the ground-state impu-
rity occupancy approaches two. Here, T ∗ = min(−(Ũ +

ε̃d), −(Ũ + 2ε̃d)) marks crossover into the asymptotic
(generalized) Fermi-liquid regime.

(3) If −ε̃d, Ũ + ε̃d > D̃ > Γ̃, the system crosses over
into an intermediate-energy regime of local-moment be-
havior. (This regime is distinct from the LM phase, which
is defined by its ground-state properties.) On entry to
the LM regime, the empty and doubly occupied impu-
rity configurations are effectively frozen out, and one can
perform a generalization [31] of the Schrieffer-Wolff trans-
formation [46] to map the pseudogap Anderson model to
a pseudogap Kondo model

HK = Hband +
1

Nk

∑
k,k′

∑
σ,σ′

c†kσ

[
J

2
Ŝ ·σσσ′ +Kδσ,σ′

]
ck′σ′

(30)

where Ĥband is as given in Eq. (2) with the power-law

density of states specified in Eq. (9), Ŝ is the spin- 1
2

operator for the impurity, σ is a vector of Pauli matrices,
the (isotropic) exchange coupling J satisfies

ρ0J =
2Γ̃

π

(
1

|ε̃d|
+

1

Ũ + ε̃d

)
, (31)

and the potential scattering K satisfies

ρ0K =
Γ̃

2π

(
1

|ε̃d|
− 1

Ũ + ε̃d

)
. (32)
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For metallic hosts (r = 0), a system that reaches the
LM regime always lies in the strong-coupling phase of
the Kondo model, which constitutes another region of
the strong-coupling phase of the Anderson model. In
pseudogap cases, by contrast, the asymptotic low-energy
behavior depends on the values of J and K: the system
may fall in one of three Kondo phases that are associ-
ated with the SSC (for K = 0), ASC− (for K > 0), or
ASC+ (for K < 0) phases of the Anderson model; or it
may fall in the LM phase of both the Kondo and Ander-
son models, in which the impurity retains a free two-fold
spin degree of freedom down to absolute zero. In any
of these cases, the energy scale T ∗ for crossover into the
asymptotic low-energy regime is generally much smaller
than the scale min(−ε̃d, Ũ + ε̃d) for entry into the LM
regime. On approach to a strong-coupling ground state,
T ∗ coincides with the Kondo temperature TK .

(4) If ε̃d, −(Ũ + ε̃d) > D̃ > Γ̃, Ũ + 2ε̃d (a situa-
tion that arises only if the bare U is negative), then
the system enters the intermediate-energy local-charge
regime. At this point, one can perform a generalized
Schrieffer-Wolff transformation to a pseudogap charge-
Kondo model. The system may lie in a strong-coupling
phase of the charge-Kondo model (yet another region
of an Anderson-model strong-coupling phase) or in the
local-charge phase of both models, where the impurity
retains a free two-fold charge degree of freedom down
to absolute zero. Similarly to the situation in (3), the
crossover to the asymptotic low-energy regime is charac-
terized by a scale T ∗ � min(ε̃d, −(Ũ + ε̃d)).

(5) If Γ̃ > D̃ > |ε̃d| and/or Γ̃ > D̃ > |Ũ + ε̃d|, then the
system enters a mixed-valence regime where the states
|0̃〉, |σ̃〉, and |2̃〉 are no longer all well-defined. The scaling
method is unable to determine whether the system lies
in the mixed-valence region of the strong-coupling phase,
or instead falls in the local-moment or local-charge phase
[47].

In the remainder of Sec. II, we specialize to ranges
of the band exponent r > 0 and the bare parameters
U (henceforth taken to be positive, representing on-
site Coulomb repulsion), εd, and Γ for which it pos-
sible to make analytical predictions for the location of
boundaries between LM and strong-coupling phases. We
compare these predictions with results obtained using
the non-perturbative numerical renormalization group
(NRG) method [48, 49], as adapted to treat systems con-
taining a pseudogap density of states [30, 31]. Through-
out the paper, we have set Wilson’s discretization param-
eter to Λ = 3 and kept up to 600 many-body states after
each iteration of the NRG.

C. Phase boundaries for r > 1

Analysis of band exponents in the range r > 1
is simplified because Eq. (29) means that Γ̃/D̃ =

(D̃/D)r−1(Γ/D) decreases monotonically under reduc-
tion of the half-bandwidth. In the physically most rel-

evant range Γ < D, this decrease in Γ̃/D̃ rules out the
possibility of entry into the mixed-valence regime under
condition (5) of Sec. II B. Moreover, the decrease of Γ̃ is
so rapid that any entry to the local-moment regime and
subsequent mapping to the pseudogap Kondo problem
[via Eqs. (31) and (32)] will yield a sub-critical exchange
coupling that assigns the system to the local-moment
phase [31].

Under these circumstances, the upper critical level en-
ergy ε+

d,c(Γ, U) separating the ASC− phase (in which

ε̃d = D̃ is satisfied at sufficiently low D̃) from the LM

phase (in which one eventually reaches ε̃d = −D̃) is ef-

fectively determined by the condition ε̃d(D̃ = 0) = 0 that
places the fully renormalized impurity level precisely at
the the Fermi energy. This picture of the quantum phase
transition as arising from a renormalized level crossing is
consistent with the observation of first-order behavior for
r > 1 [33, 38]. By p-h symmetry, the boundary between
the LM and ASC+ phases is at the lower critical level
energy ε−d,c = −U − ε+

d,c [see Fig. 1(b)].
The aforementioned boundary between the LM and

ASC− phases can be located by performing an approxi-
mate integration of Eqs. (26) and (27) using Eq. (29). For
uniformity of presentation, we express our result in the
form of a critical hybridization width Γc(U, εd). We will
consider bare parameters satisfying 0 < −εd � U+εd, D
and (for reasons that will become clear shortly) Γ �
(r − 1)D. Cases U � D and U � D will be considered
separately.

1. LM-ASC− boundary for 0 < −εd � U and Γ, U � D

If U � D, then so long as |ε̃d|, Ũ + ε̃d � D̃, Eq. (27)
can be approximated by

dŨ

dD̃
' 4Γ̃Ũ

πD̃2
=

4Γ

πDr
ŨD̃r−2, (33)

where use has been made of Eq. (29). This differential
equation can be integrated to yield

Ũ(D̃) ' U exp

[
− 4

(r − 1)π

(
Γ

D
− Γ̃

D̃

)]
, (34)

which for Γ/D � (r − 1)π describes a very weak down-

ward renormalization of Ũ with decreasing D̃.
During the same initial phase of the scaling, Eq. (28)

can be approximated by

d

dD̃
(ε̃d + 1

2 Ũ) ' 2Γ

πDr
(ε̃d + 1

2 Ũ)D̃r−2, (35)

and hence

ε̃d + 1
2 Ũ ' (εd + 1

2U) exp

[
− 2

(r − 1)π

(
Γ

D
− Γ̃

D̃

)]
. (36)

Equations (34) and (36) imply that

ε̃d − εd '
1

4

(
1− 2εd

U

)
(U − Ũ). (37)
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In the case of present interest where |εd| � U , the level
energy scales upward in absolute terms by one-quarter
the amount that the on-site interaction scales down, but
εd experiences a much greater fractional shift than U .

