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We study the role of finite size effects on a metallic critical behavior near a q = 0 critical point and
compare the results with the recent extensive quantum Monte-Carlo (QMC) study [Y. Schattner et
al, PRX 6, 031028]. This study found several features in both bosonic and fermionic responses, in
disagreement with the expected critical behavior with dynamical exponent z = 3. We show that
finite size effects are particularly strong for z = 3 criticality and give rise to a behavior different
from that of an infinite system, over a wide range of momenta and frequencies. We argue that by
taking finite size effects into account, the QMC results can be explained within z = 3 theory.

Introduction Critical behavior in itinerant fermionic
systems is a fascinating subject, which has attracted
much interest in recent years, with particular emphasis
on the behavior in two dimensions (2D)[1, 2]. Near a 2D
quantum critical point (QCP), soft bosonic fluctuations
of the order parameter field mediate strong interaction
between low-energy fermions and destroy Fermi-liquid
(FL) behavior down to a progressively small energy ωFL,
which vanishes at a QCP. Simultaneously, low-energy
fermions affect soft bosonic fluctuations by (i) providing
Landau damping and (ii) changing the bosonic mass.
The destruction of the FL holds even if the overall
strength of the interaction is much smaller than the
fermionic bandwidth, i.e. when fermions remain itinerant
throughout the transition.

Before the feedback from low-energy fermions is
included, the inverse propagator of a soft boson
is generally assumed to be an analytic function of
momentum and frequency: χ−1(q,Ωm) ∝ (|q − Q|2 +
Ω2
m/c

2), where Q is the momentum at which order
parameter fluctuations condense at a QCP and Ωm are
Matsubara frequencies. The Landau damping comes
from the insertion of the fermionic particle-hole bubble
into the bosonic propagator. The form of the Landau
damping term depends on whether Q has a finite value
(e.g. (π, π) for a SDW QCP), or is zero, as for a nematic
or a ferromagnetic QCP. In the first case the Landau
damping term scales as just |Ωm|, while in the second case
it scales as |Ωm|/q. In both cases, the Landau damping
term wins at small Ωm over the bare Ω2

m and changes
the dynamical exponent from z = 1 to z = 2 for Q 6= 0
and to z = 3 for Q = 0. The one-loop fermionic self-
energy due to scattering by Landau overdamped critical
fluctuations has a non-FL frequency dependence in 2D:

Σ(ωm) ∝ ω
1−1/z
m (ω1/2 at particular hot spots along the

Fermi surface (FS), when Q 6= 0, and ω2/3 everywhere
on the FS, when Q = 0) [3–9].

For both z = 2, 3, higher order logarithmic
singularities [7] likely cause a further flow of the
critical exponents [10]. However, for z = 3 these
corrections appear only at third-loop order [11–15] and
should affect only the lowest frequencies (and possibly
none [16]). In particular, one could expect the z = 3

FIG. 1. (color online) Coupling of bosonic fluctuations and
fermions in a finite system. The panel depicts the reciprocal
space of a typical square lattice. The solid black line is
the Fermi surface that would exist in an infinite system.
Black (gray) dots are the filled (empty) states in k-space. A
bosonic fluctuation of wavevector q (blue arrows) can couple
to fermions by exciting an electron-hole pair. In an infinite
system, this coupling can occur at any point on the Fermi
surface. However, in a finite system, the filled (empty) states
actually appear as a series of terraces (dashed lines). As a
result, for small enough q there is a region of the Fermi surface
where excitations cannot occur (shaded region). The right
panel depicts an approximation to the left panel, replacing
the lattice with the electron/hole continuum with a gap in
momentum space with the width q1 = π/L, as described in
Eqs. (7) and (8).

behavior to be reproduced in numerical calculations,
which probe the system at a finite T , when bosonic
and fermionic Matsubara frequencies are discrete. It
was quite surprising in this respect that the recent
Quantum Monte Carlo (QMC) analysis of a model,
designed to emulate a 2D nematic transition [17], found
seemingly z = 2 behavior over a range of temperatures
and frequencies. Furthermore, the same study found
that the quasiparticle residue Z = 1/(1 + dΣ/dω)
remains finite down to the lowest frequencies when tuning
across the critical point. Such disagreement with a
basic, established theory is intriguing and should be
understood.

