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When a Dirac semimetal is subject to a circularly polarized laser, it is predicted that the Dirac cone
splits into two Weyl nodes and a nonequilibrium transient state called the Floquet Weyl semimetal
is realized. We focus on the previously unexplored low frequency regime, where the upper and
lower Dirac bands resonantly couples with each other through multi-photon processes, which is a
realistic situation in solid state ultrafast pump-probe experiments. We find a series of new Weyl
nodes emerging in pairs when the Floquet replica bands hybridize with each other. The nature of
the Floquet Weyl semimetal with regard to the number, locations, and monopole charges of these
Weyl nodes is highly tunable with the amplitude and frequency of the light. We derive an effective
low energy theory using Brillouin-Wigner expansion and further regularize the theory on a cubic
lattice. The monopole charges obtained from the low-energy Hamiltonian can be reconciled with
the number of Fermi arcs on the lattice which we find numerically.

Introduction: Weyl semimetals (WSM) and Dirac
semimetals (DSM) have emerged as one of the most excit-
ing new class of three-dimensional topological materials
[1–6] with a gapless and linearly dispersing bulk spectrum
allowing for a realization of Weyl fermions. Since the
Weyl nodes in a lattice always occur in pairs of opposite
chiralities [7], they act as monopoles and anti-monopoles
of Berry flux. Consequently, WSMs have topological sur-
face states whose Fermi surfaces originate and terminate
at Weyl nodes of opposite chiralities leading to open
Fermi arcs [8–15]. The non-trivial topology of WSMs
leads to various exotic electromagnetic responses like the
condensed matter realization of the chiral anomaly [16–
22], chiral magnetic effect, [23, 24] and negative magne-
toresistance [19, 25, 26]. Although WSM materials have
been discovered recently,[13–15, 27–29] it is extremely de-
sirable to posses the capability of tuning their properties
with regard to the number and nature of Weyl nodes.
It is known that WSM can be generated out of a DSM
when time-reversal (TRS) and/or inversion symmetries
are broken [2, 30–32]. While the former separates the
Weyl nodes in momentum, the latter separates them in
energy.

Recently, time periodic modulations of topologically
trivial systems, often realized via light-matter interac-
tion, have emerged as an interesting way of obtaining
topological phases, often richer than their static coun-
terparts [33–45] and effects of interaction and disor-
der have also been explored [46–51]. Such protocols
have also been complemented with their experimental
realizations.[52, 53]

In the same spirit, one expects to generate a three-
dimensional topological WSM from its trivial parent, a
Dirac semimetal (DSM) by subjecting it to time-periodic
fields [54–59]. An appealing way of breaking TRS in the
context of solid state experiments is to subject DSM ma-
terials like Na3Bi and Cd3As2[60–64] to circularly po-

larized laser (CPL). Such a system is described by a
Hamiltonian periodic in time and hence can be studied
using Floquet theory [65–67]. Analysis of the Floquet
quasienergy spectrum reveals a new Floquet WSM phase
born out of the DSM, in which the number, location,
and nature of the Weyl nodes are tunable with the am-
plitude and frequency of CPL. Previously, such a system
has been studied within the framework of high-frequency
Floquet-Magnus expansion [68, 69] and holographic du-
ality. [70]

The focus of this work, however, is the much richer
and experimentally relevant regime, namely the situa-
tion where the frequency of the CPL is much less than
or comparable to the bandwidth of the parent DSM. In
this regime, Floquet replica, i.e. photon dressed states,
will cross, hybridize with and repel each other. As a con-
sequence, besides the two Weyl nodes born out of the
original Dirac cone, we find a series of infinite number
of Weyl nodes emerging from the Floquet replicas. They
have nontrivial monopole charges, and as the CPL am-
plitude is increased, they move and pairwise annihilate
as they approach those with opposite monopole numbers
(see Fig. 1 for example).

