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Self-learning Monte Carlo method is a powerful general-purpose numerical method recently introduced to
simulate many-body systems. In this work, we extend it to interacting fermion quantum system in the framework
of widely used determinantal quantum Monte Carlo. The new method can generally reduce the computational
complexity, and moreover can greatly suppress the autocorrelation time near a critical point. This enables us to
simulate interacting fermion system on a 100 × 100 lattice even at the critical point for the first time, and obtain
critical exponents with high precision.

Introduction — Numerous intermetallic compounds host-
ing intriguing phenomena such as non-Fermi liquid[1] and un-
conventional superconductivity [2–4] emerging from quantum
critical fluctuations (antiferromagnetic [2–4], nematic [5, 6],
etc), demand proper theoretical understanding of them. How-
ever, these systems are usually strongly correlated, and can
only be solved by non-perturbative methods. In the last few
years, after several attempts [7–14], people realize determi-
nantal quantum Monte Carlo (DQMC) is one of the most suit-
able methods and sometimes even the only available choice.

DQMC [15–17] has been widely used in the investigation
of correlated fermion systems [18–32]. Despite of the great
successes, the method also suffers from serious difficulties. In
DQMC, one introduces bosonic auxiliary fields to decouple
the fermion interactions [33], and then simulates the whole
system by updating bosonic fields based on the corresponding
weights, whose computation is very heavy since it requires de-
terminant calculations to integrate out the fermion degrees of
freedom. Currently, even the fastest algorithm available still
has the computational complexity in a polynomial form [34]
of O(βN3)[35], where β is the inverse temperature and N is
the system size. Even worse, this algorithm has to employ lo-
cal updates and the generated configurations are usually not
statistically independent, rendering long autocorrelation time.
Particularly, around phase transition points, the autocorrela-
tion time becomes extremely large and also dramatically in-
creases with the system size. Together, these severe scaling
behaviors seriously limit the applications of DQMC in inter-
acting fermion systems. For instance, in two-dimension (2D)
strongly correlated fermion systems, 24× 24 is a typically ac-
cessible size.

Recently, we proposed a new general-purpose method, self-
learning Monte Carlo (SLMC), to speed up MC simulations
[36–38]. Very encouragingly, with highly efficient "cumula-
tive update algorithm", SLMC can generally reduce the com-
putational complexity and dramatically decrease the autocor-
relation time in fermion systems[37], yet SLMC is still an un-
biased MC method without approximation. In SLMC, con-
figurations are firstly updated much more cheaply according
to the simple effective bosonic Hamiltonian self-learned in
advance, instead of the original Fermion Hamiltonian, and
heavy-duty matrix operations are greatly reduced. At the same
time, the simulation is guaranteed to be statistically exact by

the detailed balance principle following the original Hamilto-
nian deciding whether the configurations proposed by cumu-
lative update of effective model can be accepted.

In this Letter, we extend SLMC to fermionic quantum
many-body systems in the framework of DQMC, referred as
SLDQMC. It manages to greatly reduce the computational
complexity of the original DQMC, typically, by a factor of
min{O(β),O(N )}. Hence, the larger the system sizes or the
lower the temperature, the higher speedup of SLDQMC over
DQMC. Moreover, in SLDQMC, the autocorrelation time is
effectively reduced to be O(1) around phase transition points,
independent of system size. With these advantages, we are
able to simulate a generic 2D interacting fermion model with
system size 100× 100, a number unaccessible in conventional
DQMC.

