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We study the dynamical thermal conductivity of the Kitaev spin model on a two-leg ladder. In
contrast to the majority of conventional one-dimensional spin systems, we show the ladder to exhibit
no ballistic channel and a zero-frequency pseudo-gap. This is a direct consequence of fractionalization
of spins into mobile Majorana matter and a static Z2 gauge field, which acts as an emergent thermally
activated disorder. Our finding rests on complementary calculations of the current correlation
function, comprising a phenomenological mean-field treatment of thermal gauge fluctuations, a
complete summation over all gauge sectors, as well as exact diagonalization of the original spin
model. The results will also be contrasted against the conductivity discarding gauge fluctuations.
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Thermal transport by magnetic degrees of freedom in
insulating quantum magnets is a fascinating probe of spin
dynamics. This includes conventional magnons in two-
dimensional (2D) antiferromagnets (AFMs) with long
range order (LRO) [1], but also more exotic elementary
excitations, ranging from gapped triplons in quantum
disordered 1D spin ladder compounds [2, 3], via fractional
spinons in 1D Heisenberg AFM spin chains [4–6] and po-
tentially also in 2D triangular AFMs [7], up to emergent
monopoles in spin ice [8, 9]. Recently quantum magnets
with strong spin-orbit coupling have experienced an up-
surge of interest, since they may realize highly frustrated
spin systems with compass exchange [10–12]. This in-
cludes Kitaev’s model [13], which represents a rare case
of an exactly solvable, interacting quantum many-body
system in 2D, where spin-1/2 moments on the honey-
comb lattice fractionalize to form an infinite set of spin
liquids with topological degeneracy, comprising Majo-
rana fermions, coupled to a Z2 gauge field [13–17]. In
a broader context, Kitaev’s model is therefore related to
topological insulators [18], superconductors [19], or frac-
tional quantum Hall systems [20], as well as topological
matter and order [21, 22]. Interestingly, the physics of
Kitaev’s model can be generalized to 3D [23, 24] lattices
as well as to 1D ladder versions of the Kitaev model,
which allow for topological string order [14].

In this work we shed light on fractionalization as seen
by magnetic heat transport in Kitaev ladders. First heat
transport measurements in the proximate 2D Kitaev sys-
tem α-RuCl3 have surfaced only recently [25], with how-
ever phonons dominating. Transport in low-D quantum
magnets has been investigated extensively at zero fre-
quency (DC) and momentum regarding the Drude weight
(DW) [26–41]. The DW is the nondissipating DC con-
tribution to the current autocorrelation function and, if
existent, signals a ballistic channel. While in general, the
picture depends on the type of current [26], in integrable
systems the energy conductivity is generically expected
to be infinite, as for the Heisenberg chain [42–45], im-
plying a finite thermal DW. Constructing nonintegrable

systems, e.g., by coupling Heisenberg chains to form spin
ladders, routinely leads to normal dissipative heat con-
duction [34, 45–48], equivalent to a finite DC value, but
a vanishing DW of the current autocorrelations. In con-
trast to this conventional behavior of translationally in-
variant quasi 1D spin systems, and as one of our prime
results, we find that the Kitaev ladder has no ballistic
channel and displays a zero-frequency pseudo gap indica-
tive of a heat insulator.

This is a direct consequence of the matter-gauge-field
interactions and can be viewed as a fingerprint of this Z2

spin liquid in 1D. This behavior is also in sharp contrast
to that of the Kitaev chain [49], which hosts no gauge
field. To justify these claims, we consider results from
complementary calculations, comprising analytical, phe-
nomenological mean-field, and exact numerical evalua-
tions of the dynamic energy current correlation function.