Equations (33), (34), and (36) remain valid until (Ũ +

ε̃d)/D̃ rises to approach unity, a condition that occurs [for
the assumed ordering of the bare parameters, and for the
weak renormalization of U that holds for Γ� (r − 1)D]

at D̃ = D̃1 ' U , at which point

ε̃d,1 ≡ ε̃d(D̃1) ' εd +
ΓU
[
1− (U/D)r−1

]
(r − 1)πD

. (38)

In the regime D̃ < D̃1, the doubly occupied impurity
configuration is essentially frozen out. Now Eq. (26) can
be approximated by

dε̃d

dD̃
' − Γ̃(D̃ − 3ε̃d)

πD̃2
= − Γ

πDr
(D̃ − 3ε̃d)D̃

r−2, (39)

which has the solution

ε̃d ' ε̃d,1 +
Γ

rπ

[(
D̃1

D

)r
−
(
D̃

D

)r][
1+O

(
ε̃d,1
U

)]
. (40)

Using Eq. (38), this gives

ε̃d(D̃) ' εd +
Γ

(r − 1)π

[
U

D
− 1

r

(
U

D

)r
− r − 1

r

(
D̃

D

)r]
.

(41)
A more careful treatment of scaling over the range of

D̃ in which |D̃− Ũ − ε̃d| . Γ̃ [invalidating the nondegen-
erate perturbation theory used to derive Eqs. (25)–(27)]
would likely modify the numerical prefactor of (U/D)r Γ
on the right-hand side of Eq. (41). With this caveat, the
equation should capture the scaling of the impurity level
energy until |ε̃d|/D̃ grows to reach 1 at some reduced half-

bandwidth D̃2. For D̃ < D̃2, the system crosses over into
the low-energy regime of the ASC− phase (for ε̃d > 0) or
that of the LM phase (for ε̃d < 0). The only exception
occurs for a combination of bare parameters that places
the system precisely on the boundary between the two
phases, in which case ε̃d(D̃ = 0) = 0. Recalling that
we are considering cases r > 1, Eq. (41) shows that the
boundary location ε+

d,c(U,Γ) is primarily determined by

initial phase of scaling (D̃1 < D̃ < D), and to leading
order in U/D and Γ/D satisfies

ε+
d,c ' −

ΓU

(r − 1)πD
. (42)

This relation can be recast as

Γc ' (r − 1)πD|εd|/U (43)

for −U/2� εd < 0.
The phase boundary between the LM and ASC−

phases at Γc(U, εd) can be determined to the desired ac-
curacy by performing successive NRG runs to refine the

1 0 - 5 1 0 - 4 1 0 - 3 1 0 - 2 1 0 - 1 1 0 0 1 0 1 1 0 2 1 0 31 0 0

1 0 1

1 0 2

1 0 3

1 0 4

1 0 5

1 0 6

 �d  /  U  =  - 1 0  -  3

 �d  /  U  =  - 1 0  -  2

 �d  /  U  =  - 1 0  -  1

Γ c
 / |�

d|

U / D

r  =  1 . 1
r  =  2 . 0

FIG. 2. Critical hybridization width plotted as Γc/|εd| vs
U/D, comparing NRG data (symbols) with the scaling pre-
dictions of Eq. (43) (dashed lines) and Eq. (45) (dotted lines).
Results are for r = 1.1 and 2 and for three values of |εd|/U
shown in the legend.

value of Γc using the method of bisection. At the end of
each run, the zero-temperature limit of Tχimp (temper-
ature times the impurity contribution to the static mag-
netic susceptibility) [50, 51] is used to determine whether
the system is in the LM phase (Tχimp → 1/4) or in the
ASC− phase (Tχimp → 0), and thus to modify the range
of Γ values within which Γc must lie.

Figure 2 shows the critical hybridization width plotted
as Γc(U, εd)/|εd| vs U/D for r = 1.1 and 2. NRG re-
sults (symbols) calculated for three different fixed ratios
− 1

2 � εd/U < 0 are compared with the scaling expres-
sion in Eq. (43) (dashed lines). The numerics confirm the
predicted linear dependence of Γc on εd. The U−1 varia-
tion of Γc is also well supported for r = 2, but for r = 1.1
is only approached in the limit of very small U/D. This
deviation from the scaling theory likely arises because
the latter band exponent lies close to the value r = 1
that acts as an upper critical dimension for the pseu-
dogap Anderson and Kondo models and at which there
are logarithmic corrections to simple power-law behav-
iors [25, 33, 38]. Results for 1.1 < r < 2 (not shown)
indicate that increasing r leads to a continuous improve-
ment in the accuracy with which Eq. (43) reproduces the
NRG data.

2. LM-ASC− boundary for 0 < −εd,Γ� D � U

If the bare parameters of the Anderson Hamiltonian
instead satisfy U � D, then Eq. (39) applies from the

outset of scaling, and ε̃d satisfies Eq. (40) with D̃1 = D
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and ε̃d,1 = εd, i.e.,

ε̃d(D̃) ' εd +
Γ

rπ

[
1−

(
D̃

D

)r]
. (44)

Now the condition ε̃d(D̃ = 0) = 0 places the LM-ASC−
phase boundary at

Γc ' rπ|εd|. (45)

Figure 2 compares the prediction of Eq. (45) (dotted
lines) with NRG results obtained for U ≥ D. The scaling
approach reproduces the numerical results very well for
U & 10D, and (in contrast to the behavior found for
U � D) there is no significant difference between r = 1.1
and r = 2 in the accuracy of the analytical results.

D. Phase boundaries for 0 < r < 1

For r < 1, Eq. (29) implies that Γ̃/D̃ =

(D/D̃)1−r(Γ/D) ≥ Γ/D. The system flows to mixed
valence [under condition (5) in Sec. II B] at a reduced
half-bandwidth

D̃Γ = Γ̃(D̃Γ) = (Γ/D)1/(1−r)D (46)

provided that |ε̃d(D̃Γ)| and |Ũ(D̃Γ)+ε̃d(D̃Γ)| both remain

smaller than D̃Γ. However, the system flows to a different
low-energy regime if |ε̃d|/D̃ or |Ũ + ε̃d|/D̃ reaches 1 at

some D̃ > D̃Γ.

1. LM-SSC boundary for Γ, U � D

We first consider cases εd = − 1
2U where the system

exhibits strict p-h symmetry, and focus on the universal
(large-bandwidth) limit Γ, U � D.

