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Effects of short-range electronic interactions in a three dimensional line-node semimetal that
supports linearly dispersing quasiparticles around an isolated loop in the Brillouin zone are discussed.
Due to vanishing density of states (%(E) ∼ |E|) various orderings in the bulk of the system, such as
the antiferromagnet and charge-density-wave, set in for sufficiently strong onsite (U) and nearest-
neighbor (V ) repulsions, respectively. While onset of these two orderings from the semimetallic phase
takes place through continuous quantum phase transitions, a first order transition separates two
ordered phases. By contrast, topologically protected drumhead shaped surface states can undergo
charge or spin orderings, depending on relative strength of U and V , even when they are sufficiently
weak. Such surface orderings as well as weak long range Coulomb interaction can be conducive
to spontaneous symmetry breaking in the bulk for weaker interactions. We numerical ly establish
such proximity effect driven spontaneous symmetry breaking in the bulk for subcritical strength of
interactions due to flat surface band and also discuss possible superconducting orders in this system.

Introduction: The mechanism of mass generation
of elementary particles through spontaneous symmetry
breaking nowadays leaving the territory of high energy
physics curves its path through the fertile ground of con-
densed matter systems, where a myriad of gapless phases
emerges from complex band structures in solids. A cel-
ebrated example of mass generation is the superconduc-
tivity, through which gapless excitations residing in the
vicinity of the Fermi surface acquire Majorana mass [1].

Often the energy landscape available for electrons, of-
fered by the periodic potential accommodated by immo-
bile ions, displays band touching only at high symmetry
points in the Brillouin zone; giving rise to semimetallic
phase when chemical potential is pinned at band touch-
ing point [2, 3]. Although such band touching is usu-
ally protected by underlying symmetries, a plethora of
broken symmetry phases (BSPs), lacking discrete and/or
continuous symmetries, can be realized when electronic
interactions are taken into account. In particular, we
here focus on a three dimensional system that supports
linearly dispersing gapless excitations around an iso-
lated two dimensional loop in the reciprocal space, the
line-node semimetal (LNSM), and address the effects
of short-range electronic interactions on such unconven-
tional phase of matter. Recently developing interest in
LNSM [4–9, 11? , 12], along with its possible realiza-
tion in various materials [13–33], where the strength of
electronic interactions varies over a wide range, besides
fundamental importance also endows timeliness to this
quest.

Due to linearly vanishing density of states (DOS) [34],
any sufficiently weak local four-fermion interaction
(Hubbard-like) is an irrelevant perturbation in a three
dimensional LNSM. However, beyond a critical strength
of interaction various BSPs can set in through continuous
quantum phase transitions (QPTs). We here identify the
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FIG. 1: (a) Mean field phase diagram of a three dimensional
interacting LNSM. Here, U and V respectively corresponds to
onsite and nearest-neighbor repulsions [see Eq. (4)], and sup-
ports AF and CDW phases, when sufficiently strong. Criti-
cal strengths for AF ordering when V = 0 is denoted by Uc.
Transition(s) across the black (red) dashed line(s) is (are) first
order (continuous). (b) (i) Spin degenerate surface states, lo-
calized on complimentary sublattices on opposite faces along
(001) direction. Two possible splitting for flat surface states:
(ii) when V > U and (iii) U > V . The surface ordering order-
ing sets in for infinitesimal strenght of U and V , which in turn
can trigger corresponding orderings in the bulk for weaker in-
teractions, through the proximity effect. When U > V , each
surface is ferromagnet, but magnetic moment points in op-
posite direction on opposite surfaces, and surface ordering
assumes the form of layer or global AF ( see also Fig. 2).