We derive effective low-energy Hamiltonians for these
new Weyl nodes using Brillouin-Wigner expansion [71–
73] and deduce their monopole charges. Similar to the
static case, Floquet Fermi arcs are generated between
the Weyl nodes and their degeneracy is related to the
monopole number of the Weyl nodes. These results are
verified by regularizing our theory on a lattice, and nu-
merically computing the number of Fermi arcs in a sys-
tem with open boundaries. Our findings can be experi-
mentally realized using time resolved ARPES or ultrafast
pump-probe measurements which we will explain in the
end.

Spectrum of the Floquet WSM: Floquet theory re-
duces the solution of the Schrödinger equation for a time
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FIG. 1. Evolution of the Floquet quasienergy spectrum on increasing laser amplitude A. Weyl points generated from the n = 0
and n = ±1 sectors at finite A meet and annihilate at A/Ω = 0.5.

periodic Hamiltonian H(t + T ) = H(t) with T = 2π/Ω,
to an eigenvalue problem for a time-independent, but in-
finite dimensional, Hamiltonian (for a review see [74]).
The infinite dimensional Floquet Hamiltonian, HF , has
blocks of the general form

HFm,n =
1

T

∫ T/2

−T/2
dt ei(m−n)ΩtH(t)− nΩδm,n, (1)

where n,m ∈ Z. The diagonal block HFn,n correspond-
ing to the n-photon sector, is equal to the time averaged
Hamiltonian over a period HF0 , shifted in energy by nΩ.
The off-diagonal blocks HFm,n = HFm−n, with m 6= n,
correspond to transitions between these sectors via ab-
sorption or emission of m− n photons.

We start with a continuum low energy description
of the DSM described by the Hamiltonian HDSM =
γ0(Mc2 + c~γ ·k), where M is the mass and c the Fermi
velocity of the DSM . The CPL propagating along the ẑ,
described by the gauge field A(r, t), is assumed to have a
wavelength much larger than the width of the DSM along
ẑ. Further, since the magnetic field of the CPL is neg-
ligible compared to the electric field, the r-dependence
can be neglected, which reduces the form of the gauge
field to A(t) = A{cos(Ωt), sin(Ωt), 0}, where E = AΩ is
the amplitude of the electric field and Ω is the frequency
of the CPL. The continuum time-dependent Hamiltonian
describing the DSM subjected to CPL can then be ob-
tained via minimal coupling between HDSM and A(t) as

H(t) = γ0
[
Mc2 + ~cγ ·

(
k− e

~
A(t)

)]
. (2)

In the following, we use natural units with ~ = 1 = e = c
and also set the mass M of the DSM to zero. The Floquet
Hamiltonian corresponding to H(t) (2) can be obtained
using Eq. (1) as

HF0 = γ0γ · k; HF±1 = −Aγ0γ±, (3)

and HFn = 0 ∀|n| > 1, where γ± = (γ1 ± ıγ2)/2. To
obtain the Floquet quasienergy spectrum, i.e., the eigen-
values ε of the Floquet Hamiltonian, HF is truncated to
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FIG. 2. The number and location of Weyl points along k3
calculated from the continuum model as function of (a) the
amplitude A and (b) frequency Ω of the circularly polarized
light, with A = Ω0/4 fixed, where Ω0 is an arbitrarily chosen
frequency. The lines denote the location of the Weyl points
on the k3 axis which are calculated by locating the zeros of
the quasienergy spectrum. Note that, on decreasing Ω, the
spectrum has increasing number of Weyl points close to k3 =
0 originating from higher order resonances. (c) Schematic
plot showing the creation and annihilation of emergent Weyl
nodes along the kz axis, when A 6= 0. The dashed circles
show the Dirac semimetal nodal line due to Floquet replica
bands crossing the ε = 0 surface at |k| = nΩ, for A = 0,
Ω 6= 0, which disappears as soon as the CPL is turned on.
The number above each Weyl point indicates its monopole
charge, which is computed from the effective Hamiltonian in
Eq. (5).

include a finite number of photon processes and numer-
ically diagonalized. Since we are interested in the low-
energy properties of the system, it is sufficient to include
up to±5 photon sectors, so that the Floquet quasi-energy
spectrum within ±3Ω converges to numerical precision.

