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Photoinduced topological phase transition
from a crossing-line nodal semimetal to a multiple-Weyl semimetal

Motohiko Ezawa
Department of Applied Physics, University of Tokyo, Hongo 7-3-1, 113-8656, Japan

We propose a simple scheme to construct a model whose Fermi surface is comprised of crossing-line nodes.
The Hamiltonian consists of a normal hopping term and an additional term which is odd under the mirror
reflection. The line nodes appear along the mirror-invariant planes, where each line node carries the quantized
Berry magnetic flux. We explicitly construct a model with the N -fold rotational symmetry, where the 2N line
nodes merge at the north and south poles. When we apply photoirradiation along the kz axis, there emerge
point nodes carrying the monopole charge ±N at these poles, while all the line nodes disappear. In this model,
photoirradiation induces a topological phase transition from a crossing-line nodal semimetal to a multiple-Weyl
semimetal, where the surface state turns from a drum-head state into a Fermi-arc state.

Introduction: Weyl semimetal is one of the hottest topics
in condensed matter physics1,2. It is protected by a monopole
charge in the momentum space3. Multiple Weyl semimetal is
a generalization of a Weyl semimetal which has a monopole
charge larger than the unit charge4,5,7,56. There exist another
class of novel semimetals. They are line nodal semimetals
whose Fermi surfaces form one-dimensional lines8–25. A line
node is protected by a quantized Berry magnetic flux. Re-
cently, line nodal semimetals are generalized into two species.
One is a loop node forming a nontrivial link such as the Hopf
link26–29. The other is a crossing-line node, where several line
nodes cross at a point30–35.

Photoirradiation is a powerful tool to modify the band
structure36–41. According to the Floquet theory an additional
term emerges due to the second-order process of photoirradia-
tion. A typical example is the generation of a Weyl point from
a Dirac semimetal42–44,46. A Weyl node can also be generated
by applying photoirradiation to a loop nodal semimetal45–49.

In this paper, we first propose a simple scheme to construct
models for crossing-line nodal semimetals. We then investi-
gate how a crossing-line nodal semimetal is modified by way
of photoirradiation. The model Hamiltonian consists of a nor-
mal hopping term and a mirror-odd interaction term. A line
node emerges on the mirror-invariant plane. Each line node
is topologically protected by the quantized Berry magnetic
flux. Explicitly, we construct an N -fold rotational symmetric
model, where the crossing of 2N -fold line nodes occurs at the
north pole and also at the south pole. There are no magnetic
monopoles at these poles. Next, we derive a photoinduced
term based on the Floquet theory. It induces a topological
phase transition. Indeed, by applying photoirradiation along
the z direction, the Fermi surface is found to disappear by the
emergence of gap except for two nodal points carrying the N
(−N ) units of the monopole charge at the north (south) pole.
The resultant system is the anisotropic N -fold multiple-Weyl
semimetal.

Model: A prototype of line nodal semimetals is given by
the model

H(k) = fx(k)σx + fz(k)σz, (1)

whose energy spectrum reads E(k) = ±
√
f2x(k) + f2z (k).

The Fermi surface is given by the two conditions fx(k) = 0
and fz(k) = 0, each of which produces a two-dimensional

surface. The intersection of the two surfaces consists of lines
and/or points, generating line nodes and/or point nodes, in
general. For simplicity we consider the following cases: (i)
The condition fx(k) = 0 generates an ellipsoid, which is ro-
tational symmetric around the kz axis and centered at the ori-
gin (k = 0). (ii) The condition fx(k) = 0 generates planes
sharing the kz axis with each other. Furthermore we require
that fz(k) is odd under the mirror operation Mα with respect
to each plane, where the index α denotes the direction normal
to the plane. For example, if fz(k) is odd for the mirror reflec-
tion with respect to the kykz plane, Mxfz(kx, ky, kz)M

−1
x =

−fz(−kx, ky, kz), we have a zero-energy solution at kx = 0
since Mxfz(0, ky, kz)M

−1
x = −fz(0, ky, kz).

A key observation is that, when there are N mirror-odd
planes, there emerges the crossing of 2N line nodes. For ex-
ample, by assuming the N -fold rotation symmetry, the lattice
Hamiltonian is given by (1) together with

fx(k) = t

N∑
j=1

cos
(
dcj · k

)
+ tz cos kz −m′,

fz(k) = λ′g (kz)

N∏
j=1

sin
(
dsj · k

)
, (2)

where dcj = (cos [jπ/N ] , sin [jπ/N ] , 0) and dsj =
dN (sin [(2j + 1)π/ (2N)] , cos [(2j + 1)π/ (2N)] , 0),
where d1 = d3 = 1 and d2 =