So long as 1
2 Ũ � D̃, Eq. (27) can again be approxi-

mated by Eq. (33), which can be integrated to yield

Ũ(D̃) ' U exp

[
− 4

(1− r)π

(
Γ̃

D̃
− Γ

D

)]
. (47)

Eq. (47) can be re-expressed as

(Ũ/2D̃)1−r ' x̃ e−γ x̃ (48)

in terms of new variables

x̃(D̃) =

(
U

2D̃

)1−r

exp

(
4Γ

πD

)
≥ x ≡ x̃(D) (49)

and

γ =

(
2D

U

)1−r (
4Γ

πD

)
exp

(
− 4Γ

πD

)
(50)

1 0 - 5 1 0 - 4 1 0 - 3 1 0 - 2 1 0 - 1 1 0 0 1 0 11 . 0

1 . 5

2 . 0

2 . 5

3 . 0

Γ c
, N

RG
 / Γ

c, s
cal

U / D

 r  =  0 . 1
 r  =  0 . 2
 r  =  0 . 3

FIG. 3. Ratio Γc,NRG /Γc,scal of the critical hybridization
width found using NRG to the scaling prediction given by
Eq. (56), plotted as a function of U/D for εd = −U/2 and
band exponents r = 0.1, 0.2, and 0.3.

that allow Eq. (29) to be recast exactly in the form

Γ̃/D̃ =
π

4
γ x̃. (51)

Equation (48) shows that with increasing x̃ (or decreas-

ing D̃), Ũ/2D̃ initially rises, before peaking at x̃ = 1/γ,
and then dropping off exponentially for x̃ � 1/γ. The
system will enter its local-moment regime [under con-
dition (3) in Sec. II B] if there exists a reduced half-

bandwidth D̃U > D̃Γ such that Ũ(D̃U )/2D̃U = 1. The
approximate scaling equation (33) is valid only so long

as Ũ/D̃ . 1. Equation (27) predicts that Ũ experi-

ences a stronger downward renormalization once Ũ/D̃
approaches 2, a range in which the nondegenerate per-
turbation theory used to derive Eqs. (25)–(27) also begins

to break down. However, in this range of Ũ/2D̃, phys-
ically one expects renormalization to slow to a halt as
charge fluctuations are progressively frozen out. There-
fore, in the spirit of Haldane [8], we apply Eq. (48) all

the way to the point where Ũ(D̃)/2D̃ = 1, and we seek
x̃U defined to be the smallest solution of

x̃ e−γ x̃ = 1. (52)

For γ > 1/e, Eq. (52) has no real solution, so the

system necessarily crosses over to mixed valence for D̃ .
D̃Γ. For 0 ≤ γ ≤ 1/e, by contrast, Eq. (52) has a solution
x̃U (γ) satisfying 1 ≤ x̃U ≤ e ≤ γ−1. Since γx̃U < 1, Eq.

(51) gives Γ̃(D̃U ) < D̃U , meaning that at D̃ = D̃U the
system satisfies condition (3) for crossover into its local-
moment regime. Equation (49) gives

Ũ

U
=

2D̃U

U
=

[
exp(4Γ/πD)

x̃U (γ)

]1/(1−r)

≥ e−1/(1−r) (53)
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since x̃U ≤ e. This implies, at least for r � 1
2 , that the

rescaled on-site interaction Ũ(D̃U ) remains of the same
order as U .

A Schrieffer-Wolff transformation performed at D̃ =
D̃U yields a pseudogap Kondo model with [Eqs. (31) and
(32)]

ρ0J =
8Γ̃(D̃U )

πŨ(D̃U )
= γ x̃U , ρ0K = 0. (54)

It is known that for ρ0K = 0, the critical exchange cou-
pling Jc separating the Kondo (J > Jc) and LM (J < Jc)
phases satisfies ρ0Jc = f(r) where f(r) ' r(1 + r/2) for

r � 1
2 [Refs. 19 and 20] and f(r) → ∞ for r → 1

2

−

[Ref. 29]. Combining this information with Eq. (54),
one arrives at the prediction that the boundary between
the LM and SSC phases is determined by the condition
γc x̃U (γc) = f(r). Then, Eq. (52) gives x̃c ≡ x̃U (γc) =
exp[f(r)] and, hence, γc = f(r)/x̃c = f(r) exp[−f(r)].
This means that the LM phase occupies the parameter
range U > Uc(Γ), where

Uc = 2D

{
exp[f(r)]

f(r)

4Γ

πD
exp

(
− 4Γ

πD

)}1/(1−r)

. (55)

For Γ� D, one can invert Eq. (55) to deduce that the
LM phase occupies the parameter range Γ < Γc(U), with

Γc ' D
πf(r)

4 exp[f(r)]

(
U

2D

)1−r

. (56)

A U1−r variation of Γc was found previously using the
local-moment approach [39], which yields a closed-form
expression for r → 0+ that is identical to the correspond-
ing limit of Eq. (56).

Figure 3 plots the ratio of the critical hybridization
width Γc,NRG found using the NRG to the scaling pre-
diction Γc,scal given by Eq. (56). For band exponents
r = 0.1, 0.2, and 0.3, this ratio is well converged for
U/D . 0.1, implying that the scaling analysis correctly
captures the U1−r dependence of Γc at the LM-SSC
phase boundary. The absolute value of Γc,NRG/Γc,scal

falls as r decreases, and seems likely to approach unity
as r → 0+. We infer that Eq. (56) describes the NRG
results apart from a multiplicative correction factor that
depends solely on the band exponent r.

2. Kondo-mixed valence crossover for Γ, U � D

Poor man’s scaling not only can find the LM-SSC
phase boundary at Γ = Γc, but also can locate a crossover
within the SSC phase at Γ = ΓMV between a Kondo
region, in which only the singly occupied impurity con-
figurations have significant occupation at low tempera-
tures, and a mixed-valence region also having significant
ground-state occupancy of the empty and/or doubly oc-
cupied impurity configuration(s). We have seen [after Eq.

0 . 0 5 0 . 1 0 0 . 1 5 0 . 2 0 0 . 2 5 0 . 3 0 0 . 3 50 . 0

0 . 5

1 . 0

1 . 5

2 . 0  T � L M  =  0 . 1 5
 T � L M  =  0 . 1 7
 T � L M  =  3 / 1 6
 T � L M  =  0 . 2 1

Γ M
V, 

NR
G / 

Γ M
V, 

sca
l

r
FIG. 4. (Color online) Ratio ΓMV,NRG /ΓMV,scal of the mixed-
valence threshold hybridization width found using NRG and
that given by poor man’s scaling. Results for fixed U =
−2εd = 10−4D are plotted vs band exponent r with ΓMV,NRG

defined using four different values of TχLM (see text for de-
tails). For TχLM = 3/16 [0.21], it proves impossible to find
Kondo-region behavior for r ≥ 0.2 [r ≥ 0.15].