Several known mechanisms can make it difficult to
extract |Ω|/q behavior from the data on χ(q,Ω). First,
when fermionic residue is small, |Ω|/q scaling is observed
only when vF q > Ωm/Z, a more severe restriction than
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just vF q > Ωm [18]. Second, because the nematic order
is not a conserved quantity, the bosonic propagator in
2D has an additional q−independent Ω2/3 term [19].
This term does not break z = 3 scaling but can mask
|Ω|/q behavior. The form of the bosonic propagator
is further complicated at finite T because of special
contributions from thermal fluctuations, which act much
like impurities [20, 21]. Third, if critical bosons are
separate degrees of freedom, rather than collective modes
of fermions, they may have their own damping in addition
to Landau damping, and that damping doesn’t have to
have Ω/q form. These mechanisms, particularly the last
one, were essential to understand the violation of Ω/q
scaling in uranium-based itinerant ferromagnets UGe2
and UCoGe [22–24]. They are, however, less relevant
to QMC analysis because in this analysis intrinsic
dynamics of bosons (fluctuations of localized spins of the
transferred Ising model) can be separated from the effects
due to fermions by switching on and off the coupling
between the two degrees of freedom.

In this work we explore an additional, hitherto
undiscussed aspect of the problem – a strong sensitivity
of an itinerant QC system to finite-size effects. Landau
damping is the source of this sensitivity. Bosonic
fluctuations transfer energy most efficiently to electron-
hole pairs with momenta parallel to the Fermi surface,
i.e. when q · kF ' 0, where q is the bosonic
momentum andkF is on the Fermi surface. This fact is
behind the well-known “patch” approximations in long-
wavelength QC systems. In a finite system, discreteness
of the Brillouin zone inhibits momentum transfer to the
fermions, and does so most strongly precisely where
the damping is strongest. See Fig. 1 for a graphical
representation. The result is to introduce a new scale
for damping. We show that in a finite system of size L,
the polarization bubble, whose dynamical part yields the
Landau damping at L→∞, is

Π(q,Ωm) = Π (α, β) , α =
|Ωm|
vF q

, β =
q1
q
, q1 = π/L.

(1)
Here, Π(α, β → 0) = γ(1 − α/

√
1 + α2) as for the

infinite system. At a non-zero β, the form of Π(α, β) is
determined by a combination of two effects: (i) Π(0, β)
decreases with increasing β (Π(α, β) vanishes at β = 1,
see below), and (ii) Π(α, β) vanishes at α → ∞ for any
β. As a result, there appears an intermediate range
of α < 1, where the variation of Π(α, β) vs α (i.e., vs
|Ωm|) is roughly linear, but the slope decreases as β
increases and over a rather wide range of parameters
appears almost independent of q (see Fig. 2a). This
mimics z = 2 scaling as reported in [17] (Fig. 2b). We
also found that the data from Ref. [17] can be reproduced
in an alternative, semi-phenomenological approach, by
invoking the fact that in a finite system the polarization
bubble vanishes not at q = 0, but at at q = q1, i.e. at

β = 1. Near β = 1, Π(α, β) ∝ (1 − β)3/2 (see below).
Assuming phenomenologically that this is the main finite-
size effect, we approximate the frequency dependence of
the polarization bubble as

Π(α, β) = Π(α, 0)(1−β)3/2 = γ

(
1− α√

1 + α2

)
(1−β)3/2.

(2)
This simple form reproduces the data from [17] to
surprisingly good accuracy (see Fig. 2c).

The fermionic self-energy also has strong finite-size
dependence. We found (for ωm > 0)

Σ(ωm) ∝ ω2/3
1

[(
1 +

ωm
ω1

)2/3

− 1

]
(3)

where ω1 ∼ vF q1 up to logarithms (see Eq. (14) below).
At ω � ω1 this yields Σ(ωm) ∝ ω2/3, as in the infinite
system. However, at smaller ω, Σ(ωm) = aωm+bω2

m+ ...
as in a FL. As a result, for probes at ω ≥ ω1, it looks
as if the quasiparticle residue remains finite throughout
the transition. We compared Eq. (3) with Ref. [17] and
again found good agreement with QMC data (see Fig.
3).

Model calculations We consider a 2D system of size
L× L. The system is composed of electrons hopping on
a lattice and coupled to a scalar boson field. The free
propagators of electrons and bosons are of the form,

G−1(k, iω) = iω − εk, (4)

χ−1(q, iΩ) = χ−10 (m2 + q2 + Ω2/c2), (5)

where c is the bosonic velocity, and m = 1/ξ goes to
zero at the QCP. In a finite system the interaction can
be written as