√
2. We have included a

function g (kz) to allow the freedom of introducing additional
crossing-line modes perpendicular to the kz axis such as in
(14) for the cubic symmetric model. The summation

∑
j=1

runs over the nearest neighbor sites. The Fermi surface is
given by the cross section of the N planes and the ellipsoid.
They are 2N line nodes which cross at the north and south
poles. We show Fermi surfaces for N = 2 and N = 3
in Figs.1(a1) and (c1), respectively. (Actually, we present
almost zero-energy surfaces E = δ with 0 < δ � t.) We
note that the lattice structure is possible in the real space
only for N = 2 and 3. The lattice with N = 2 forms a
layered square lattice, while the lattice with N = 3 forms
a layered triangular lattice. Nevertheless, we analyze the
general N case to make the mathematical structure clearer.
See Supplemental Material50 on the lattice structure described
by the model (1) together with (2).
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FIG. 1: Bird’s-eye of the almost zero-energy surfaces of the Hamiltonian with N = 2 for (a1) the lattice model, (a2) the continuum model,
(a3) the continuum model with photoirradiation along the kz axis, (a4)–(d5) the continuum model with photoirradiation perpendicular to the
kz axis, where the direction is indicated by arrows as in (b4)–(b5). (b1) Normalized Berry connection (Ax, Ay)/

√
A2

x +A2
y for the lattice

model with N = 2 on the kz = 0 plane. Red (blue) dots represent vortices and antivortices. The total vorticity is zero. (b2) Normalized Berry
connection for N = 2 on the kz = kc plane, where the north pole is present at the center of the plane. There are no vortices and no monopoles
there. (b3) Normalized Berry curvature (Bx, By)/

√
B2

x +B2
y corresponding to (a3) on the kz = kc plane. (b4)–(b5) Normalized Berry

curvature corresponding to (a4)–(a5) on the kz = 0 plane. Red (blue) dots represent monopoles and antimonopoles carrying the monopole
charges indicated by the attached numbers. No monopoles appear at the north and south poles. (c1)–(c5) The corresponding bird’s eye’s view
for N = 3. (d1)–(d2) The corresponding normalized Berry connection for N = 3. (d3)–(d5) The corresponding normalized Berry curvature
for N = 3, where the direction of the photoirradiation is indicated by arrows.

The corresponding continuum theory is given by

H = [a
(
k2x + k2y

)
+ ck2z −m]σx + λg (kz) Re(kN+ )σz (3)

with a = −Nt/4, c = −tz/2, m = m′ + Nt + tz and
λ = λ′/2N−1. For example, for the case of N = 2, there are
two mirror planes Mx+y and Mx−y . A simplest representa-
tion is fz = k2x − k2y , whose zero-energy solution is given by
the two planes kx = ky and ky = −ky . For the case ofN = 3,
there are three mirror planes determined by fz = k3x−3kxk

2
y .

We show the Fermi surfaces in Figs.1(a2) and (b2). The Fermi
surfaces obtained in the continuum theory are found to be al-
most the same as those obtained in the lattice model. Hence,
we use the continuum theory in the following.

With the use of the eigenfunction |ψ〉 of the Hamilto-
nian (3) we may calculate the Berry connection as Ai (k) =
−i 〈ψ| ∂i |ψ〉 = 1

2∂iΘ with ∂i = ∂/∂ki, where fx = f cos Θ,
fz = f sin Θ and f =

√
f2x + f2z . We show the stream plot

of the Berry connection for N = 2 and 3, where vortex and
antivortex structures are observed around the line nodes in the
constant kz plane, as in Figs.1(b1) and (d1). A pair of vortex
and antivortex is annihilated at the north and south poles as
in Figs.1(b2) and (d2). Each line node is topologically pro-
tected since the Berry phase along the line node is quantized
as
∮
Ajdkj =

∫
∇ × A dS = ±π. The Berry curvature

B = ∇×A is strictly localized along the line node. Indeed,
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FIG. 2: Thin-film band structures of a crossing-line nodal semimetal
with (a1) N = 1, (b1) N = 2, and (c1) N = 3, where the surface
states are emphasized by red color. We have set kz = 0. (a2)–(c2)
They are called drum-head surface states. Thin-film band structure of
a multiple-Weyl semimetal with (a3) N = 1, (b3) N = 2, and (c3)
N = 3, where the surface states are emphasized by red color. (a4)–
(c4) They are called Fermi-arc surface states. (a5)–(c5) Fermi arcs
connecting the north and south poles for them. Almost-zero energy
states (E = δ with |δ| � 1) of the bulk spectrum are shown in red
curves.

we can explicitly check this by the direct calculation,

Bi (k) = εijk∂jAk = ±π
∑

δ (fx) δ (fy) . (4)

The Berry magnetic flux is present along each line node, while
the Berry curvature is strictly zero away from the line nodes.
Consequently a line node is topologically protected.