(52)] that the system reaches mixed valence for γ > e−1

(equivalent to Γ > ΓMV, a mixed-valence threshold hy-
bridization), and argued [before Eq. (55)] that it enters
the LM phase for γ < γc = f(r) exp[−f(r)]. There-
fore, the system exhibits fully developed Kondo physics
(i.e., enters its local-moment regime at intermediate val-

ues of D̃ and then crosses over to the SSC ground state
for D̃ . TK) only for γc < γ ≤ e−1, equivalent to the
condition Γc < Γ ≤ ΓMV with

ΓMV ' Γc exp[f(r)− 1]/f(r). (57)

The Kondo region has a width ∆Γ = ΓMV − Γc that
narrows rapidly with increasing r and turns out to be
restricted to ∆Γ . Γc/4 for r & 1

3 . For band exponents in

the range 1
3 . r < 1

2 , the SSC phase can be accessed only

from mixed valence, while for r ≥ 1
2 this phase disappears

altogether [30, 31].
Within the NRG approach, we can define the mixed-

valence threshold hybridization width by examining the
temperature dependence of the impurity contribution to
the magnetic susceptibility χimp. We can identify the
Anderson model as being in its local-moment regime if
Tχimp > TχLM where TχLM is a (somewhat arbitrary)
cutoff chosen to lie between the value Tχimp = 1/4 corre-
sponding to a free spin- 1

2 degree of freedom and the high-
temperature or mixed-valent limiting value Tχimp = 1/8.
With this criterion, the system is in the Kondo region
of the SSC phase if with decreasing T , Tχimp first rises
above TχLM before dropping towards its SSC value [31]
of r/8. We therefore define ΓMV,NRG as the smallest hy-
bridization width Γ for which Tχimp < TχLM at all tem-
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peratures.
Figure 4 shows the ratio ΓMV,NRG /ΓMV,scal between

the mixed-valence threshold coupling found using NRG
and the scaling prediction of Eq. (57). The ratio is plot-
ted vs band exponent r for fixed U/D = 10−4 and four
different cutoffs: TχLM = 0.15, 0.17, 3/16 and 0.21. As
one would expect, increasing the value of TχLM creates
a more stringent criterion for the identification of Kondo
physics, reduces the range of exponents r over which
Kondo-region behavior is found, and for given r reduces
the value of ΓMV. However, the ratio ΓMV,NRG/ΓMV,scal

is nearly independent of r except in the case TχLM =
0.15. This confirms that the condition for reaching mixed
valence is correctly captured by Eq. (57) apart from a
multiplicative factor that depends on the value of the
cutoff TχLM.

3. LM-ASC− boundary for 0 < −εd � U + εd and Γ� D

We now turn to the limit 0 < −εd � U + εd, D of
strong p-h asymmetry on the impurity site. In order to
locate the boundary between the LM and ASC− phases,
we will perform an approximate integration of Eqs. (26)
and (27) using Eq. (29). We first consider Γ, U � D.
The situation where Γ � D � U will be considered at
the end of the section.

So long as |ε̃d|, Ũ + ε̃d � D̃, Eq. (27) can once more
be approximated by Eq. (33), leading to Eq. (47), and
Eq. (28) can again be approximated by Eq. (33), which
yields

ε̃d + 1
2 Ũ ' (εd + 1

2U) exp

[
− 2

(1− r)π

(
Γ̃

D̃
− Γ

D

)]
. (58)

Equations (47) and (58) imply that

ε̃d + 1
2 Ũ ' (εd + 1

2U)

√
Ũ/U. (59)

Equations (33), (47), and (58) remain valid until either

Γ̃/D̃ reaches 1 at D̃ = D̃Γ or (Ũ + ε̃d)/D̃ reaches 1 at

D̃ = D̃1. By writing Ũ + ε̃d = 1
2 Ũ + (ε̃d + 1

2 Ũ), then
employing Eqs. (47), (48), and (58), the latter condition
can be recast as

x̃e−γx̃/2
[
η + e−γx̃/2(1−r)]1−r = 1, (60)

with x̃ and γ as defined in Eqs. (49) and (50), and

η =

(
1 +

2εd
U

)
exp

[
− 2Γ

π(1− r)D

]
' 1. (61)

Given Eq. (51), the conditions Γ̃(D̃1) < Ũ(D̃1) +

ε̃d(D̃1) = D̃1 are satisfied provided that Eq. (60) has
a real solution x̃ = x̃1(γ) < 4/πγ. Such solutions exist

for γ . γmax(r) = (4/π) e−2/π
[
η + e−2/π(1−r)]1−r. For

η = 1, there is a monotonic decrease in γmax with in-
creasing r, from γmax(0+) ' 1.030 to γmax(1−) ' 0.674,

while the solution to Eq. (60) satisfies 2−(1−r) ≤ x̃1 ≤
4/πγmax < 1.89.

In the regime D̃ < D̃1, entered with ε̃d = ε̃d,1, the dou-
bly occupied impurity configuration is essentially frozen
out. Now Eq. (26) can be approximated by Eq. (39),
again yielding Eq. (40). This second phase of the scal-
ing continues until one of the following conditions is met:
(a) ε̃d = D̃, signalling crossover into the empty-impurity

region of the ASC− phase; (b) Γ̃ = D̃, marking entry
into the mixed-valence region of the ASC− phase; (c)

ε̃d = −D̃, marking entry into the local-moment regime.
In case (c), the system may be mapped onto the pseu-
dogap Kondo Hamiltonian described by Eqs. (30)–(32),
which may lie in (c)(i) the ASC− phase, or (c)(ii) the
LM phase. Integrating the poor man’s scaling equations
with sufficient accuracy to distinguish among all these
possibilities is in general a formidable challenge.

Progress on locating the LM-ASC− phase boundary
can be made in the limit γ � 1 of very weak impurity-
band hybridization, where D̃1 ' U + εd and x̃1 = (1 +
η)−(1−r)[1+O(γ)]. Focusing for simplicity on η → 1, one
finds

ε̃d,1 ' εd +
Γ

(1− r)π

(
U

D

)r
, (62)

and hence [via Eq. (40)]

ε̃d = εd +
Γ

rπ

[
1

1− r

(
U

D

)r
−
(
D̃

D

)r]
. (63)

In this limit of small γ, one expects only a small fractional
change in the bare level energy εd to be required to drive
the system from case (a) to case (c)(ii) of the previous
paragraph. Under these circumstances, just as was done
with greater rigor for r > 1, one can approximate the
location of the phase boundary by the condition ε̃d(D̃ =
0) = 0, leading to

ε+
d,c ' −

Γ

r(1− r)π

(
U

D

)r
. (64)

Eq. (64) can be inverted such that the system is in the
LM phase if Γ < Γc, where the critical coupling is given
by

Γc = r(1− r)π |εd|
(
U

D

)−r
. (65)

For U � D, the evolution of ε̃d with D̃ is as described
by Eq. (44). For γ � 1, arguments similar to those given
at the end of the previous section lead to the conclusion
that the LM-ASC− boundary is given by Eq. (45).

