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In topological semimetals, the valance band and conduction band meet at zero-dimensional nodal points or

one-dimensional nodal rings, which are protected by band topology and symmetries. In this Rapid Communica-

tion, we introduce “nodal-link semimetals”, which host linked nodal rings in the Brillouin zone. We put forward

a general recipe based on the Hopf map for constructing models of nodal-link semimetal. The consequences of

nodal ring linking in the Landau levels and Floquet properties are investigated.

Topological phases of matter have been among the most

active research subjects in condensed matter physics. They

can be broadly classified as two major classes. The

first class of phases, including topological insulators and

superconductors[1–6], and other symmetry protected topolog-

ical phases[7], have gapped bulks with nontrivial topological

structures characterized by topological invariants[8–15], dic-

tating the existence of robust gapless modes on the boundary.

More recently, the second major class of topological ma-

terials, known as topological semimetals, have attracted

widespread attentions. In the noninteracting limit, they are

characterized by topologically robust k-space band-touching

manifolds, which can be zero-dimensional (0D) nodal points

or one-dimensional (1D) nodal rings (or nodal lines). The

bulk Dirac[16–25] and Weyl points[26–40] are responsi-

ble for novel phenomena related to chiral anomaly[41–51].

Moreover, bulk Weyl points entail surface Fermi arcs, while

nodal rings[52–72] imply flat surface band (drumhead states)

that may trigger interesting correlation effects[73]. Nodal

rings have been predicted (e.g., Cu3PdN[60, 61],Hg3As2[74],

Ca3P2[63, 75], 3D carbon networks[58], CaP3[76], Alkali

Earth Metals[77, 78]) and experimentally studied in quite a

few materials (e.g., PbTaSe2[62], ZrSiTe[79], ZrSiS[80–84]).

Notably, nodal rings can be driven to Floquet Weyl points by

circularly polarized light[85–89], accordingly, the drumhead

surface states become Fermi arcs.

Unlike nodal points, nodal rings allow richer topological

structures. They can touch at special points[60, 61, 90, 91],

enabling formations of nodal chains[92, 93]. In this Letter,

we introduce new types of topological semimetals, dubbed

“nodal-link semimetals”, which host nontrivially linked nodal

rings[e.g., Fig.1(e)]. Furthermore, a method is introduced for

constructing two-band models of nodal-link semimetals. We

investigate generic physical consequences of nontrivial link-

ing; in particular, a global toroidal π Berry phase generates

a half-integer shift of Landau level index when the magnetic

field is perpendicular to the ring plane. In addition, a suit-

able periodic external field can drive nodal-link semimetal to

a Floquet Hopf insulator.

Models.–Nodal rings come from the crossing of two adja-

cent bands, thus we focus on two-band Bloch Hamiltonians,

which can generally be written as

H(k) = a0(k)1 + a1(k)τx + a2(k)τy + a3(k)τz, (1)

where k = (kx, ky, kz), τi’s are Pauli matrices, and a0(k) = 0

will be adopted for simplicity (nonzero a0 can be trivially in-

cluded, if needed). Nodal rings are protected by crystal sym-

metries. For concreteness, we take the PT symmetry[66, 94]

that ensures the reality of H(k), i.e., a2(k) = 0. Now the spec-

tra are E±(k) = ±
√

a2
1
+ a2

3
, and the nodal rings are given by

solving a1(k) = a3(k) = 0. A purpose of this Letter is to

construct models with mutually linked nodal rings.

Instead of taking trial-and-error approaches, we put for-

ward a general method based on Hopf maps[95, 96]. They

play special roles in quantum spin systems[95, 97], topo-

logical Hopf insulators[98–103], liquid-crystal solitons[104],

quench dynamics of Chern insulators[105], and minimal mod-

els for topologically trivial superconductor-based Majorana

zero modes[106]. Mathematically, a Hopf map is a nontrivial

mapping from a 3-sphere S 3 to a 2-sphere S 2, which possesses

a nonzero Hopf invariant[95, 96, 98]. Moreover, it has the ge-

ometrical property that the preimage circles of any two points

on S 2 are linked. Mappings from a 3D torus T 3 to S 2 inherit

the nontrivial topology of Hopf maps through T 3 → S 3 → S 2,

where T 3 → S 3 is a map with unit winding number, and

S 3 → S 2 is a Hopf map.