Photoirradiation parallel to the kz axis: We proceed to in-
vestigate a topological phase transition due to the σy term in-
duced by photoirradiation. The following formulas hold for
any function g(kz) in (2). First, we irradiate a beam of circu-
larly polarized light along the z direction. We take the elec-
tromagnetic potential as AEM(t) = (A cosωt,A sinωt, 0),
where ω is the frequency of light with ω > 0 for the right
circulation and ω < 0 for the left circulation. The effective
Hamiltonian is the sum of the 2n-th order photoirradiation

process, and is given by36–41

∆Heff (k,A) =
1

~ω
∑
n≥1

[H−n (k,AEM) , H+n (k,AEM)]

n
,

(5)
with H±n (k,A) = 1

T

∫ T
0
H (k + eA) e±inωtdt. It is ex-

plicitly calculated as ∆Heff (k,AEM) = fyσy , where fy =

−2naλαg (kz)Im(kN+ ) with α = (eA)
2
/ (~ω). This is the

second order term (n = 1), while all higher order terms
(n ≥ 2) are zero. The total effective Hamiltonian is

H(k) = fx(k)σx + fy(k)σy + fz(k)σz, (6)

with the energy E(k) = ±
√
f2x(k) + f2y (k) + f2z (k). Now

the zero-energy conditions become fx(k) = fy(k) =
fz(k) = 0. In general, there is no intersection between three
surfaces, and the system becomes an insulator. However, there
are several cases where crossing-line nodes are reduced to
points nodes, as shown in Figs.1(a3) and (c3).

The Fermi surface consists of only two point nodes at
the north and south poles, (kx, ky, kz) = (0, 0, kc) with
kc = ±

√
m/c. In the vicinity of these points, we obtain

fz ≈ ±2
√
mc
(
kz ∓

√
m/c

)
. The Hamiltonian with pho-

toirradiation is given by

H = ±2
√
mc
(
kz ∓

√
m/c

)
σx + λg (kz) Re(kN+ )σz

− 2naλαg (kz) Im(kN+ )σy. (7)

In particular, when 2na (eA)
2

= ~ω and g (kz) = 1, the
Hamiltonian is reduced to that of the multiple-Weyl fermion,

H = λ
(
kN+ σ+ + kN−σ−

)
± 2
√
mc
(
kz ∓

√
m/c

)
σz, (8)

and otherwise it is reduced to that of the anisotropic multiple-
Weyl fermion. The Berry curvature is calculated as Fi (k) =
εijk (∂jf × ∂kf) · f , where f = (fx, fy, fz) with fx =
f cos Φ sin Θ, fy = f sin Φ sin Θ, fz = f cos Θ. It describes
monopoles with the charges ±N at the north and south poles.
We illustrate the Berry curvature around the north pole for
N = 2 and 3 in Figs.1(b3) and (d3) for the case of g (kz) = 1,
where the presence of the monopoles is observed as a source
or a sink of the Berry magnetic flux. We conclude that, by ap-
plying photoirradiation along the z direction, the Fermi sur-
face changes from the nodal crossing lines to the two nodal
points carrying the N (−N ) units of the monopole charge at
the north (south) pole. Namely, a topological phase transi-
tion has occurred from a crossing-line nodal semimetal to a
multiple-Weyl semimetal.

We show the band structures of a crossing-line nodal
semimetal and a multiple-Weyl semimetal along the k‖ axis at
kz = 0 in Figs.2(a1)–(c1) and (a3)–(c3), respectively, where
k‖ = ky for N = 1 and N = 3, while k‖ = kx + ky for
N = 2. The drum-head surface states, which are charac-
terized by partial-flat band inside the projected line nodes,
appear and connect the line nodes with the opposite Berry
flux in Figs.2(a2)–(c2). These drum-head surface states turn
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FIG. 3: Bird’s-eye view of the almost zero-energy surfaces of the
Hamiltonian with the cubic symmetry for (a) the lattice model, (b)
the continuum model, (c) the continuum model with photoirradiation
along the kz axis. Each loop node carries the unit Berry magnetic
flux in (a)–(c). The point nodes at the north and south poles carry the
±2 units of Berry monopole charges.

into N -Fermi arcs once the system turns into a multiple-Weyl
semimetal by photoirradiation. Fermi arcs are observed in
Figs.2(a4)–(c4) and (a5)–(c5).

Photoirradiation perpendicular to the kz axis: We next ap-
ply photoirradiation perpendicular to the kz axis. We explic-
itly study the tetragonal symmetric model (N = 2) and the
trigonal symmetric model (N = 3). We set g(kz) = 1 in (2).