The quasienergy spectrum reveals an exotic Floquet
WSM phase, where the number and locations of the Weyl
nodes can be tuned via A and Ω as shown in Fig. 1. In
the absence of CPL (A = 0), the Floquet quasienergy
spectrum consists of a doubly degenerate Dirac cone at
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k = 0 and quasienergy ε = 0. Additionally, the gap
between the Floquet replicas of the spectrum from the
±n-photon sectors closes on the hypersphere |k| = nΩ
at ε = 0. A finite A causes the Dirac cones at k = 0
to hybridize with each other, and similarly the doubly-
degenerate gapless hyperspheres at |k| = nΩ. Each of
these split into two Weyl nodes, lying on the k3-axis.
On increasing A, the Weyl nodes move along k3, such
that they eventually merge and annihilate each other,
resulting in a gapped spectrum. The global picture is
shown in Fig. 2(a)-(b) via the trajectories of the Weyl
nodes.

It is important to note that, although the continuum
theory is scale-invariant because of its linear dispersion,
leading to any Ω being resonant, it correctly describes the
physics of a lattice regularized theory only close to k = 0
within the region where the linear approximation for the
DSM spectrum sin |k| ∼ |k| holds. The spectrum of a
DSM on a lattice would have a bounded spectrum with
a finite bandwidth. The resonant regime in this case,
unlike the high-frequency limit, allows for hybridization
between the n = ±1 Floquet replicas [75] resulting in
additional Weyl nodes as shown for small Ω/Ω0 values
in Fig. 2(b). It can be estimated that the continuum
theory correctly captures the resonances between upto
±n-photon sectors as long as Ω is small enough such
that sin(nΩ) ∼ nΩ. Having established that the res-
onant limit of the Floquet WSM indeed leads to new
Weyl nodes from resonances between higher photon sec-
tors, we now obtain effective low-energy Hamiltonians for
these new Weyl nodes originating from the hybridization
of n = ±1 Floquet replicas, i.e. near k3 ' ±Ω, to leading
order in A.

Effective theory for the emergent Weyl nodes: The
Weyl nodes that are created in the Floquet replica bands
have nontrivial monopole numbers and we can construct
their effective theories using the Brillouin-Wigner (BW)
expansion, where the details can be found in the sup-
plementary material [76]. We note that this method is
equivalent to the Green’s Function Decimation (GFD)
technique [77, 78] which has also been applied to study
Floquet states in graphene [75].

Here, we demonstrate this for the first Weyl node pairs
created by hybridization of the n = ±1 Floquet replicas
that are resonant at k3 ' Ω and k1,2 = 0. The deriva-
tion is done by projecting the infinite-dimensional Flo-
quet Hamiltonian (3) onto the relevant photon sectors
that participate in the resonance. Their effective cou-
pling is derived up to leading orders in A by projecting
out other photon sectors. Given the eigenvalue problem∑
n(HFm,n − δm,nmΩ)|Ψn〉 = ε|Ψm〉, we aim to reduce it

to an eigenvalue problem
∑′
nHBW

m,nP |Ψn〉 = εP |Ψm〉 in
a smaller Hilbert space. P is the projection operator to
the n = ±1 subspace, Pm,n = δm,1δn,1 + δm,−1δn,−1 and
the sum

∑′
is restricted to this space. The BW Hamil-

tonian depends on the exact eigenvalue ε and up to A2
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FIG. 3. Floquet quasienergy spectrum near the Weyl nodes
for A = Ω/5. The spectrum from the Floquet Hamiltonian
(FH) (3) and effective theory obtained from (5) are compared.
(a) A slice along k3 with k1,2 = 0. A slice along k2 for (b)

k3 = kW,+
3 and (c) k3 = kW,−

3 at k1 = 0.