antiferromagnet (AF) and charge-density-wave (CDW)
as favorable BSPs that, for example, can be realized
for sufficiently strong onsite Hubbard (U) and nearest-
neighbor (V ) repulsions, respectively; see Fig. 1(a). The
LNSM also supports topologically protected flat drum-
head shaped surface states, which are susceptible to ei-
ther charge or spin orderings even for infinitesimal in-
teraction; see Fig. 1(b). In turn the surface orderings
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can induce aforementioned orders in the bulk through
proximity effect even at weaker interactions, which we
numerically demonstrate through a Hart ree-Fock self-
consistent calculation in a finite system of LNSM (see
Fig. 2). Thus surface induced ordering in the bulk stands
as an experimentally feasible way to induce BSPs in the
bulk, as well as drive the system through QPTs by sys-
tematically tuning the thickness of the sample [35].

Model : A LNSM can be realized from the following
simple tight-binding Hamiltonian on a cubic lattice

H = t1
∑
k

Ψ†k [cos(kxa) + cos(kya)− b] τ1Ψk

+
∑
k

Ψ†k [t2(cos(kza)− 1)τ1 + t3 sin(kza)τ2] Ψk,(1)

where a is the lattice spacing. The two-component spinor
is defined as Ψ>k = (cA,k, cB,k). Here, cj,k is the fermion
annihilation operator on sublattice j = A,B with mo-
mentum k, and τ1 and τ2 are two off-diagonal Pauli ma-
trices. The Hamiltonian is invariant under the reversal of
time, generated by T = K where K is the complex con-
jugation and T 2 = +1. The anticommutation relation
{H, τ3} = 0 ensures the spectral symmetry of the sys-
tem. The inversion symmetry (P), under which k→ −k
and Ψk → τ1Ψ−k guarantees that an isolated nodal ring
is pinned at the kz = 0 plane. A LNSM supports topolog-
ically protected flat surface state at zero energy (image of
the bulk loop) [4, 10, 17, 33], which for the above model
is an eigenstate of τ3 wit h eigenvalue ±1. Therefore, the
drumhead shaped surface states are localized on compli-
mentary subalattices on opposite surfaces along the (001)
direction, see Fig. 1(b)(i).

Restoring the spin degrees of freedom and upon lin-
earizing the above model near k = (0, 0, 0) point, we
arrive at the continuum description of the LNSM

Ĥ0 = Γ1

(
k2
⊥ − k2

F

2m

)
+ Γ2 (vzkz) ≡

∑
j=1,2

Γjdj , (2)

where m−1 = t1a
2, vz = t3a, k2

⊥ = k2
x + k2

y and

kF =
√

2(2− b)a−1, and Γj = σ0 ⊗ τj . Pauli matrices
σµ operate on the spin index. The radius of the nodal
ring is kF , around which (k2

⊥ − k2
F )/(2m) ≈ vrkr, where

vr = kF /m is the radial Fermi velocity. Thus fermionic
dispersion scales linearly with the radial (kr = k⊥ − kF )
and ẑ components of momentum, and a LNSM corre-
sponds to a z = 1 fixed point, where z is the dynamic
scaling exponent. Besides P and T (= iσ2 ⊗ τ0 K) sym-
metries, Ĥ0 is also invariant under SU(2) chiral rotation
of the spin quantization axis, generated by σ ⊗ τ0.

Broken symmetry phases: Due to vanishing DOS
(%(E) ∼ |E|), a LNSM remains stable against sufficiently
weak, but generic short-range, such as onsite Hubbard
(U), nearest-neighbor (V ) interactions. However, strong
repulsive interactions can destroy the noninteracting z =

OP Physical order T P SU(2) Susceptibility

∆01 Bond density X X X f(vr, vz)Λ/2

∆02 Current density × × X f(vr, vz)Λ/2

∆03 Charge-density-wave X × X f(vr, vz)Λ

∆j0 Ferromagnet × X × 0

∆j1 Spin bond density × X × f(vr, vz)Λ/2

∆j2 Spin current density X × × f(vr, vz)Λ/2

∆j3 Antiferromagnet × × × f(vr, vz)Λ

TABLE I: Various OPs, their physical realizations and trans-
formations under various symmetry operations. Here X and
× stand for even and odd under a symmetry operation, re-
spectively. The last column displays mean-field susceptibility
of various orderings, where Λ is the ultraviolet cutoff and
f(vr, vz) is a nonuniversal, but positive definite function [36].