Basics of DQMC — To set the stage for SLDQMC, we need
to first briefly introduce DQMC. Let’s start with the partition
function of a general fermionic quantum many-body system

Z =
∑
{C }

φ(C) det (1 + B(β,0;C)) , (1)

where C = {si,τ } is the auxiliary field (si,τ) configuration
after the Hubbard–Stratonovich (HS) transformation is ap-
plied to decouple the fermion interaction terms in the Hamil-
tonian [17] or the bosonic filed already involved in the orig-
inal model [7]. The imaginary time β is divided into M
time slices (M∆τ = β) and hence the configurations C
of the bosonic fields have both spatial and temporal depen-
dence. φ(C) is the bare part (including the transformation
constant) of the bosonic field, and it is a scalar function.
Now for each auxiliary field configuration, the fermions are
non-interacting and can hence be traced out, resulting in a
determinant det (1 + B(β,0;C)). The matrix B(β,0), de-
pending on configurations C, is a short form for the matrix
product BMBM−1 · · ·B1, where the matrix at time slice τ is
Bτ = exp(∆τK) exp(V(si,τ )), with K the tight-binding hop-
ping matrix of the bare system in the single-particle basis, and
V(si,τ ) the fermion interaction part after HS transformation
, it describes the coupling between bosonic field and fermion
bilinear [17]. The dimension of matrix Bτ is equal to the num-
ber of degrees of freedom of fermion and scales with system
size N ∼ Ld , with L the linear system size and d the spatial
dimension.
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To update the auxiliary field configuration in DQMC, one
performs local update [15–17], i.e., try to flip the bosonic
spins si,τ one by one through the space-time lattice βN . The
acceptance ratio of such update involves a ratio of two deter-
minants before and after the flip. The computational complex-
ity for evaluating a determinant is O

(
N3

)
, but the local nature

of the update enables one to perform a fast update with com-
plexity O (1) to calculate the ratio and complexity O

(
N2

)
to

update Green’s function if the local update is accepted. How-
ever, since one needs to scan over the space-time lattice – this
is called one sweep – to attempt flip the βN numbers of aux-
iliary field, thus the local update of DQMC is of the computa-
tional complexity O

(
βN3

)
.

There is another factor that further increase the computa-
tional complexity – general for all the Monte Carlo simula-
tion – the autocorrelation time τL . In the context of DQMC,
τL is the number of sweeps one needs to perform to have
two statistically independent configurations, such that Monte
Carlo measurements can be taken. Therefore, the total com-
putational complexity in DQMC is O

(
βN3τL

)
. At (quan-

tum) critical points or when there are strong correlations in
the auxiliary field, the autocorrelation time usually becomes
very large and will scale with system size τL ∼ Lz , which is
referred as critical slowing down and z is the dynamic expo-
nent of MC simulation. For local update, z could be very large
(≥ 2). In the classical and quantum spin or bosonic systems,
tailor-made global update schemes, such as the Swendsen-
Wang [39], Wolff [40], loop and directed-loop [41, 42], have
been designed, and the dynamic exponent z can be greatly
reduced. But these global update schemes are very model-
dependent, and in the framework of DQMC, there is still no
practical global update available.

Formalism of SLDQMC — To overcome these problems,
we design SLDQMC as a general-purpose solution to
fermionic quantum Monte Carlo simulations. Below we de-
scribe its procedure in four steps.

At step (i), we use the local update of DQMC to gener-
ate enough configurations according to the original Hamilto-
nian. At step (ii), we try to obtain an effective model by self-
learning [36–38]. The effective model can be very general,

Heff = E0 +
∑

(iτ);( j,τ′)

Ji,τ; jτ′ si,τ s j,τ′ + · · · (2)

where Ji,τ; jτ′-s parameterize the two-body interaction be-
tween any bosonic field in space-time. More-body interac-
tions, denoted as · · · , can also be included. In practice, we
can use symmetries (rotation, translation, etc) to reduce the
number of independent interactions. We introduce a parame-
ter γ as the range of the interactions considered in the effective
model and it will be tuned to make the effective model close
enough to the original model.