The Hamiltonian of the Kitaev ladder reads

H =
∑
〈m,n〉

Jασ
α
mσ

α
n , (1)

with notations detailed in Fig. 1. It is known that this
model can be mapped onto free Majorana fermions in the
presence of static Z2 gauge fluxes by various techniques
[13, 14, 16]. Here we use the bond algebra method [12,
16], where each exchange link σαmσαn in Fig. 1 is replaced
by iηmncmcn, with Majorana fermions cm(n), with c2m =
1 and {cm, cn} = 2δmn, and a static Z2 gauge field ηmn =
±1. As shown in refs. [12, 16], the complete Hilbert space
of (1) is accounted for by constraining ηmn ≡ 1 along the
Jx,y-legs, i.e.

H =i
∑
l

[ηl,1c1l,1c2l,1 + ηl,2c1l,2c2l,2 + jx(c1l,1c2l,2+

c1l,2c2l+1,1) + jy(c1l,2c2l,1 + c1l+1,1c2l,2)] , (2)

with jx,y = Jx,y/Jz and Jz = 1. Each pair of Majorana
fermions c1(2)l,j , can be replaced by one spinless fermion,
d

(†)
l,j , using c1l,j = d†l,j+dl,j , c2l,j = i(d†l,j−dl,j), mapping

Eqn. (2) to a BCS Hamiltonian with a two-site basis. For
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Figure 1: a) Kitaev ladder. Three equivalent representations:
spins, Majorana fermions, and spinless fermions. Jx,y,z ex-
change interaction. Index l refers to unit cell (PBC). ~σil,j

Pauli matrix on leg(rung) i(j)=1,2. cil,j Majorana fermion
of type(on rung) i(j)=1,2. d

(†)
l,j spinless fermion on rung j.

Spins and Majorana fermions located at the vertices, spinless
fermions at the center of the rungs. ηl,j=± 1 static Z2 gauge
fields. Arrows denote ordering of Majorana fermions on a
bond [12]. Dashed blue loop of six sites refers to conserved
flux operator Φ b) Local energy density used in this work.

periodic boundary conditions (PBC), each eigenstate of
(2) is (at least) two-fold degenerate by changing sign of
all ηl,j .

The main goal of this paper is to analyze the fi-
nite temperature energy current correlation function
C(t) = 〈J(t)J〉/N and its Fourier transform C(ω) =´∞
−∞ dtC(t) exp(iωt) = C0δ(ω) + C(ω 6= 0), encoding
the physics of the thermal conductivity [41]. Here, 〈. . . 〉
is the canonical thermal trace at temperature T = 1/β
(kB = 1). The energy current J follows from the energy
polarization P =

∑
l l hl through J = i[H,P ] (~ = 1),

where hl is the energy density depicted in Fig. 1b).
D ≡ C0/T

2 is the Drude weight, which quantifies the
non-dissipative current dynamics. Since the energy cur-
rent is diagonal in the gauge fields, one may write

〈J(t)J〉 = Trη[Zd(η) 〈J(t)J〉d(η)]/Z . (3)

The subscript d(η) refers to tracing over matter fermions
for a fixed gauge field state, and it can be done in differ-
ent ways [53–55]. Here we consider three complementary
types of calculations of the current correlation function.
(i) To appreciate the impact of the thermal fluctuations
of the gauge field on the transport, we first suppress the
trace over ηl,i, and calculate C(ω) exactly in the ground
state gauge, allowing however for finite temperatures. (ii)
To treat large systems close to the thermodynamic limit,
including gauge fluctuations, we approximate Trη by a
partial trace characteristic of the mean gauge configura-
tions. (iii) We perform exact summation over all gauge
sectors on small systems and compare with ED of the
original spin model.
(i) Ground state gauge: In the thermodynamic limit,

the ground state of Eqn. (2) is obtained from a choice of

ηl,j ≡ ηj , which is translationally invariant with respect
to the unit cell [14, 50, 51]. For the parametrization of
Eqn. (2) this is η1 = −η2 = ±1 [52]. After Fourier
and Bogoliubov transformation to new spinless fermion
quasiparticles a(†)

k,i the Hamiltonian reads

H =
∑
k,i

εk,i(2a
†
k,iak,i − 1) (4)

with energies 2εk,1(2) = 2[j2
+c

2+(1 +
(−)j−s)

2]−1/2, with c =
cos(k/2), s = sin(k/2), j± = jx ± jy, and the Brillouin
zone fixed to k ∈ [0, 2π[ [14]. For convenience we redefine
the quasiparticles within the extended zone scheme k 6∈
[0, 2π[ to satisfy εk,1(2) = ε−k,1(2).