1 fixed point and give rise to various BSPs. All together
a LNSM is susceptible to seven types of intra-unit cell
excitonic instabilities. The corresponding effective sin-
gle particle Hamiltonian reads as HSP = ∆µν (σµ ⊗ τν),
where µ, ν = 0, 1, 2, 3 (except for µ = ν = 0, since ∆00 is
chemical potential) and ∆µν = 〈Ψ†σµ⊗τνΨ〉 is the order
parameter (OP). Physical meaning of these OPs and their
transformation under symmetry operations are shown in
Table. I. Due to spin rotational symmetry, ∆jν = |~∆ν |
for j = 1, 2, 3 and any ν.

In the presence of underlying bond (∆01) and spin
bond (∆j1) density orders, the nearest-neighbor hop-
ping amplitude respectively acquires spin independent
or dependent modulation, and the ordered phases sup-
port two nodal rings in the xy plane, with radii k±⊥ =

[k2
F ± 2m∆]1/2, for ∆ = ∆01 or |~∆1|. By contrast, nu-

cleation of ∆02 and ∆j2 respectively gives rise to cur-
rent density and spin current density. These two or-
dered phases are also accompanied by two nodal rings,
but they are of identical radius k⊥ = kF and placed at
kz = ±∆/vz for ∆ = ∆2 or |~∆2|. The CDW (∆3) and

AF (|~∆3|) orders, respectively gives rise to staggered pat-
tern of charge and spin among the nearest-neighbor sites
of the cubic lattice, and concomitantly to a fully gapped
spectrum. Onset of a ferromagnet ordering leads to the
formation of compensat ed electron and hole doped line
nodes for opposite spin projections[40], and thus suscep-
tible to a subsequent BCS-like excitonic instability to-
ward the formation of the AF order. But, the AF OP
gets locked into the spin easy-plane, perpendicular to the
ferromagnetic moment, and represents canted antiferro-
magnet. While the nodal orderings give rise to drum-
head shaped surface states on (001) surface in the or-
dered phases (images of the bulk nodal rings), onset of
mass orders (such as CDW, AF) split the surface states
and place them at finite energies, as shown in Fig. 1(b).

Valuable insight into the propensity toward various
orderings can be gained from the corresponding static



3

mean-field susceptibilities (χ) (see Table I). Note that
the critical strength of interaction for any ordering is in-
versely proportional to χ. The CDW and AF orders pos-
sess the largest susceptibility, and consequently require
minimal strengths of interaction for nucleation. Since
at T = 0 optimal minimization of the free energy (no
competition with entropy) naturally prefers fully gapped
phases, generic short-range interaction supports either
CDW or AF orders over gapless phases. Despite being
accompanied by two massless Goldstone mode (due to
spontaneous breaking of SU(2) spin rotational symme-
try) the AF phase in a three dimensional LNSM can ex-
hibit a genuine finite temperature continuous phase tran-
sition, described by a three-component φ4 theory, while
that for CDW phase is captured by an Ising φ4 theory.