The lattice Hamiltonian of the tetragonal symmetric model
with N = 2 is given by

fx = t (cos kx + cos ky) + tz cos kz −m′,
fz = −λ (cos kx − cos ky) . (9)

We inject photoirradiation along the φ direction with
AEM(t) = (−A sinφ cosωt,A cosφ cosωt,A sinωt). The
induced term is given in the continuum theory by

fy = −αλtzkz (kx sinφ+ ky cosφ) . (10)

Solving fx = fz = fy = 0, we obtain the Fermi surface.
When φ = π/4 or −π/4, there emerge a loop node

along the kx = ky plane or the kx = −ky plane, and two
zero-energy points emerge at the two points (kx, ky, kz) =

(±kc,±kc, 0) or (±kc,∓kc, 0) with kc =
√
m/2t. By ex-

panding the Hamiltonian around these points the dispersion
relation is found to be linear. For instance, at φ = π/4 it reads

H = ±kc
(
tk′′yσx − 2αkzσy − 2λk′′xσz

)
(11)

with k′′x = k′x+k′y , k′′y = k′x−k′y , k′x = kx∓kc, k′y = kx±kc.
Hence, they are Weyl point nodes carrying the unit monopole
charge: See Figs.1(a4) and (b4). Unless φ = ±π/4, only
Weyl point nodes appear as in Figs.1(a5) and (b5).

The lattice Hamiltonian of the trigonal symmetric model
with N = 3 is given by

fx = t

(
cos kx +

∑
η=±1

cos
−kx + η

√
3ky

2

)
+ tz cos kz −m,

fz =
λ

2
sin kx

(
cos kx − cos

√
3ky

)
. (12)

The photoinduced term reads in the continuum theory as

fy = α
3λtz

4
kz
((
k2x − k2y

)
sinφ+ 2kxky cosφ

)
. (13)

When φ = π/2, π/2±2π/3, a loop node and four point nodes
emerge as in Figs.1(c4) and (d4), and otherwise only points
modes emerge. Namely, a loop node emerge only when the
direction of photoirradiation is perpendicular to the loop node.
Figs.1(c5) and (d5).

Cubic symmetric model: Finally, we present a simple real-
ization of a lattice model with the cubic symmetry by taking

fx = t (cos kx + cos ky + cos kz)−m′,
fz = λ′ sin kx sin ky sin kz, (14)

where we have set g(kz) = sin kz in (2). We illustrate the
Fermi surface of the lattice model and the continuum model
in Figs.3(a) and (b). Photoirradiation applied along the z di-
rection induces the term

fy = αλtkz
(
k2x − k2y

)
(15)

in the continuum theory. Solving fx = fz = fy = 0, we
obtain a loop mode given by k2x + k2y = 2(3t − m)/t and
kz = 0. Additionally anisotropic double-Weyl points emerge
at the north and south poles, carrying the monopole charge
±2. We illustrate the Fermi surface in Fig.3(c).

Discussions: Crossing-line nodal semimetals with the cu-
bic symmetry are realizable in CaTe and Cu3PdN according
to recent first principles calculations in Ref.34 and Ref.32,35,
respectively. LaN has also a crossing line node30, which is
topologically identical to the cubic symmetric model. Fur-
thermore, the hexagonal hydride, YH3, has a crossing-line
nodes with N = 3, for which the material parameters fit-
ted by first-principles calculations33 are a = 8.314eVÅ2,
c = 8.082VÅ2, m = −0.15156eV, λ = 0.70eVÅ3 and
g(kz) = 1 in the Hamiltonian (3). In these materials there
are no or almost no spin-orbit interactions. When spin-orbit
interactions are present, the system turns into a topological or
trivial insulator33. See Supplemental Material for details50. It
is an interesting problem to search further materialization of
crossing-line node semimetals.

We have shown that photoirradiation induces a topolog-
ical phase transition from a crossing-line nodal semimetal
to a multiple-Weyl semimetal. The easiest way to detect
the emergence of multiple-Weyl semimetals would be to ob-
serve the anomalous Hall effect and/or the Adler-Bell-Jackiew
anomaly: See Supplemental Material for more details50. In
deriving this phase transition, to avoid the optical absorp-
tion, we need an off-resonant light to be soft X ray with
4000THz, which corresponds to the band gap 3eV. To open
a gap ∆ = 300K= 25meV, the required intensity37,47 is
3 × 1012W/cm2, which gives A = 0.09. It is experimentally
feasible51–54.

The author is very grateful to N. Nagaosa for many help-
ful discussions on the subject. This work is supported by
the Grants-in-Aid for Scientific Research from MEXT KAK-
ENHI (Grant Nos.JP17K05490, 25400317 and 15H05854).
This work was also supported by CREST, JST (Grant No. JP-
MJCR16F1).
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