The training procedure is straightforward. Given a config-
uration C and corresponding weight ω[C], generated in the
step (i), we have

− βHeff[C] = ln (ω[C]) . (3)

Combine Eq. 2 and Eq. 3, optimized values of {Ji,τ; jτ′ } can
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FIG. 1. (a) Schematic phase diagram of the transverse field Ising
model couples to Fermi surface. As a function of the transverse
field, the system (both fermions and Ising spins) goes through a tran-
sition from ferromagnetic (FM) metal to paramagnetic (PM) metal.
The black dot is the finite temperature critical point (T = 1,hc =

2.774(1)) where we systematically demonstrate the superior per-
formance of SLDQMC over DQMC. (b) Autocorrelation function
C(τ) for L = 16 system at the critical point in (a), for local up-
date with DQMC, the autocorrelation time is very long (larger than
600 sweeps). The autocorrelation function is defined as C(τ) =(
〈M (0)M (τ)〉 − 〈M〉2

)
/
(
〈M2〉 − 〈M〉2

)
with M (τ) the total mag-

netization of Ising spins for the τ-th sweep.

be readily obtained through a multi-linear regression [36, 37]
using all the configurations prepared in the step (i).

At step (iii) of SLDQMC, we perform multiple local up-
dates with Heff (as in general the Heff will contain non-local
term which makes the cluster update difficult to implement).
Different from the local update in DQMC [15–17], the local
move of Heff is very fast, as there are no matrix operations
involved. Furthermore, to generate statistically independent
configurations at (quantum) critical point, we need to perform
about τL sweeps of local update. With these local updates of
effective model, the configuration has been changed substan-
tially, and we take the final configuration as a proposal for a
global update for the original model and this entire process is
denoted as a cumulative update. The acceptance ratio of the
cumulative update can be derived from the detail balance as

A(C → C′) = min



1,
exp (−βH[C′])
exp (−βH[C])

exp
(
−βHeff[C]

)
exp

(
−βHeff[C′]

) 

,

(4)
here one clearly see, the closer the Heff to the original Hamil-
tonian H with fermion integrated out, the larger A(C → C′)
becomes, and eventually, for a good enough Heff, A(C →
C′) ∼ 1 can be achieved in all practical terms (will show be-
low). At step (iv), following this detailed balance decision, we
decide to accept or reject the final configuration. By repeat-
ing step (iii) and (iv), we can simulate the interaction fermion
systems with high efficiency.

Before we reveal the results of SLDMQC, let’s dis-
cuss the enormous speedup of SLDQMC over DQMC.
The complexity of the cumulative update in SLDQMC
is O

(
γ βNτL + βN2 + N3

)
and it is comprised of two

parts. First, the operation to update the effective model is
O (γ βNτL ). γ is the number of operations needed for a sin-
gle local update on effective model and there are βN bosonic
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FIG. 2. The coefficient of determination for multilinear regression
R2 decides how many Ji,τ; j,τ′s (how many neighbor interactions)
need to be considered in the Heff. Purple line shows the 1−R2 for the
temporal neighbors while fix the spatial neighbor the nearest. Green
line shows the 1−R2 for the spatial neighbors while fix the temporal
neighbors. The temporal interaction is more long-ranged (up to the
10th nearest neighbor) but the spatial interaction is short-ranged (up
to the 2nd nearest neighbor).

field in total, and one performs τL sweeps on all the space-
time bosonic fields. Second, the complexity of calculating the
acceptance ratio in Eq. 4 is O

(
βN2 + N3

)
. βN2 comes from

the evaluation of matrix B(β,0;C), in that, B(β,0;C) is the
product of O(β) number of Bτ matrices, each Bτ is a product
of O(N ) number of sparse matrices while the complexity of
the dense and sparse matrices production here is O(N ). The
other O

(
N3

)
comes from the complexity of calculating the

determinant det (1 + B(β,0;C)).
Comparing the O

(
γ βNτL + βN2 + N3

)
of SLDQMC and

O
(
βN3τL

)
of DQMC, we define a speedup factor S of

SLDQMC over DQMC and find

S = min
(

N2

γ
,NτL , βτL

)
. (5)

For many models, we only need include short-range inter-
actions in the effective model [36, 37], and in this case,
SLDQMC can easily reduce the computational complexity by
at least of O (NτL ) or O (βτL ), i.e. the larger the systems and
the lower temperature, the more speed up SLDQMC gains.
Moreover, it is clear that SLDQMC with cumulative update
effectively renders the autocorrelation time to only one sweep,
and hence fully cures the critical slowing down at (quantum)
critical points. At last, it is worth noting that even in the
worst case, where we need to take long-range interactions in
Heff into account, γ ∼ βN , a large speedup, S = O(N/β)
can still be guaranteed, i.e. for given temperature β, we can
achieve at least O(N )-fold speedup. All those advantages
make SLDQMC very suitable to study the interacting fermion
systems with large sizes, especially around critical points.