Figure 5 shows the critical hybridization width plotted
as Γc/|εd| vs U/D for band exponents r = 0.1, 0.2 and
0.3 and for two values of the ratio |εd|/U listed in leg-
end. NRG data (symbols) are compared with the poor
man’s scaling predictions. For U � D, Γc/|εd| exhibits a
(U/D)−r dependence that is described very well by Eq.
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FIG. 5. (Color online) Critical coupling Γc found using NRG
(symbols) plotted as Γc/|εd| against U/D for εd/U = −10−4

and −10−3 and for r = 0.1, 0.2 and 0.3. Also plotted are the
poor man’s scaling prediction of Eq. (65) for U � D (solid
lines) and Eq. (45) for U � D (dashed lines).

(65) (dashed lines) apart from an overall multiplicative
factor that grows with increasing r. For U � D, Γc/|εd|
is almost (but not quite) a constant as predicted by Eq.
(45) (dotted lines). These behaviors show that the poor
man’s scaling approach provides a good account of the
phase boundary in the limit of strong p-h asymmetry on
the impurity site.

III. ANISOTROPIC POWER-LAW KONDO
MODEL

In this section, we present a poor man’s scaling analy-
sis of the phase boundary between the Kondo and local-
moment (LM) phases of the Kondo model with distinct
longitudinal and transverse spin-flip couplings between
the impurity and a power-law-vanishing or power-law-
diverging density of states. The model is described by
the Hamiltonian

ĤK = Ĥband + JzŜz ŝz +
1

2
J⊥
(
Ŝ+ŝ− + Ŝ−ŝ+

)
, (66)

where Ĥband is as given in Eq. (2) with the den-

sity of states specified in Eq. (9), and Ŝ and ŝ =

N−1
k

∑
k,k′

∑
σ,σ′ c

†
kσ

1
2σσσ′ck′σ′ (with σ being a vector

of Pauli matrices) are, respectively, the spin- 1
2 operators

for the impurity and for conduction band electrons at the
impurity site. The properties of the model are invariant
under J⊥ → −J⊥, but for notational simplicity we will
consider only J⊥ ≥ 0.

Our focus is primarily on pseudogap cases r > 0, which
can arise, for example, due to the low-temperature freeze-
out of charge fluctuations in the Anderson-Holstein

model with a power-law density of states [45]. However,
in Sec. III C we briefly consider the range −1 < r < 0
describing bands with a generalized van Hove singularity
at the Fermi energy [22, 23].

A. Poor man’s scaling equations

By generalizing Anderson’s poor man’s scaling treat-
ment of the conventional (r = 0) Kondo problem [5],
it is straightforward to extend Withoff and Fradkin’s
analysis of the pseudogap Kondo problem to anisotropic
exchange. Under progressive reduction of the half-
bandwidth from D to D̃ = De−l, the exchange couplings
(Jz, J⊥) evolve to (J̃z, J̃⊥) according to

dJ̃z
dl

= −rJ̃z + ρ0J̃
2
⊥, (67a)

and

dJ̃⊥
dl

= −rJ̃⊥ + ρ0J̃zJ̃⊥. (67b)

On the right-hand side of each of these equations, the
first term reflects the change in the density of states at
the band edge (a single-particle effect), while the second
term reflects the lowest-order many-body effects and is
independent of r. These equations neglect all contribu-
tions beyond second-order in the exchange, and are there-
fore restricted in validity to situations where |ρ0J̃z| � 1

and ρ0J̃⊥ � 1.
Equations (67) can be combined to obtain

d

dl

(
J̃2
z − J̃2

⊥
)

= −2r
(
J̃2
z − J̃2

⊥
)
, (68)

which can be integrated to yield

J̃2
z − J̃2

⊥ =
(
J2
z − J2

⊥
)
e−2rl, (69)

One sees that exchange anisotropy is irrelevant for r > 0
(pseudogapped systems), marginal for r = 0 (conven-
tional metals), and relevant for r < 0 (describing a power-
law divergence of the host density of states at the Fermi
energy). Equation (69) can be inserted into Eq. (67a) to
obtain

dJ̃z
dl

= −rJ̃z + ρ0J̃
2
z − ρ0

(
J2
z − J2

⊥
)
e−2rl. (70)

After the completion of the work reported in this pa-
per, we learned of a recent poor man’s scaling formula-
tion of the power-law Kondo model with a more general
anisotropic exchange coupling JxŜxŝx+JyŜy ŝy +JzŜz ŝz
[52]. For the case Jx = Jy = Jz considered here, the scal-
ing equations of Ref. 52 reduce to Eqs. (67) and yield scal-
ing trajectories fully equivalent in appearance to those
plotted in Figs. 6 and 11 of this paper.



12

B. Pseudogapped density of states

For r > 0, Eqs. (67) have two stable fixed points, both
isotropic as expected from Eq. (69): the weak-coupling

or LM fixed point J̃z = J̃⊥ = 0, and the strong-coupling
or Kondo fixed point J̃z = J̃⊥ = ∞ (which lies beyond
the range of validity of the equations but is known to ex-
ist from nonperturbative studies). There is also a critical

fixed point ρ0J̃z = ρ0J̃⊥ = r that lies on the boundary
between the basins of attraction of the stable fixed points.
The goal of this subsection is to map out the location of
this boundary away from the point of SU(2) spin symme-
try. In light of Eq. (69), it is clear that any starting point
on the boundary flows under Eqs. (67) to the isotropic
critical point first identified by Withoff and Fradkin [19],
which therefore governs the low-energy physics.

For Jz 6= 0, one can factorize out the variation of J̃z
arising from pure density-of-states effects [i.e., the ef-

fect of the −rJ̃z term on the right-hand-side of Eq. (70)]
through the substitution

J̃z = ̃(l) Jz e
−rl, (71)

which converts Eq. (70) to

d̃

dl
=
[
̃ 2 − 1 +

(
J⊥/Jz

)2]
ρ0Jz e

−rl (72)

with the initial condition ̃(0) = 1. For any antiferro-
magnetic bare exchange Jz > 0 and any J⊥ > 0, Eq. (72)
yields d̃/dl ≥ 0 so that ̃ > 1 for all l > 0. If ̃ remains

finite as l → ∞, then J̃z vanishes as D̃ → 0 and the
system must lie in the LM phase. On the other hand, we
can associate the divergence of ̃ at some value l = lK
with entry into the Kondo regime around temperature
TK = De−lK . The boundary between the two phases is
determined by the divergence of ̃(l) only at l =∞. For
a ferromagnetic bare exchange Jz < 0, any J⊥ 6= 0 is
sufficient to ensure that ̃ < 1 for all l > 0. In this case,
the system enters the Kondo regime if ̃ changes sign and
reaches −∞ for some finite lK .