HI = −g
∑
q,k

fkφqψ
†
k+ q

2
ψk− q

2
, (6)

where fk is a form factor, the q,k sums are over the
1st bosonic and fermionic BZ’s respectively, and g is a
coupling constant. Let us recall the origin of the form
Ω/vF q for the polarization. It arises from the fact that
for small enough Ω� vF |q| there is always an electron-
hole pair that can be resonantly excited, given by the
condition Ω = vF · q = vF q cos θ, as long as the FS is
closed. However, as Eq. (7) shows, in a finite system and
for small enough q it is not always possible to find such
a pair. The reason for this is that in a finite system the
border between filled and empty states is not a smooth
curve but a series of “terraces” (Fig. 1). At small enough
momentum and frequency it is no longer possible to find a
resonant pair that also conserves momentum. This gives
a lower cutoff of Ω < vF q ∼ vF q1 for the overdamped
behavior of the bosonic excitations, which introduces the
new scale β = q1/q, leading to Eq. (1). As long as
1 − β is not too small, the main effect of the discrete
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(a) (b) (c)

FIG. 2. (color online) Dynamic polarization bubble Π(q,Ωm). In an infinite system, Π(q,Ωm) = γ(1− |Ωm|/
√

(vF q)2 + Ω2
m),

i.e., the slope of 1 − Π(q,Ωm)/γ scales as 1/q. In a finite system, this behavior is modified because Π(q,Ωm) vanishes at
q1 = π/L. Panel (a) shows 1 − Π(q,Ωm)/γ vs Ωm at different q in a finite square lattice of size L = 20a (solid lines) and an
infinite system (dashed lines). For the finite system there is a large intermediate region (dotted ellipse), where the slope of Π
appears roughly independent of q. Panel (b) – the frequency variation of δΠ = Π(q,Ωm)−Π(q, 0) in our model vs QMC data
from Ref. [17] (up to a constant shift [27]). Panel (c) – phenomenological form of δΠ(q,Ωm), Eq. (2), vs QMC data [27].

fermionic states is the reduction (and eventual cutoff)
of phase space for excitations. This is because terraces
that are parallel to q get longer and longer as cos θ → 0.
We account for this effect by replacing the fermions with
a liquid, keeping just the gap of width q1 around the
Fermi surface (Fig. 1). Our approximation keeps the
essential physics of the cutoff but ignores further strong
discreteness-based behavior occuring for β ∼ 1. Then, if
we restrict our attention to states near the Fermi surface,
we can rewrite the interaction as:

HI ∝
∑
q

∫
dθdεk f(θ)φqψ

†
k(θ)− q

2
ψk(θ)+ q

2
Φ(q, εk, θ).

(7)

Here, εk = vF (k − kF ) measures the distance from the
FS and f(θ) is the form-factor at the FS. We separate
the effects due to order parameter non-conservation from
finite-size effects, and focus on the latter, by setting
f(θ) = 1 (for f(θ) = 1 the order parameter is conserved).
The function Φ is an indicator function due to finite size
of a system. It accounts for the lack of k−states in
an annulus of width q1 around the FS (see Fig. 1 for
visualization),

Φ(q, εk, θ) = Θ(|2εk + vF(θ) · q| − vF q1)×
Θ(|2εk − vF(θ) · q| − vF q1), (8)

Within the model, for β close to one, the suppression
effect is proportional to (1−β)3/2. To see this, note that
as we move around the FS, the available phase space for
particle-hole excitations is vF · q − vF q1 = vF q(cos θ −
β). Because of this restriction, the polarization bubble is

proportional to∫ θβ

0

dθ (cos θ − β) ∼ (1− β)3/2, θβ = cos−1 β, (9)

(we used θβ ∼ (1 − β)1/2 for 1 − β � 1). This is the
reasoning behind Eq. (2).

In addition to the damping term, the polarization
bubble has a static piece, which renormalizes the bosonic
mass and shifts the position of the QCP. This last term
also gets modified in a finite system in such a way that
the bosonic mass remains positive at a QCP of an infinite
system, i.e., finite-size effects shift the system away from
the critical point. This finite bosonic mass affects the self
energy. In an infinite system Σ(q, ω) ∼ ω2/3 displays a
non-FL behavior at a QCP. In a finite-size system, the
mass term protects the FL behavior at low frequencies,
which is the content of Eq. (3).

We demonstrate this behavior by explicitly calculating
the polarization bubble and the self energy for the
approximate model of Eqs. (4)-(8). We assume a
parabolic dispersion and calculate the one-loop diagrams.
To calculate the one-loop polarization bubble at T → 0
we take into account only those k− states that are on
opposite sides of the boundary of the Fermi surface. In
this case the indicator function can be recast as

Φ = Θ (|vF(θ) · q| − vF q1)×
Θ (vF(θ) · q− vF q1 − |2εk|) (10)

The polarization is then given by:

Π(q,Ω) =
m0g

2χ0

π2

∫ θβ

0

(cos θ − β) cos θ

α2 + cos2 θ
dθ. (11)

where m0 is the bare fermionic mass. The limits of the
integration are precisely those defined by the finite size
effect of Eq. (10). Evaluating the integrals we find
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Π(α, β) =
2γ

π

[
cos−1 β − α

(1 + α2)1/2

(
tan−1

α

β

(1− β2)1/2

(1 + α2)1/2
+
β

α
tanh−1

(1− β2)1/2

(1 + α2)1/2

)]
(12)

where γ = m0g
2χ0/2π. One can easily check that Π(α, β)

vanishes at α → ∞ and at β = 1. When β � α � 1,
Π(α, β) ≈ γ (1− β log 2/α− α) Near β = 1, Π(α, β) ≈
1.2γ(1− β)3/2/(1 + α2).

We next calculate the fermionic self-energy

Σ(k, ωm) = g2
∫
dΩd2q

(2π)3
χ̃(q,Ωm)

i(ωm + Ωm)− vF · q
, (13)

where χ̃−1 = χ−1 +Π. An evaluation of Eq. (13) at m =
0, β � α � 1 (i.e. large systems and low frequencies)
yields

iΣ(ωm) =
1√
3

(
γ

vF

)2/3

(vF q1 logαL)2/3×

×

[(
1 +

ωm
vF q1 logαL

)2/3

− 1

]
, (14)

where

logαL =
4

3
log

vF qL
ωm

, qL = (8γq21)1/4. (15)

Eq. (14) is the explicit version of Eq. (3). We plot
Σ(ωm) along with QC and FL asymptotics (ω2/3 and
ω, respectively) in Fig. 3a. We see that in a finite-size
system Σ(ωm) preserves a FL form up to large ωm/vF q1.

An additional popular probe in QMC is the Green’s
function on the Fermi surface along the imaginary time
axis [25],

G(τ,vF) = T
∑
ωn

eiωnτ

iωn − Σ(ωn)
(16)

In a FL, G(τ = 1/2T ) = Zqp/2. For Σ ∼ ω
2/3
n

G(τ = T/2) = T 1/3, indicating that the quasiparticle
residue vanishes at T = 0 (the actual power is T 1/2 due
to special form of the self-energy at the first Matsubara
frequency [26]). Because the sum is dominated by the
terms with n = O(1), the finite size behavior of Σ is
important. Plugging parameters extracted from the data
of Ref. [17] into Eq. (14) and substituting into Eq. (16),
we obtain Zqp, which decreases as a function of T , but
still approaches a finite value at T → 0 (see Fig. 3b
). In this limit, our calculation yields Zqp = 0.76. Ref.
[17] found a very similar Zqp = 0.75 − 0.85 in the low
temperature regime [27].

Discussion. We showed that finite size effects modify
the low energy properties of the particle-hole polarization
bubble and the fermionic self energy near a q = 0 QCP.
We found three effects: i) the slope of the frequency
dependence of Π(q,Ωm) changes from its universal 1/q

(a) (b)

FIG. 3. Self energy of a finite system. In an infinite system the
self energy has a non-analytic behavior at low temperatures,
Σ(ω) ∼ ω2/3. In a finite system the nonanalytic behavior is
cut off at a scale of ω ∼ vF q1. The left panel depicts Σ(ω) for
a system of size L = 20a. The dashed grey lines are guides
to the eye of ω, ω2/3. Note how the FL type behavior extends
over a numerically large region near vF q1. The right panel
depicts the quasiparticle residue as obtained from Eq. (16)
[27].

form to almost q−independent, ii) the bosonic mass
gets a q dependent correction; iii) the non-analyticity
of the electronic self energy is cut off below a certain
frequency. In a real finite-size system the strength of
(i) and (ii) is actually a bit smaller than in our model,
where the polarization appears to vanish at q = q1 for
all Ωm. In practice, there will always be a residual
polarisation coming from a) broadening due to finite self
energy, and b) the irregularity of the separation between
filled/empty states due to a discrete structure of the FS
in a finite system. Both these features can be seen just
by studying the left panel of Fig. 1. A translational
symmetry breaking inherent in any finite system also
induces broadening. Nevertheless we do capture the main
features observed in QMC studies.

Our results may be considered a variant of the
well-known “closed-shell” problem, where finite sizes
introduce gaps in the (discrete) density of states n(ω)
at fractional fillings [28]. These gaps affect low energy
physics such as transport [29]. It is possible to reduce
such gap effects by inserting a small magnetic field [30]
as was done in [17]. However, as long as the fermions are
truly itinerant, the discreteness of k will not be removed.
Our results’ agreement with the numerical data in [17]
indicate that such effects persist even with some lattice
symmetry breaking and significant coupling.
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