We also note, at low temperatures, the matrix multiplication
becomes numerically unstable and the commonly used stabi-
lization algorithm scales with O(βN3), which would domi-
nate over the complexity of multiplication itself. However,
even in this case, SLDQMC still offers the speedup discussed
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FIG. 3. Comparison of τL between DQMC and SLDQMC at the crit-
ical point. For DQMC, the critical slowing down with τL ∼ L2.1(1)

is observed, while for SLDQMC, the critical slowing down has been
complete cured, τL = 1 for all the system size up to L = 100.

above by overcoming the critical slowing down. The attempt
of improving the algorithm of stabilization is in progress.

Results — To demonstrate the power of SLDQMC, we
consider an interacting fermion model with ferromagnetic
transverse-field Ising spins coupled to a Fermi surface. The
Hamiltonian is comprised of three parts,

H = H f + Hs + Hs f . (6)

The fermion part, H f = −t
∑
〈i j〉λσ (c†iλσcjλσ + h.c.) −

µ
∑

iλσ niλσ , describes spin-1/2 fermion hoppings on a bi-
layer (λ = 1,2) square lattice, with intralayer hopping
t and chemical potential µ. The Ising spin part, Hs =

−J
∑
〈i j〉 szi szj − h

∑
i sxi , with ferromagnetic J and transverse

field h introducing (quantum) fluctuations to the system. At
T = 0, the Ising spins go though a quantum phase transition
from ferromagnetic (FM) phase to paramagnetic (PM) phase
at hc/J = 3.04 with (2 + 1)d Ising universality [10, 43, 44],
and at finite temperature, the transition from FM to PM is
of 2d Ising universality. The Hs f = −ξ

∑
i szi (σz

i1 − σ
z
i2) is

the coupling between Ising spin and fermion spin, the cou-
pling favors a parallel (antiparallel) alignment of Ising spin
and fermion spin in layer 1 (2). Such bilayer setup guaran-
tees a sign-problem-free QMC simulation in the framework
of DQMC [10].

Once switching on the coupling, ξ = 1, the fluctuations in
the Ising spins introduce effective interaction to the fermions,
and the fermions will in term introduce long-range interac-
tions among the Ising spins. Our model in Eq. 6 thus provides
an ideal situation to study the behavior of itinerant electrons
with quantum fluctuations in the vicinity of (quantum) critical
points in a controlled manner. The itinerant quantum criti-
cal point (FM-QCP in this case), the question of Fermi-liquid
instabilities at magnetic quantum phase transition [45, 46]
and its applications to heavy-fermion materials and transition-
metal alloys (cuprates and pnictides), are of vital importance
and broad interest to condensed matter physics community.

Theoretical approaches able to address the quantum phase
transition of the model in Eq. 6 and the properties of the quan-
tum critical region are still under intensive development [47–
52]. And recent numerical evidence find the universality dif-
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FIG. 4. Uniform spin susceptibilities χ at the critical point as a func-
tion of system sizes, χ ∝ L2−η with η = 1

4 as the anomalous di-
mension of 2d Ising universality. The linear system size is as large
as L = 100.

ferent from both the (2 + 1)d Ising as well as Hertz-Millis-
Moriya predictions, and Non-Fermi-liquid is being observed
in the quantum critical region [14].

Although the quantum critical properties are complicated,
finite temperature FM to PM phase transition is relative sim-
ple and one can have a simple schematic phase diagram as
shown in Fig. 1 (a). In this work, we demonstrate the power
of SLDQMC by focusing on FM-PM critical point at a finite
temperature: β = 1.0, ∆τ = 0.05, M = 20 and hc = 2.774(1),
as the black dot in Fig. 1 (a). At the critical point, config-
urations of Ising spins generated by local updates become
strongly correlated, as shown by the autocorrelation function
of Ising spin in Fig. 1 (b) for L = 16, it is the exact manifesta-
tion of critical slowing down.