it is expressed as

HBW
s,s (ε) =HF0 − sΩ +HF+s(ε−HF0 )−1HF−s

+HF−s(ε+ 2sΩ−HF0 )−1HF−s;
HBW
s,−s(ε) =HF+s(ε−HF0 )−1HF+s, (4)

with s = ±1. By using the basis diagonal in bothHF0 and
γ5, one can further project out the irrelevant states far
from ε = 0, and replace ε with an explicit form obtained
by an expansion in A. The effective Hamiltonian so ob-
tained has the same block diagonal structure as obtained
from GFD and the two blocks are given by

HW,±eff =

(
|k| − Ω +A2 |k|2 + k2

3 ± Ωk3

|k|(4|k|2 − Ω2)

)
σ3

− A2(|k|+ k3)±1

2|k|Ω(2|k| − Ω)
(k2∓1

+ σ+ + h.c.), (5)

where k± = k1 ± ik2 and σ± = σ1±iσ2

2 . The Weyl points
appear at

kW,±3 =
(2∓ 1)Ω +

√
((2± 1)Ω)2 − 8A2

4
, k1,2 = 0, (6)

which agree with the numerical results as shown in Fig. 3.
Eq. (5) further implies that the monopole charges are +1
and +3. One can generalize this discussion to k3 ∼ nΩ
with ±n-photon sectors, where the off diagonal term is
proportional to An(k2n∓1

+ σ+ + h.c.) to leading orders in
A implying monopole numbers of 2n∓1. In the negative
k3 < 0 side, we obtain Weyl nodes with −2n±1 monopole
numbers, and the pair annihilation shown in Fig. 2 occurs
between those with opposite monopole numbers. We note
that similar nodal states with nontrivial winding were
studied in the two dimensional problem as well [79].

Emergent Fermi arcs and lattice effects: In a system
with open boundary conditions, the monopole charge of
the Weyl nodes can then be deduced from the change in
the number and chirality of the Fermi arcs edge states
across the Weyl nodes. Equivalently, a WSM can be
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FIG. 4. (a) Weyl node trajectories similar to Fig. 1 for the
lattice system with Ω = 0.25. The markers in the plot cor-
respond to the values of A and k3 for which the quasienergy
spectrum with open boundary conditions is shown. In plots
(b), (e) and (f) there are no surface states; in (c) and (d) there
are respectively one and three surface states. From the change
in the number of Fermi arcs between the regions marked by
the blue circle and the orange and purple triangles, it can be
deduced that the monopole charges of the Weyl nodes from
the n = ±1 sectors are 1 and −1 respectively. Similarly, from
the regions marked with the green and purple triangles and
the brown diamond, it can be deduced that the monopole
charges of the Weyl nodes n = ±2 sectors are ±3. Note that,
each of the Fermi arcs shown here are two-fold degenerate due
to equivalent contributions from k1 = 0 and π. The system
has a linear dimension of 512 and HF is truncated till n = 4.

viewed as a momentum-space stack (along k3 in this case)
of two-dimensional Chern insulators with a k3 dependent
mass, where the Weyl nodes serve as points of topolog-
ical phase transitions leading to a change in the Chern
number and hence in the number of edge states. In order
to reconcile the number of edge states with the monopole
charges of the Floquet Weyl nodes, we regularize our con-
tinuum theory on a four-orbital cubic lattice and study
the quasienergy spectrum of with open boundary condi-
tions along x but periodic along y and z.

Here, using a four orbital fermion operator Ψµ̂, we con-
sider a lattice model

H(t) = −1

2

∑
r

3∑
µ=1

(ıΨ†rγ
0γµΨr+µ̂e

−ıA(t)·µ̂ + h.c.). (7)

as a regularized version of the DSM in CPL incorporated
as a time-dependent Peierl’s substitution. In momentum
space, it reduces to HDSM=−

∑3
µ=1 γ

0γµ sin(kµ − Aµ).
Using Eq. (1), the components of the Floquet Hamilto-
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FIG. 5. Splitting of Weyl points due to C−4 symmetric lat-
tice. (a) The original Weyl point obtained from the contin-
uum theory with monopole charge of +3 (red) is split into four
C−4 symmetric Weyl points (blue) with charges of +1 each
while the monopole charge of the original Weyl point on the
k3-axis now becomes -1 (orange). (b) The quasienergy bands
along the white dashed line are shown, which corresponds to
the minima of the quasienergy spectrum in the k2-k3 plane
for k1 = 0 illustrating the additional Weyl points apart from
the one at k2 = 0. The parameters used are Ω = 0.25 and
A = 0.08.