Proximity effect : Since surface states, arising from the
model shown Eq. (1), are completely flat, they can un-
dergo various weak coupling instabilities, such as surface
CDW when V > U and AF when U > V as shown in
Fig. 1(b), due to diverging DOS, before the bulk acquires
propensity toward any ordering. Such surface ordering
through proximity effect in turn can give rise to BSP at
weaker couplings in the bulk, as we demonstrate from
a self-consistent solution of these OPs in a finite LNSM
with open boundaries along (001) direction (thus sup-
porting drumhead surface states), see Fig. 2. Therefore,
in experiment one can observe various BSPs by system-
atically reducing the thickness of the system, i.e., in a
thin film of LNSM [35]. In addition, such proximity ef-
fect should be more pronounced in materials with larger
radius of the nodal-loop (kF ), as the number of surface
states increases with increasing kF . Thus, thickness of a
LNSM as well as radius of the nodal-loop [tunable by hy-
drostatic pressure, for example, controlling the hopping
parameters t1,2,3, see Eq. (1)] can be two experimentally
accessible nonthermal tuning parameter to drive the sys-
tem through a QPT and realize various BSP. It is worth
noticing that when U > V , each surface along (001)
direction becomes ferromagnet due to sublattice polar-
ization of surface states, see Figs. 1(b) and 2(d). The
magnetic moment, however, points in opposite direction
on opposite surfaces, and the ordered phase represents a
layer or global antiferromagnet [see Fig. 2(d)]. Predicted
surface change (spin) ordering can be detected by STM
(spin-resolved STM) measurements. Next we investigate
the onset of CDW and AF orders and their competition
inside the bulk of a LNSM.

Phase diagram: The stability of a LNSM (for weak in-
teractions), the possible onset of CDW, AF phases, and
the competition between these two ordered phases (for
strong interactions) can be demonstrated from the fol-
lowing mean field free energy density

F =
∆2

3

2gC
+
|~∆3|2

2gAF
− 2

∑
σ=±

∫ ′ d3k

(2π)3
Eσ(k), (3)
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FIG. 2: Hartree-Fock (mean-field) self-consistent solution of
CDW [(a)-(c)] and AF/FM [(d)] orders with only nearest-
neighbor (V ) and onsite (U) repulsion, respectively [see
Eq. (4)]. Periodic boundary is always imposed along x and y
direction, along which system size is Lx = Ly = 10. Here L
represents the system in z direction, along which we imple-
ment periodic boundary for (a) and (b) only (thus devoid of
drumhead surface states). Throughout we set t1,2,3 = t = 1,
b = 1 [see Eq. (1)] and here m = ∆03/t, M = ∆j0/t,
N = ∆j3/t. U, V are measured in units of t. (a) CDW order-
parameters (OPs) in various system (L) cross at a fixed value
of V , yielding critical strength of NN interaction Vc = 3.04
for CDW ordering in the absence of surface states. (b) Data
collapse shows that bulk undergoes a continuous transition
at V = Vc. We here take order-parameter exponent β = 1
and ν = 1 (large-N values, see text) following general scaling
argument [36]. (c) Spatial variation of CDW OP along z di-
rection for sub-critical strength of NN interaction (V < Vc),
supporting the proposed proximity induced ordering in the
bulk due to surface states (see text). Lz in panel (c) and (d)
is the layer index along the z direction. (d) Variation of FM
(M) and AF (N) orders along the z direction for weak on-
site repulsion (U = 2), showing that ferromagnetic moment
on two opposite surfaces points in opposite direction, yield-
ing net zero magnetization. But, AF possesses same sign in
the entire system, supporting a global anit-ferromagnet order.
When we impose periodic boundary in all three directions
M = N = 0 everywhere in the system for U = 2, suggesting
ordering [in panel (d)] is purely due to the proximity effect.

where Eσ(k) =
[
d2

1 + d2
2 + ∆2

3 + |~∆3|2 + 2σ∆3|~∆3|
]1/2

.