To train the effective model in Eq. 2, we use 1 − R2 =

〈(Heff − H)2〉/(〈H2〉 − 〈H〉2), where R2 is the coefficient of
determination (as a figure of merit "score") for the multilinear
regression in Eq. 3. Fig. 2 shows the 1−R2 of the multilinear
regression as we vary the range of interactions in the effective
model. For the purple line in Fig. 2, we fix the Ji,τ; j,τ to only
nearest-neighbor in spatial direction and explore the range of
the interaction in the temporal direction. It turns out that the
interaction in the temporal direction is long-ranged, and since
we choose M = 20 time slices in total, one needs to consider
the interaction up to M = 10. The spatial range of interaction,
on the other hand, is short-ranged. As shown with green line
in the Fig. 2, we keep the interaction in the temporal direc-
tion to M = 10 and plot of the 1 − R2 as a function of spatial
range, one can clearly see that after the 2nd nearest-neighbor,
the 1 − R2 is already converged to a very small value. In the
real fitting, when let the range of interactions in both temporal
and spatial direction free, we find for L = 8 system at β = 1.0,
in total 16 Ji,τ; j,τ′-s (2 spatial neighbors, 10 temporal neigh-
bors, 4 spatial-temporal neighbors) in Heff are needed to give
the best fit at the critical point. We have used 105 configura-
tions in the fitting.

With effective model obtained from L = 8, we now perform
SLDQMC with cumulative update for larger system sizes.
The great improvement is shown in Fig. 3. The autocorrela-
tion time of DQMC presents the typical critical slowing down
behavior: τL ∝ Lz with z = 2.1(1). However, SLDQMC

overcomes such a slowing down completely: τL is a constant
as small as one for all the system sizes simulated, and the dy-
namic exponent of SLDQMC with cumulative update is prac-
tically z = 0. Due to such superior behavior of SLDQMC, a
speedup of S = O(N ) for our 2d system is easily achieved, as
promised in the discussion of Eq. 5. We want to note although
a completely mathematical rigorous proof is lacking here, the
observed constant autocorrelation is a direct evidence of rapid
convergence of our method.

With such a speedup by SLDQMC, we are now able to ac-
cess enormously large system. In Fig. 4, we measure the uni-
form Ising spin susceptibility χ(L) = 1

L2

∑
i j

∫ β

0 dτ〈szi,τ sz
j,0〉.

Since the system is at a 2d Ising critical point, χ(L) ∝ L2−η ,
with d = 2 and η = 1

4 . We are able to simulate systems
as large as L = 100 and χ ∝ L2−η is clearly seen with
2 − η = 1.751(2). We would like to emphasize that, this is
for the first time, a (2 + 1)d interacting fermionic system with
space-time dimension 20×100×100, has ever been simulated
in quantum Monte Carlo simulations, it is SLDQMC made it
possible.

Conclusions — In this Letter, we extend SLMC
method [36, 37] to the fermionic quantum many-body
systems, and implemented it in the framework of DQMC.
The hence obtained SLDQMC, with cumulative update
scheme, provides a general purpose solution to fermionic
quantum Monte Carlo simulations. We demonstrate that
SLDQMC can greatly reduce the autocorrelation time and
speed up the simulation at least of O(N )-fold at the critical
point. To illustrate the strength of SLDQMC, a 2D interacting
fermion system with size as 100 × 100 is for the first time,
being able to simulated. We believe, SLDQMC opens a
new avenue for the numerical investigation of interacting
fermionic system. After three decades of intensive studies
with DQMC, it is now possible to simulate system size as
large as those in the QMC study of quantum spin systems.
Many standing problems in the interacting fermion system
are now able to reveal in certainty with SLDQMC. For
example, very recently, the first application of SLDQMC
upon the itinerant quantum criticality with both frustration
and non-Fermi-liquid behaviors is available [53].
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