Given any vector function d(k) = (dx, dy, dz) on the Bril-

louin zone T 3, one can define a mapping from T 3 to S 2 by

k → d̂(k), where d̂ ≡ d/|d|. To define the Hopf invariant,

it is convenient to express the vector d in terms of a spinor,

namely, di(k) = z†τiz, with z(k) = (z1, z2)T . Let us write

z1 = N1 + iN2, z2 = N3 + iN4, then the Hopf invariant simpli-

fies to[103]

nh =
1

2π2

∫

d3kǫabcdN̂a∂kx
N̂b∂ky

N̂c∂kz
N̂d, (2)

where N̂a is the a-th component of the vector N =

(N1,N2,N3,N4) normalized to unit length.

Let us take a point on S 2, say n̂1 = (0, 1, 0). Under the

mapping k→ d̂(k), all the preimages of n̂1 have to satisfy

dx(k) = dz(k) = 0, (3)

however, the converse is not true, namely, a solution of Eq.(3)

is not necessarily a preimage of n̂1. In fact, the preimages
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FIG. 1. Nodal rings of Eq.(6), and the pseudospin textures in the ky = kz plane, for (a,b) m0 = 3.2, (c,d) m0 = 3.0, and (e,f) m0 = 2.5. The light

blue ring locates in the ky = kz plane, while the dark blue ring is perpendicular to it.

of n̂2 = (0,−1, 0) also satisfy Eq.(3). In a single equation,

Eq.(3) gives the preimages of both n̂1 and n̂2. This is among

key observations in our construction. When nh is nonzero, the

preimages circles of any two points (say n̂1 and n̂2) are linked.

Therefore, we can obtain linked nodal rings by taking

a1(k) = dx(k), a3(k) = dz(k). (4)

Recall that the a2 term is absent due to crystal symmetries, as

discussed above. The same method also works if we start from

a different n1,2; for instance, taking n1,2 = (0, 0,±1) leads to

a1 = dx, a3 = dy, which yields a nodal link as well.

This is a quite general approach to construct nodal-link

semimetals. As an example, we take[98–103]

N1 = sin kx, N2 = sin ky, N3 = sin kz,

N4 = cos kx + cos ky + cos kz − m0, (5)

which has nh = −1 for 1 < m0 < 3 and nh = 0 for m0 > 3. The

explicit forms of di’s read

dx = 2 sin kx sin kz + 2 sin ky(
∑

i=x,y,z

cos ki − m0),

dy = −2 sin ky sin kz + 2 sin kx(
∑

i=x,y,z

cos ki − m0),

dz = sin2 kx + sin2 ky − sin2 kz − (
∑

i=x,y,z

cos ki − m0)2.

Following Eq.(4), a lattice model of nodal-link semimetal is

H(k) = [2 sin kx sin kz + 2 sin ky(
∑

i=x,y,z

cos ki − m0)]τx

+ [sin2 kx + sin2 ky − sin2 kz − (
∑

i=x,y,z

cos ki − m0)2]τz.(6)

The nodal rings consist of points where both coefficients of τx

and τz vanish. We find that one of the rings is ky = kz, sin kx =

m0−
∑

i cos ki, and the other is ky = −kz, sin kx =
∑

i cos ki−m0,

shown in light and dark blue, respectively, in Fig.1. Fig.1(a)

shows the unlinked rings for m0 = 3.2, and Fig.1(e) illustrates

the linked rings for m0 = 2.5 (a Hopf link). The critical point

m0 = 3.0, when the two rings cross each other, is shown in

Fig.1(c). The direction of pseudospin vector (dx, dz) is plotted

in Fig.1(b)(d)(f), indicating that the light blue ring encloses a

pseudospin vortex in the linked regime [Fig1(f)], in contrast

to the unlinked case [Fig1(b)]. The surface states for m0 = 2.5

are shown in Fig.2. The two-disk-overlapping region has zero

and two flat bands in Fig.2(a) and (c), respectively, which is

consistent with the winding number[107] in each region.

Near the critical point[Fig.1(c)], we can expand the Hamil-

tonian as:

H(k) = [2kxkz + 2ky(m − k2/2)]τx

+ [k2
x + k2

y − k2
z − (m − k2/2)2]τz, (7)

where k2
=
∑

i=x,y,z k2
i
, m = 3−m0. At the critical point m = 0,

we have H(k) ≈ 2kxkzτx + (k2
x + k2

y − k2
z )τz, thus the dispersion

is quadratic in all three directions. Consequently, we find that,

for m = 0, the density of states follows g(E) ∼
√

E near

zero energy, in contrast to g(E) ∼ E for m , 0. Just like

that nontrivial topology of insulators can be undone by closing

the energy gap, the nontrivial nodal-line linking can be untied

through quadratic-dispersion critical points[Fig.1(c)], where

g(E) ∼
√

E.