For the purposes of more detailed analysis, it proves
convenient to parameterize the anisotropy of the bare
exchange couplings in terms of the variable

α =
√∣∣(J⊥/Jz)2 − 1

∣∣ sgn
[
(J⊥/Jz)

2 − 1
]
, (73)

which can range from −1 (for J⊥ = 0) to 0 (for J⊥ = |Jz|)
to +∞ (for J⊥ � |Jz|). Then Eq. (72) can be rewritten

d̃

dl
=
(
̃2 + α|α|) ρ0Jz e

−rl. (74)

Solutions of this equation will be examined in the next
two subsections.

1. Easy-plane anisotropy

In cases where J⊥ > |Jz| > 0, α defined in Eq. (73) is
positive and Eq. (74) has the solution

̃(l) = α tan

[
acotα+

αρ0Jz
r

(
1− e−rl

)]
. (75)

For antiferromagnetic bare exchange (Jz > 0), the
Kondo phase occupies the region of parameter space in
which there is a solution 0 ≤ lK < ∞ of the equation
̃(lK) =∞, i.e.,

acotα+
αρ0Jz
r

>
π

2
(76)

Thus, the Kondo phase extends over Jz > Jz,c(α) where

ρ0Jz,c(α) = r
atanα

α
. (77)

For α� 1 (weak anisotropy),

ρ0Jz,c ' r
(
1− 1

3α
2
)
, (78)

which reduces for α → 0 to the standard result [19]
ρ0Jz,c = ρ0J⊥,c = r. For α� 1 (strong anisotropy),

ρ0Jz,c '
rπ

2α

(
1− 2

πα

)
, (79)

which implies that the Kondo phase occupies the region
J⊥ > J⊥,c where

ρ0J⊥,c '
rπ

2

(
1− 2

πα

)
. (80)

For ferromagnetic bare exchange (Jz < 0), the condi-
tion for entry into the Kondo regime becomes ̃(lK) =
−∞, which is met for some finite lK provided that

acotα+
αρ0Jz
r

< −π
2
. (81)

Due to the dependence of α on Jz, this inequality is more
likely to be satisfied for smaller values of |Jz| than for
larger values. Therefore, the Kondo phase extends over
the region Jz > Jz,c(α), where

ρ0Jz,c(α) = − r
α

(π − atanα). (82)

For 0 < α� 1 (weak anisotropy),

ρ0Jz,c ' −
rπ

α

(
1− α

π

)
, (83)

while for α� 1 (strong anisotropy),

ρ0Jz,c ' −
rπ

2α

(
1 +

2

πα

)
, (84)

so the Kondo phase spans J⊥ > J⊥,c(α) where

ρ0J⊥,c(α) ' rπ

2

(
1 +

2

πα

)
. (85)
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2. Easy-axis anisotropy

For |Jz| > J⊥ > 0, α defined in Eq. (73) satisfies −1 <
α < 0 and the solution of Eq. (74) is

̃(l) = α coth

[
atanhα− αρ0Jz

r

(
1− e−rl

)]
. (86)

For antiferromagnetic bare exchange (Jz > 0), the
Kondo phase spans the region in which

atanhα− αρ0Jz
r

> 0, (87)

i.e., the region Jz > Jz,c where

ρ0Jz,c = r
atanhα

α
. (88)

For |α| � 1 (weak anisotropy),

ρ0Jz,c ' r
(
1 + 1

3α
2
)

(89)

while for α→ −1+ (strong anisotropy),

ρ0Jz,c '
r

2
ln

2

1 + α
. (90)

For Jz < −J⊥ < 0, it is straightforward to see that
|α| ≤ ̃(l) < 1 for all l > 0 and the system always lies in
the LM phase.

3. XY exchange anisotropy

In the special case Jz = 0 of pure-XY bare exchange
coupling, the scaling in Eq. (71) can be replaced by

J̃z = ̃⊥(l) J⊥ e
−rl, (91)

which converts Eq. (70) to

d̃⊥
dl

=
(
̃2⊥ + 1

)
ρ0J⊥ e

−rl (92)

with initial condition ̃⊥(0) = 0. The equation has solu-
tion

̃⊥(l) = tan

[
ρ0J⊥
r

(
1− e−rl

)]
. (93)

In the Kondo phase, there must be an lK (0 < lK <∞)
such that ̃⊥(lK) = ∞, a condition that is satisfied for
J⊥ > J⊥,c where

ρ0J⊥,c =
rπ

2
. (94)

As one would expect, this result coincides with the limits
α→∞ of Eqs. (80) and (85).

4. Comparison with NRG

The preceding results for the location of the phase
boundary as a function of α and the sign of Jz can be re-
expressed as the statement that for any value of Jz, the
Kondo phase occupies the region J⊥ > J⊥,c(Jz), where
J⊥,c is a monotonically decreasing function of Jz that
has the following limiting forms:

ρ0J⊥,c ' ρ0|Jz|
[
1 +

1

2

(
rπ

ρ0Jz

)2]
for 1� −ρ0Jz � rπ,

(95a)

ρ0J⊥,c ' rπ/2− 2ρ0Jz/π for ρ0|Jz| � r,
(95b)

ρ0J⊥,c ' r − 1
2 (ρ0Jz − r) for |ρ0Jz−r| � r/3,

(95c)

ρ0J⊥,c ' 2ρ0Jz exp(−ρ0Jz/r) for r � ρ0Jz � 1.
(95d)

In the limit r → 0, these expressions reproduce the stan-
dard result [5] J⊥,c = |Jz|θ(−Jz). The purpose of this
section is to test these statements based on poor man’s
scaling against nonperturbative NRG calculations.

Scaling trajectories for the pseudogap Kondo model,
calculated via numerical iteration of Eqs. (67) with differ-
ent starting parameters, are plotted in Figs. 6(a) and 6(b)
for r = 0.1 and r = 0.3, respectively. Solid lines show
trajectories that flow to the fixed points of the model. Ar-
rows on some of the trajectories show the direction of flow
of the couplings under reduction of the half-bandwidth
D. The phase boundary (thick line) separating the basins
of attraction of the LM fixed point (ρ0Jz = ρ0J⊥ = 0)
and the Kondo fixed point (ρ0Jz = ρ0J⊥ =∞) was found
by (a) reversing the flow of Eqs. (67) and (b) choosing
starting parameters very close to the critical coupling
ρ0Jz,c = ρ0J⊥,c = r and lying on either side of the the
trajectory Jz = J⊥. For comparison, NRG data for the
phase boundary (circles) are shown, with all values of
Jz and J⊥,c rescaled by the multiplicative factor that
places the isotropic critical point at ρ0Jz = ρ0J⊥,c = r.
This r-dependent multiplicative factor is introduced to
account both for a known reduction in hybridization aris-
ing from the NRG discretization [31, 48] and for the effect
of higher-order terms omitted from the poor man’s scal-
ing equations (67), which shift the isotropic critical point
from ρ0Jc = r to ρ0Jc = ̃(r) ' r(1 + r/2) [20]. Figure
6 shows that poor man’s scaling does an excellent job of
reproducing the shape of the phase boundary over the
entire region of couplings ρ0|Jz| < 1, ρ0J⊥ < 1.