Using the energy density of Fig. 1b), expressed in
terms of the original matter fermions d(†)

lj , deriving the
current, and after transforming to Bogoliubov particles,
one gets

J =
∑
k,i

uk,i(a
†
k,iak,i + a−k,ia

†
−k,i)

+ jk,i(a
†
k,ia
†
−k,i + a−k,iak,i) (5)

with i = 1, 2, uk,i = (j2
+−j2

−) sin(k)/2+(−1)ij− cos(k/2),
and jk,i = (−1)i|j+ cos(k/2)|. Using (4) and (5), solving
for C(t) is straightforward. For the Fourier transform
C(ω) we obtain

C(ω) =
4π

N

∑
k,i

{
2u2

k,ifk,i(1− fk,i)δ(ω) + j2
k,i

[
f2
k,i

×δ(ω + 4εk,i) + (1− fk,i)2δ(ω − 4εk,i)
]}
, (6)

with f being the Fermi distribution, fk,i = 1/(e2βεk,i +1).
This result is of the form typical for a clean superconduc-
tor, comprising a zero frequency quasiparticle DW and
two finite frequency pair breaking spectra, corresponding
to the two quasiparticle energies of Eqn. (4).

In Fig. 2 the current correlation function is shown for
two representative cases of jx,y, referring to a gapless
(gapped) matter sector at jx,y = 2, 1 (jx,y = 2, 0.5). Sev-
eral comments are in order. First, the regular spectrum
C(ω 6= 0) is depicted only for ω > 0, since C(−ω) =
e−βωC(ω), as required by detailed balance. Second, in
the gapless case the regular spectrum for ω � 1 shows
a power law C(ω) ∝ ω2 due to j2

π+q,i ∝ q2, while dis-
playing a van-Hove singular gap for |j−| 6= 1. No quali-
tative difference arises in C(ω) between the topologically
trivial and nontrivial phases, as to be expected for the
current of a local energy density. At elevated energies
two more van-Hove singularities arise, one at the onset
of the the second quasiparticle excitations and one at the
upper band edge. The insets Fig. 2b) and c) detail the
DW versus temperature, relative to its integrated reg-
ular spectral weight I(T ) = −́∞−∞ dω C(ω), skipping the
Drude peak, and relative to the high temperature value.
Fig. 2b) shows that D(T ) is finite for any T 6= 0 and that
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Figure 2: Black(blue) lines: infinite temperature dynamical
current correlation function C(ω) versus frequency ω > 0 us-
ing the ground state gauge for gapless(ful) matter sector at
jx,y = 2, 1(2, .5). Inset: DW D(T ) versus temperature T nor-
malized to I(T )/T 2 [TC0(T =∞)] dashed[solid].

T 2D(T ) is comparable to I(T ) at sufficiently large tem-
peratures. Fig. 2c) proves that D(T � 1) ∝ T as is true
for 1D free fermions irrespective of their dispersion. In
the gapped case D(T ) is exponentially activated. These
results are in stark contrast with those when gauge fluc-
tuations are taken into account, as it becomes apparent
later on, Figs. 3 and 4.
(ii) Average domain wall density approach: Now we

trace over gauge fluctuations in Eqn. (3) approximately
by confining the full summation to a set of mean η–
configurations [62]. Those characteristic configurations
are chosen such that at any given temperature T they
satisfy the sole constraint of containing a fixed number
n(T ) of domains of η’s excited off the ground state. This
approximation is justified as follows. First, at T = 0,
forming a single domain in the ground state is gapped by
∆L [13], with ∆L→∞ converging to some constant [57].
In other words, domain walls are deconfined. For simplic-
ity we ignore the weak L dependence of ∆L and we set
∆L ≈ ∆, with ∆ evaluated by flipping a single ηl,i. Sec-
ond, for multi–domain configurations, we attribute the
same gap ∆ to each additional domain. With these two
steps the gauge field thermodynamics maps to lowest or-
der to that of an S= ± 1 nn-Ising chain with exchange
constant J = ∆/4, i.e. a single domain increases the en-
ergy by 4J . The number of domain walls n(T ) can now
easily be obtained from the average nn spin correlation
function C(T ) =