The integral over momentum is restricted up to an ultra-
violet cutoff Λ. In the presence of onsite (U) and nearest-
neighbor (V ) repulsions (extended Hubbard model), the
interacting Hamiltonian reads as

HI = U
∑
~x

n↑(~x)n↓(~x)+
V

2

∑
~a,j,σ,σ′

nσ(~a)nσ′(~a+~bj) (4)

and we obtain gC = (6V − U)/8 and gAF = U/8. Here,
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nσ(~x) is the fermionic number at ~x, with spin projection
σ =↑, ↓ and sites on A (B) sublattice are located at ~a

(~a+~bj where j = 1, · · · , 6).
Let us first focus on a simpler situation with only CDW

order, i.e., when |~∆3| = 0. Minimizing F we then obtain
the following gap equation

gC

∫ EΛ

0

dε
%(ε)√
ε2 + ∆2

3

= 1, (5)

where EΛ is the ultraviolet energy up to which the quasi-
particle dispersion in a LNSM is linear. The above gap
equation yields nontrivial solution for order parameters

δC = 1 +mC −
√

1 +m2
C (6)

where mC = ∆3/EΛ is the dimensionless CDW OP, δC =[
(g∗C)−1 − g−1

C

]
E−1

Λ , only when interaction is stronger
than a critical one (g∗C), i.e. gC > g∗C . In close prox-
imity to the quantum critical point (QCP), located at
gC = g∗C , mC � 1, yielding mC ∼ δC . Therefore, gen-
eral scaling relation mC ∼ δνzC , suggests that νz = 1,
where ν is the correlation length exponent. A similar self-
consistent solution can be found for the AF order upon
setting ∆3 = 0 in Eq. (3). Hence, CDW and AF orderings
set in beyond a critical strength of interaction through a
continuous QPT and the transition temperature for these
two orderings scales as Tc ∼ |δ|νz. By solving the cou-
pled gap equations and simultaneously minimizing the
free energy [36], we arrive at the phase diagram of an
interacting LNSM, shown in Fig. ??. The transition be-
tween AF and CDW orders is first order in nature [41].

Long range interaction: We now comment on the ef-
fect of long range tail of the Coulomb interaction. The
leading corrections to the anomalous dimension due to
long-range Coulomb interaction is largest for mass or-
ders (CDW and AF) and proportional to αrF (η)/Λ,
where αr = e2/(4π2vrε0) is the fine structure constant
in the radial direction, η = vz/vr, F (η) = Ek(1 − η2) +
Ek(1 − η−2)/η and Ek is the elliptic function of first
kind [36]. Such enhancement of anomalous dimension in-
dicates that long-range interaction boosts the propensity
toward these two orderings in a LNSM. Consequently,
the phase boundaries between LNSM-BSPs, shown in
Fig. 1(a), shifts toward weaker strength of interactions
(such as U and V ) in particular when dielectric constant
(ε0) is small. But, a complete analysis on the interplay
of a proposed non-Fermi liquid [6] and BSPs in the pres-
ence of both long and short range components Coulomb
interactions demands a separate investigation [43].

Superconductivity : Finally we shed light on possible
paired states in a LNSM, when electronic interaction
acquires a strong attractive component. We now in-
troduce a Nambu doubled spinor as ΨN = (Ψp,Ψh)

>
,

where Ψp = (Ψp,↑,Ψp,↓)
>

, Ψh = (Ψh,↓,−Ψh,↑)
>

and

Ψ>p,s = (Ψ†A,s,Ψ
†
B,s), Ψ>h,s = (ΨB,s,ΨA,s) for s =↑ / ↓.

In this basis ~S = η0 ⊗ ~σ ⊗ τ0 are the three generators
of electron spin [44] and the non-interacting Hamiltonian
becomes ĤN

0 = η3 ⊗ Γ1d1 + η0 ⊗ Γ2d2, where the Pauli
matrices ηµ operate on the Nambu index. All together
the LNSM permits four local pairings, and the corre-
sponding effective single-particle Hamiltonian reads as
HSC = (η1 cosφ+ η2 sinφ)⊗Hp, where φ is the supercon-
ducting phase and Hp = ∆sΓ1+∆0Γ0+∆2Γ2+∆t ~σ⊗τ3.
First three pairings are spin-singlet, while the last one is
spin-triplet, among which only the spin singlet s-wave
pairing (∆s) stands as Mojorana mass [1]. Remaining
three pairings support gapless BdG quasiparticle around
nodal rings inside the ordered phase, and thus expected
to be energetically inferior to the fully gapped s-wave
pairing [36]. It should be noted that due to the presence
of flat surface states the s-wave pairing can take place on
the surface in even for sufficiently weak attractive inter-
action, which can also be mediated by electron-phonon
interaction [45]. Such surface superconductivity can in
turn induce pairing among the bulk states through prox-
imity effect, in particular for a thin film of LNSM.