A more rigorous test of the poor man’s scaling is pro-
vided by Figs. 7–10, which compare ρ0J⊥,c vs ρ0Jz cal-
culated for one of the limiting cases in Eqs. (95) (solid
lines) with their NRG counterparts (symbols). The NRG
results are again scaled so that the isotropic critical point
is at ρ0Jz = ρ0J⊥,c = r).

Figure 7 plots the critical coupling ρ0J⊥,c for r = 0.1
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FIG. 6. Scaling trajectories for the pseudogap Kondo model
with (a) r = 0.1, (b) r = 0.3, calculated via numerical itera-
tion of Eqs. (67). Arrows indicate the direction of flow under
reduction of the half-bandwidth D. Thick lines show trajec-
tories that flow to the critical fixed point, thereby defining
the boundary between the LM and Kondo phases. Circles
represent points on the phase boundary as determined using
the NRG, with all Jz and J⊥ values for given r rescaled by
the same multiplicative factor, chosen so that the isotropic
boundary point is located at ρ0Jz = ρ0J⊥ = r.

over a range of ferromagnetic exchange couplings ρ0Jz <
0. Although the perturbative scaling analysis is not
strictly valid for ρ0Jz . −1, Eq. (95a) captures surpris-
ingly well the variation of ρ0J⊥,c,NRG at least as far as
ρ0Jz = −1.7. For r = 0.3, the restriction ρ0Jz � −rπ
rules out the applicability of Eq. (95a) anywhere within
the range of validity of the scaling equations, so no results
are shown for this case.

In Fig. 8, the critical coupling is plotted as ρ0J⊥,c −
rπ/2 versus ρ0Jz/r near ρ0Jz = 0. The NRG results are
well reproduced by the poor man’s scaling prediction Eq.
(95b) over its entire range of validity ρ0|Jz| . r. Figure
9 focuses on the vicinity of the isotropic critical point
at ρ0Jz = ρ0J⊥,c = r, plotting the critical coupling as
ρ0J⊥,c−r vs 3(ρ0Jz−r)/r. The scaling prediction in Eq.
(95c) closely reproduces the NRG results over the range
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FIG. 7. Pseudogap Kondo model phase boundary ρ0J⊥,c vs
ρ0Jz for r = 0.1, comparing NRG results (symbols) with the
poor man’s scaling prediction for ρ0Jz � −rπ as given in Eq.
(95) (line).
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FIG. 8. Pseudogap Kondo model phase boundary plotted as
ρ0J⊥,c − rπ/2 vs ρ0Jz/r for r = 0.1 and r = 0.3, comparing
NRG results (symbols) with the poor man’s scaling prediction
for ρ0|Jz| � r as given in Eq. (95b) (lines).

ρ0|Jz − r| � r/3.
Lastly, Fig. 10 plots the critical coupling as

r ln(J⊥,c/2Jz) versus ρJz for 0 ≤ ρ0Jz ≤ 1. We find
that the NRG results closely follow the asymptotic form
for r � ρ0Jz � 1 [Eq. (95d), dashed line] over the range
0.2 . ρ0Jz . 0.7 for r = 0.1 and over 0.6 . ρ0Jz . 1 for
r = 0.3. There are minor deviations from the asymptotic
form as ρ0Jz nears 1 due to perturbative effects beyond
second order. We have also plotted the poor man’s scal-
ing prediction obtained via numerical solution of Eq. (88)
(solid lines), which can be seen to describe correctly the
deviation of J⊥,c,NRG near Jz = 0 from its ρ0Jz � r
asymptote.

The overall conclusion from Figs. 6–10 is that the poor
man’s scaling approach provides an excellent account of
the location of the boundary between the Kondo and
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FIG. 9. Pseudogap Kondo model phase boundary plotted as
ρ0J⊥,c−r vs 3(ρ0Jz−r)/r for r = 0.1 and r = 0.3, comparing
NRG results (symbols) with the poor man’s scaling prediction
for ρ0|Jz − r| � r/3 as given in Eq. (95c) (lines).
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FIG. 10. Pseudogap Kondo model phase boundary plotted
as r ln(J⊥,c/2Jz) vs ρ0Jz for r = 0.1 and r = 0.3, comparing
NRG results (symbols) with the poor man’s scaling prediction
obtained via numerical solution of Eq. (88) (solid lines) and
the asymptotic form for ρ0Jz � r from Eq. (95d) (dashed
line).

local-moment phases of the spin-anisotropic pseudogap
Kondo model under conditions of strict p-h symmetry.

C. Divergent density of states

Coupling a Kondo impurity to a fermionic density of
states that diverges at the Fermi level in a manner de-
scribed by Eq. (9) with r < 0 has been shown to yield rich
physics including nontrivial quantum phase transitions
occurring for ferromagnetic exchange couplings J < 0
[22, 23]. The poor man’s scaling analysis of the spin-
anisotropic Kondo model applies also to cases r < 0.
Examination of Eqs. (67) show that the poor man’s scal-

     - 1 . 0 - 0 . 5 0 . 0 0 . 5 1 . 00 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

 

 

� 0
 J �

� �  J z
FIG. 11. Scaling trajectories for the pseudogap Kondo model
with r = −0.1, representing a divergence of the density of
states at the Fermi energy. Arrows indicate the direction
of flow under reduction of the half-bandwidth D. Thick
lines show trajectories that flow to the critical point, defining
the phase boundary between the ferromagnetic and Kondo
phases.

ing trajectories for r < 0 can be obtained from those for
band exponent |r| > 0 through the simple replacements

r → −r, J̃z → −J̃z. This mapping implies that the scal-
ing trajectories for r < 0 should be reflections of those for
r > 0 about the axis Jz = 0 with reversal of the direction
of flow arrows. This is illustrated in Fig. 11, which plots
the scaling trajectories for a representative case r = −0.1
over the range of exchange couplings −1 < ρ0Jz < 1 and
0 < ρ0J⊥ < 1. Arrows indicate the direction of flow of
couplings with decreasing effective half-bandwidth. The
model has three stable fixed points: a ferromagnetic
fixed point at (ρ0Jz, ρ0J⊥) = (−∞, 0) where the impu-
rity is locked into a many-body spin triplet with the
conduction band, the symmetric strong-coupling fixed
point at (ρ0Jz, ρ0J⊥) = (∞,∞), and an intermediate
coupling fixed point at (ρ0Jz, ρ0J⊥) = (−|r|, |r|). The
phase boundary (thick lines) separating the ferromag-
netic and strong-coupling phase is given by the condition
Jz = −|J⊥|, which is entirely consistent with NRG results
for the model (data not shown in Fig. 11).