We remark that, although a nodal chain[92, 93] also con-

tains crossings like Fig.1(c), its dispersion is not quadratic in

all three directions at the crossing point, and the density of
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FIG. 2. (a) Surface flat bands for z = 0 boundary. (b) The spectra as a function of kx (fixed ky = 0) for a 800-site-thick slab perpendicular to

z axis. (c) The y = 0 surface states. (d) Spectra of a slab perpendicular to y axis. (e) x = 0 surface Brillouin zone without surface states. (f)

Spectra of a slab perpendicular to x axis. The black rings or lines in (a,c,e) are projections of the bulk nodal link to the surface Brillouin zone.

In (c), the number of bands in the two-disk-overlapping region is twice that of the non-overlapping regions. Here, m0 = 2.5.

states is linear instead of square-root.

Landau levels.–A key difference between a usual unlinked

ring and a linked one is a global Berry phase along the ring.

Let us draw a thin torus enclosing a nodal ring, then the Berry

phase along the poloidal direction is always π; in contrast, the

Berry phase along the toroidal direction can be 0 or π (mod

2π), corresponding to the unlinked and linked ring, respec-

tively [The 0 or π toroidal Berry phase of the light-blue ring

can be read from the spin texture in Fig.1(b) and (f), respec-

tively].

This π toroidal Berry phase can qualitatively affect the Lan-

dau levels. It is challenging to find analytic expressions of

Landau levels for Eq.(6), nevertheless, a different model al-

lows a simple solution: we take a1 = dx(k), a3 = dy(k) in

Eq.(1). This Bloch Hamiltonian harbors four straight nodal

lines at (kx, ky) = (0, 0), (0, π), (0, π) and (π, π), respectively.

When 1 < m0 < 3, a nodal ring encircling (kx, ky) = (0, 0) is

also found as cos kx + cos ky = m0 − 1 in the kz = 0 plane.

Instead of working on this lattice Hamiltonian, we study its

continuum limit for simplicity:

H(k) = 2[kxkz + (m −Ck2)ky]τx + 2[−kykz + (m −Ck2)kx]τy, (8)

where k2
= k2

x + k2
y + k2

z . m = 3 − m0, and C = 0.5. We

have also done a basis change τz → τy for later convenience.

This model hosts a nodal line kx = ky = 0 and a nodal ring

k2
x + k2

y = m/C in the kz = 0 plane, which are linked.

Now we add a magnetic field along the z direction, B = Bẑ.

It is standard to do the replacement k → Π = −i∇ + eA with

A = (0, Bx, 0)[108]. It is convenient to introduce the ladder

operators, a = lB√
2
(Πx− iΠy), a† = lB√

2
(Πx+ iΠy), where lB =

1/
√

eB is the magnetic length. The Hamiltonian becomes

H =















0 f (kz)
√

2a†

lB√
2a

lB
f †(kz) 0















(9)

where f (kz) = 2[kz − i(m − Ck2
z − 2Ca†a

l2
B

)]. The Landau levels

are found to be

En,±(kz) =















±
√

8n[k2
z + (m −Ck2

z − nωc)2]/lB, n ≥ 1,

0, n = 0,
(10)

where ωc ≡ 2C/l2
B
. The low energy eigenvalues are around

n ∼ 0 and n ∼ m/ωc, the former coming from the central

nodal line at kx = ky = 0, while the latter coming from the

nodal ring in the kz = 0 plane. As a comparison, we also

consider a model with an unlinked ring:

H(k) = (m −Ck2)τx + kzτz. (11)

Following the same steps, we find that the Landau levels are

En,±(kz) = ±
√

k2
z + [m − Ck2

z − (n +
1

2
)ωc]2, n ≥ 0. (12)

Comparing Eq.(10) and Eq.(12), we see that the presence of

a linked nodal line causes a shift of Landau level index by

1/2, namely, n → n − 1/2, which is a consequence of the

π toroidal Berry phase. Such a shift can be measured by

magneto-transport or magneto-optical experiments.

To highlight the effect of π Berry phase, we re-derive the

Landau levels using semiclassical quantization[109–111]:

S (kz) = 2πeB(n + 1/2 − φB/2π), (13)
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where S is the cross-sectional area of a k-space orbit, and φB

is the Berry phase along the orbit. For the linked ring, we

have φB = π (the toroidal Berry phase), and a semiclassical

calculation (see Supplemental Material for details) yields the

Landau levels in Eq.(10).