Upon casting six matrices corresponding to the mass
orders (AF, CDW, s-wave pairing) in Nambu represen-
tation, we can arrange them into two sets according
to {η3 ⊗ ~σ ⊗ τ3} and {η0 ⊗ σ0 ⊗ τ3, ~η⊥ ⊗ σ0 ⊗ τ1}. To-
gether they constitute a Cl(3) × Cl(3) algebra, where
~η⊥ = (η1, η2) [46]. Therefore, both strong onsite Hub-
bard repulsion and attraction can destabilize a LNSM,
by respectively supporting an AF order or through simul-
taneous nucleation of a CDW and s-wave superconduc-
tor. Respectively the ordered phase breaks the spin and
pseudo-spin SU(2) symmetries. These two transitions
thus belong to the same universality class, which can be
demonstrated in numerical simulation. Such exact sym-
metry between CDW and s-wave pairing stems from the
bipartite nature of the underlying cubic lattice, the ab-
sence of particle-hole asymmetry in the normal state and
any other finite range component of Coulomb interac-
tion. For example, weak repulsive (attractive) nearest-
neighbor interaction lifts such degeneracy and prefers
CDW (s-wave pairing).

Conclusions: To conclude, we here show that an inter-
acting LNSM can be susceptible to a plethora of BSPs in
the bulk (for strong interaction) as well as on the surface
(for weak interaction). The weak coupling instabilities of
drumhead shaped flat surface states can in turn induce
orderings in the bulk through proximity effect even for
weaker interaction, making our proposals relevant in real
materials [13–21, 23–26, 28–32], in particular for a thin
film of LNSM (see Fig. 2). By contrast, if a LNSM lacks
T symmetry or spin degeneracy [30], coined as Weyl-loop
semimetal, the number of possible ordering channels is
quite restricted, with ferromagnet standing as the only
possible mass order [36]. Nevertheless, our conclusions
regarding the fate of the QPT and surface in duced prox-
imity effect into bulk remains unchanged in this system.
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[33] T. T. Heikkilä, G. E. Volovik, JETP Lett. 93, 59 (2011).

[34] DOS scales as ρ(ε) ∼ |ε|−1+dc/z, where dc is the co-
dimension, equals to the difference between the physi-
cal dimension and dimensionality of the hyperplane over
which energy gap vanishes. The co-dimension of a LNSM
(Fermi surface) is dc = 2(1), yielding linearly vanishing
(constant) DOS, since z = 1 for linearly dispersing quasi-
particles around Fermi energy. For d-dimensional Dirac
or Weyl semimetals dc = d, yielding standard scaling of
DOS ρ(ε) ∼ |ε|−1+d.

[35] The finite size effect or hybridization induced gap for the
surface states (∼ 1/L) is assumed to be � U or V .

[36] See Supplementary Materials for Minimal representation
and no-doubling for NLSM (see Ref. [37]), large-N RG
calculation (see Refs. [38, 41]), Clifford algebra of mass
matrices (see Ref. [39]), and additional numerical results.

[37] H. B. Nielsen and M. Ninomiya, Nucl. Phys. 185, 20
(1981); I. F. Herbut, Phys. Rev. B 83, 245445 (2011).

[38] J. A. Gracey, Int. J. Mod. Phys. A 9, 727 (1994); L.
Rosa, P. Vitale, and C. Wetterich, Phys. Rev. Lett. 86
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