∑2N
l=1〈SlSl+1〉. It is straightforward to

see that C(T ) satisfies the condition C(T ) = 2N − 2n(T ),
which in turn yields n(T ) = 2N/(e∆/2T + 1), rounded to
multiples of two [58]. With this, Eqn. (3) reads

〈J(t)J〉 ≈ 〈〈J(t)J〉d(η)〉n(T ) , (7)

where 〈. . .〉n(T ) now refers to random averaging over
gauge domains with a number of walls set by n(T ). In
turn, evaluating 〈J(t)J〉 reduces to a disorder problem
with a temperature induced ’defect’ density. We em-

phasize, that neither the neglect of fluctuations in n(T ),
nor its specific dependence on T is qualitatively relevant
for our main conclusions, as long as n(T ) interpolates
between an exponential on-turn and a random state at
T = ∞. Furthermore, our approach manifestly ensures
that the ladder shows no LRO in the gauge field at any
T 6= 0, since for n(T ) 6= 0 domains of arbitrary size and
location are included in the trace.

Calculation of Eqn. (7) requires a numerical treat-
ment. We define a 4N component operator D† =
(d†1,1, d

†
1,2 . . . d

†
N,1, d

†
N,2, d1,1, d1,2 . . . dN,1, dN,2) of the

original matter fermions, in terms of which the Hamil-
tonian and the current are set up in real space as
H = D†h(η)D and J = D†j(η)D. Both, h(η) and
j(η) are 4N × 4N matrices, which depend on the ac-
tual state of the gauge field η = η11, η22 . . . ηN1, ηN2.
For each given η we compute a Bogoliubov transforma-
tionU, which introduces canonical quasiparticle fermions
A† = (a†1, . . . a

†
2N , a1, . . . a2N ) via A = U†D and maps

the Hamiltonian to H = A†EA, where E is diagonal and
diag(E) = (ε1 . . . ε2N ,−ε1 . . .−ε2N ) are the quasiparticle
energies. With these definitions the current correlation
function reads

C(ω) =
2π

N

∑
κλµν

LκλLµν(〈A†κAν〉〈AλA†µ〉

− 〈A†κA†µ〉〈AλAν〉)δ(ω − 2(εκ − ελ)) , (8)

where L = U†j(η)U and 〈A(†)
µ A

(†)
ν 〉 is either zero, fµ, or

(1 − fµ), depending on the components of the spinor A
involved.

Fig. 3 shows results for C(ω) from Eqn. (8), for jx,y =
2, 1 on lattices with 1400 sites, by binning the δ-functions
in windows of the order 10−2. We perform an average
over 1008 random gauge domain configurations, at vari-
ous temperatures, so that n(T )/N ranges from its max-
imum to the dilute limit. Both, the system size and T
are chosen sufficiently large to simulate the thermody-
namic limit and a finite domain wall density. The limit
of only few domain walls is out of reach of our methods.
Fig. 3 is in stark contrast to Fig. 2. First, no DW can be
observed at any temperature. This will be corroborated
by results from Fig. 4. At high temperatures, where the
DW in the ground state gauge is a substantial fraction of
the total integrated weight, Fig. 3a) displays significant
low-frequency intensity. This can be interpreted by the
lifting of degeneracies necessary for a DW [26, 34], due
to scattering from the random gauge domains. I.e. the
corresponding weight is ’shifted’ into a finite frequency
range of width ∼ O(jx,y). Similar physics, of weaker in-
tensity is visible also in Fig. 3b), where the DW in the
clean case would also be smaller. Each inset in Fig. 3
details C(|ω| � 1), clearly evidencing a zero-frequency
pseudo-gap. Based on this data it is very tempting to
conclude that the DC limit of the correlation function
vanishes. We emphasize, that the energy scale of the
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Figure 3: Current correlation function C(ω) versus frequency
for jx,y=2, 1 and various temperatures T =∞, . . . , 0.05, from
a) to d) corresponding to gauge domain wall numbers n(T ) =
N, . . . ,� N . ∆(jx,y=2, 1) ≈ 0.279. Inset: low-ω behavior.