Floquet Hopf insulator from nodal link.–We will show that

driving the nodal-link semimetal described by Eq.(8) creates

a Floquet Hopf insulator. We consider a periodic driving gen-

erated by a circularly polarized light(CPL) propagating in z

direction. The vector potential A(t) = A0(cosωt, η sinωt, 0),

where η = 1 and −1 stands for right-handed and left-handed

CPL, respectively. Its effect is described by the minimal cou-

pling, H(k) → H[k + eA(t)]. The full Hamiltonian is time-

periodic, H(k, t + T ) = H(k, t) with T = 2π/ω, thus, it can be

expanded as H(k, t) =
∑

nHn(k)einωt, with

H0(k) = 2[kxkz + ky(m̃2 −Ck2)]τx

+2[−kykz + kx(m̃2 −Ck2)]τy,

H±1(k) = eA0[kz ∓ iη(m̃1 −Ck2) − 2Cky(kx ∓ iηky)]τx

+eA0[±iηkz + (m̃1 −Ck2) − 2Ckx(kx ∓ iηky)]τy,

H±2(k) = Ce2A2
0[(ky ± iηkx)τx − (kx ∓ iηky)τy], (14)

where m̃ j=1,2 = m − jCe2A2
0
. In the off-resonance regime, we

can use an effective time-independent Hamiltonian[112–120]:

Heff(k) = H0 +

∑

n≥1

[Hn,H−n]

nω
+ O(

1

ω2
)

= 2[kxkz + ky(m̃2 −Ck2)]τx + 2[−kykz + kx(m̃2 −Ck2)]τy

+λ[k2
z + (m̃1 −Ck2)2 − 2Ck2

ρ(m̃1 −Ck2 − γ
4

)]τz, (15)

where λ = 4ηe2A2
0
/ω, γ = Ce2A2

0
, and kρ =

√

k2
x + k2

y . The

energy spectrum of Heff is fully gapped. For weak driving,

the minima of the band are located at kz = 0, Ck2
ρ = m̃2,

and the gap is estimated as Eg ≈ 12mC(eA0)4/ω. In the CPL

approach, this gap is expected to be rather small. It can be

promoted to the order of (eA0)2 by adding a small ∆τz pseudo-

Zeeman term (see Supplemental Material for details of calcu-

lation).

If we remove the τz term, Eq.(15) hosts a nodal ring and

a nodal line linked together. It is readily checked that the

coefficient of τz is positive on the line and negative on the

ring (for η = +1), thus, the corresponding unit d̂ vector

is (0, 0, 1) and (0, 0,−1), respectively. This fact suggests

that Eq.(15) describes a (Floquet) Hopf insulators[98–103],

or more precisely, a Floquet Hopf-Chern insulator[102], be-

cause the Chern number C(kz) = −2 for arbitrary kz, as

found in our numerical calculation. In the definition of

Hopf invariant[95, 98], a nonsingular global Berry potential

is needed, which is impossible in the presence of nonzero

Chern number, nevertheless, we can study topological sur-

face states. For a slab perpendicular to the z direction, we

can solve the differential equation Heff(kx, ky,−i∂z)Ψkx,ky
(z) =

E(kx, ky)Ψkx,ky
(z), which gives one surface band for each sur-

face, whose dispersion is (see Supplemental Material for cal-

culation): Eα(k) = αλ[m̃2/C + γ
2 − (1 + 3Cγ/2)k2

ρ], where

FIG. 3. Surface states of a slab perpendicular to the z axis. Parame-

ters are ω = 4, m = 1, eA0 = 0.6, C = 0.5. (a) 3D view of surface

bands. (b) E(kx) with ky = 0 fixed. The grey regions are bulk bands.

α = + (−) for top (bottom) surface. Shown in Fig.3, this dis-

persion is characteristic of a Hopf insulator[98]. For a fixed θ

(defined as θ = arctan ky/kx), the surface state of either top or

bottom surface is chiral, which can be understood in terms of

a Chern number in the (kρ, kz) space[103].

Conclusions.–We have introduced nodal-link semimetals

into the family of topological semimetals. A general method

for their model construction has been put forward. These

phases may be realized by tuning the hoppings in optical

lattices. Finding a solid-state material will be an important

progress. It will also be worthwhile to study possible novel

effects of linking. Theoretically, our models lay useful ground

work for topological field theories[121] in the Brillouin zone.

Note added.–After finishing this manuscript, we became

aware of a related preprint by Chen et al, in which a double-

helix link is constructed[122].
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