IV. DISCUSSION

In this work, we have extended the poor man’s scal-
ing approach to analyze phase boundaries in variants of
the Anderson and Kondo impurity models in which a
power-law vanishing or divergence of the host density of
states at the Fermi energy gives rise to a nontrivial phase
diagram featuring local-moment and Kondo-screened
ground states. In the regime of weak-to-moderate
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impurity-band couplings where poor man’s scaling is ex-
pected to be valid, the predicted locations of the phase
boundaries are generally in excellent qualitative and good
quantitative agreement with those obtained using the
numerical renormalization group (NRG). Although the
NRG remains the most reliable technique for treating
power-law quantum impurity problems, the scaling ap-
proach has the advantages that it is much more intuitive
and it can clarify algebraically the functional dependence
of the critical impurity-host coupling on other model pa-
rameters. Thus, poor man’s scaling retains considerable
value even for quantum impurity problems where two or
more competing RG flows give rise to different possible
infrared-stable fixed points separated by quantum phase
transitions.

Despite its successes demonstrated in Secs. II and III,
poor man’s scaling has two significant limitations. First,
and more obviously, the approach is perturbative in the
impurity-band coupling and is unable to describe physics
at strong coupling. In the pseudogap Anderson model, a
reliable calculation of the critical hybridization based on
poor man’s scaling alone is possible for all r > 0 only for
0 < −εd � U/2 (on the ASC− side) or 0 < U + εd �
U/2 (on the ASC+ side). Near the p-h-symmetric point
εd = − 1

2U , the method breaks down for r & 1
3 . This is

clear to see for r > 1
2 because Γc(U, εd) diverges as εd →

− 1
2U [see Fig. 1(b)] and therefore any phase boundary

lies outside the perturbative regime (as is also the case
for the corresponding Kondo model). For 1

3 . r < 1
2 ,

Γc(U, εd) remains finite for all−U < εd < 0 [see Fig. 1(b)]
but, as discussed in Ref. 31 and in Sec. II D above, the
strong-coupling phases are accessed directly from mixed
valence, and in such cases we have been unable to find a

scaling criterion for locating the phase boundaries.
A second deficiency of poor man’s scaling is that it

does not seem to be capable of reproducing the full RG
fixed-point structure identified using the NRG [31]. Scal-

ing Eq. (28) and its counterpart dK̃/dD̃ = rK̃/D̃ for
the potential scattering in the pseudogap Kondo model
both indicate that p-h asymmetry is an irrelevant per-
turbation about the symmetric plane ε̃d = − 1

2 Ũ . This is
consistent with NRG results for band exponents on the
range 0 < r ≤ r∗ ' 3/8, where a single p-h-symmetric
quantum critical point (QCP) governs the physics all over
the phase boundary between the LM and strong-coupling
phases shown in Fig. 1(a). However, there also exists a
range r∗ < r < 1

2 in which the boundary between the
LM phase and each strong-coupling phase (SSC, ASC−,
and ASC+) is governed by a different QCP. Within this
second range of band exponents, poor man’s scaling can-
not detect that p-h asymmetry is a relevant perturbation
that causes flow from the symmetric QCP to one or other
of the two asymmetric QCPs [as illustrated schematically
for the pseudogap Kondo model in Fig. 16(b) of Ref. 31].
This is a quite subtle aspect the pseudogap Kondo and
Anderson models that even much more sophisticated RG
treatments are unable to fully capture [38].
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Verlag, Berlin, 1983), p. 1; R. Dornhaus and G. Nimtz,
“The Properties and Applications of the Hg1−xCdxTe
Alloy System,” ibid., p. 119.

[13] B. A. Volkov and O. A. Pankratov, Pis’ma Zh. Eksp.
Teor. Fiz. 42, 145 (1985) [JETP Lett. 42, 178 (1985)].

[14] D. P. DiVincenzo and E. J. Mele, Phys. Rev. B 29, 1685
(1984).

[15] G. W. Semenoff, Phys. Rev. Lett. 53, 2449 (1984).
[16] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S.

Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109
(2009).

[17] A. W. W. Ludwig, M. P. A. Fisher, R. Shankar, and G.
Grinstein, Phys. Rev. B 50, 7526 (1994).

[18] O. Motrunich, K. Damle, and D. A. Huse, Phys. Rev. B
65, 064206 (2002).

[19] D. Withoff and E. Fradkin, Phys. Rev. Lett. 64, 1835
(1990).

[20] K. Ingersent, in “Proceedings of Physical Phenomena
at High Magnetic Fields-II”, edited by Z. Fisk et al.
(World Scientific Publishing Company, Singapore, 1996),
pp. 179–184.

[21] C. Gonzalez-Buxton and K. Ingersent Phys. Rev. B 54,
R15614 (1996).

[22] M. Vojta and R. Bulla, Eur. Phys. J. B 28, 283 (2002).



17

[23] A. K. Mitchell and L. Fritz, Phys. Rev. B 88, 075104
(2013).

[24] L. S. Borkowski and P. J. Hirschfeld, Phys. Rev. B 46,
9274 (1992); J. Low. Temp. Phys. 96, 195 (1994).

[25] C. R. Cassanello and E. Fradkin, Phys. Rev. B 53, 15079
(1996).

[26] M. Vojta, Phys. Rev. Lett. 87, 097202 (2001).
[27] A. Polkovnikov, Phys. Rev. B 65, 064503 (2002).
[28] K. Chen and C. Jayaprakash, J. Phys.: Condens. Matter

7, L491 (1995).
[29] K. Ingersent, Phys. Rev. B 54, 11 936 (1996).
[30] R. Bulla, Th. Pruschke, and A. C. Hewson, J. Phys.:

Condens. Matter 9, 10 463 (1997).
[31] C. Gonzalez-Buxton and K. Ingersent, Phys. Rev. B 57,

14 254 (1998).
[32] M. Vojta and R. Bulla, Phys. Rev. B 65, 014511 (2001).
[33] K. Ingersent and Q. Si, Phys. Rev. Lett. 89, 076403

(2002).
[34] J. H. Pixley, S. Kirchner, K. Ingersent, and Q. Si, Phys.

Rev. Lett. 109, 086403 (2012).
[35] T. Chowdhury and K. Ingersent Phys. Rev. B 91, 035118

(2015).
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