mobility gap is unrelated to that of the ω2 power law of
gapless case in Fig. 2. The fine structure in C(ω) com-
prises effects of finite size and finite number of domain
realizations, but also scattering from “typical” clusters
of excited gauge fields, as eg. the impurity anti-bound
states above the bare spectral cut-off in Fig. 3d). For
consistency we note, that the overall shape and ampli-
tude of the low-T section of Fig. 3 approaches C(ω) from
Eqn. (6) at T = 0.

Rephrasing these findings, heat transport in the Kitaev
ladder is suppressed because it comprises 1D free matter
fermions scattering off a disordered static gauge poten-
tial. The absence of a DW as well as the zero-frequency
pseudo-gap may be related to established [59, 60], as well
as to more recent [61] theories of disordered systems. Nei-
ther the specific form of the mean density n(T ) nor fluc-
tuations around it affect this physics.
(iii) Full Hilbert space exact results: To further sub-

stantiate our arguments, we perform numerically exact
evaluations of C(ω) in the full many body Hilbert space
of the original spin model, using ED on systems up to 20
spins. These are compared to an exact all gauge sector
summation in the fermionic description. For the pur-
pose of this calculation, δ-functions are approximated by
Lorentzians with a half width parameter of the order of
10−2. Fig. 4 shows results for β = 0. First, the agree-
ment of the two calculations is impressive. The differ-
ences are due to the neglect of boundary terms [17] in
mapping Eqn. (1) to (2). Second, these results corrob-
orate our findings from the disorder averaging scheme,
with C(ω) being in good qualitative agreement with the
high temperature results presented in Fig. 3a). Note that
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Figure 4: C(ω) from ED of the original spin Hamiltonian
and from averaging over all sectors of the fermionic model
obtained at β = 0 and for N = 5. Inset: Finite size scaling of
the DW, evaluated in the spin and fermionic representations.

the seemingly finite value of C(ω → 0) is an artifact of
the Lorentzian broadening of the δ-functions combined
with the steep dip of C(|ω| � 1), observable in Fig. 3a).
This cannot be captured on small systems. Inevitably for
finite systems, we also find a finite DW, which however,
scales to zero at least exponentially in the thermody-
namic limit. This is shown in the inset of Fig. 4, where
we present the normalized C0, on a semi-log scale, as
a function of the inverse system size for both, spin and
fermionic representations. Despite the odd-even effects
[26, 37], as well as the boundary terms [17], we find that
our data are nicely fitted by a single exponential function
supporting our claim for a vanishing DW in the thermo-
dynamic limit [62].

In conclusion we have shown that, though Kitaev
ladders are translationally invariant systems, their heat
transport has no ballistic channel and displays a zero-
frequency pseudo gap, due to fractionalization of spins
into mobile Majorana matter and static Z2 gauge fields,
which generate an emergent disorder at finite temper-
ature. This is different from Kitaev chains in strictly
d = 1, while similar phenomena should occur in d ≥ 2.
Many of the genuine properties of spin liquids are very
susceptible to perturbations. Eg. non-Kitaev exchange
can lead to dispersion of the gauge excitations or to a
breakdown of the fractionalization which, to the best of
our knowledge, we have probed by heat transport in the
pure Kitaev case for the first time.
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