nian for the lattice system becomes

HFm = −1

2
Jm(A)

[
(−ı)mλ1 + (−ı)−mλ†1 + λ2 + (−1)mλ†2

]
HF0 = −1

2
[J0(A)(λ1 + λ2) + λ3] + h.c., (8)

where λµ = ı
∑

r Ψ†rγ
0γµΨr+µ̂ and Jm is the mth Bessel

function of the first kind.
The lattice Hamiltonian allows direct transitions be-

tween all photon sectors and may result in a difference
in the monopole charge of Weyl nodes compared with
the continuum theory. For instance, HF±2 give an addi-

tional off-diagonal term ∼ −(A2/8)k−σ
+ + h.c. to HW,−eff

in Eq. (5). This term changes the monopole charge from

+3 to −1 in the vicinity of k3 = kW,−3 . This is manifested
in the number of the Fermi arcs changing by one across
this Weyl point as shown in the regions corresponding
to the blue circle and the orange and purple triangles
in Fig 4. Regularizing the theory on a C − 4 symmet-
ric lattice essentially leads to four additional Weyl points
with charges +1 branching out away from the k3-axis
such that their net charges and that of the one on the
k3-axis sum to −3 which is shown in Fig. 5. A simple
counting of edge states in Fig. 4 also shows that that the
monopole charges of the Weyl nodes generated from the
n = ±2-photon sector are ±3.

Tr-ARPES is a powerful method to experimentally ob-
serve the Floquet bands. The static spectral function
gives a reliable approximation if the bands are initially
fully occupied and the laser is turned on suddenly. It is
defined by A(k, ε) = −π−1Tr{(ε + iδ)I −HFk }−1, where
HF is the Floquet Hamiltonian, Tr denotes the trace over
Floquet and internal states and δ is a small real number,



5

"/
⌦

"/
⌦

"/
⌦

"/
⌦

"/
⌦

A

k3/⌦ k3/⌦ k3/⌦ k3/⌦ k3/⌦

A/⌦ = 0 A/⌦ = 0.25 A/⌦ = 0.45 A/⌦ = 0.5 A/⌦ = 0.55
40

30

20

10

0

"/
⌦

FIG. 6. Evolution of the population of the Floquet quasienergy bands as a function of A/Ω, when starting from an initial state
which has the two upper and lower Dirac bands fully occupied. Dashed lines indicate the Floquet quasienergy bands, while the
red shade indicate the bands which have larger spectral weight.

see ref. [33] for details. As shown in Fig. 6, where we
considered an initial state with the four original Dirac
bands fully occupied, most of the spectral weight is con-
centrated near the original Dirac bands even forA/Ω 6= 0;
in particular, the annihilation process at A/Ω = 0.5 has
enough spectral weight to be experimentally observable.

Conclusions: To summarize, we have derived an ef-
fective low energy theory for a Floquet WSM obtained
by subjecting a DSM to CPL. We especially focused on
the Weyl points originating from the Floquet replica in
the resonant limit. We found that tuning the frequency
or the amplitude of the CPL can move these Weyl points
such that they can merge and annihilate in pairs. We also
found that such a Floquet WSM allows for Weyl points
of higher monopole charges, which we finally reconciled
by numerically studying the number of Fermi arcs on a
lattice system.

The annihilation process of Weyl nodes is experimen-
tally accessible. The Fermi velocity of the DSM Cd3As2

is 1.5× 106 m/s.[63] If a mid infrared laser with photon
energy Ω = 0.2 eV is used, the pair annihilation taking
place at A/Ω = 0.5 can be achieved at E ' 0.2 MeV/cm.
Our results can potentially be verified using time resolved
ARPES, as it has already been successfully performed in
[52, 53] to obtain the Floquet replicas in Bi2Se3.
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