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Motivated by a recent Comment by J. Höller and N. Read [Phys. Rev. B 93, 197401 (2016)], we
revisit the problem of a chiral Luttinger liquid on a boundary of a Galilean-invariant quantum Hall
fluid. After correcting the linear response calculation, the real part of the longitudinal conductivity
derived in the model constructed in our paper [Phys. Rev. B 91, 195409 (2015)] agrees with the
result found in the Comment for non-interacting fermions confined by a linear potential. We also
withdraw our previous conjecture that the longitudinal conductivity contains a universal contribu-
tion determined by the “shift” and provide arguments demonstrating its non-universal nature.

In a recent paper [1] we constructed a theory of a chi-
ral Luttinger liquid on a boundary of a Galilean invariant
quantum Hall fluid. Using this theory we considered elec-
tromagnetic response at the edge and computed the lon-
gitudinal electric conductivity in the low frequency and
small wave vector regime
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where we introduced the filling fraction ν, the magnetic
field B > 0, the velocity c of the chiral edge mode and
the particle mass m. Note that the definition of the con-
ductivity in this paper differs by an overall sign from the
one used in our original paper [1]. The present choice
ensures that the real part of the conductivity is positive.
The conductivity (1) differs from the conductivity ex-
tracted from the well-known edge theory of Wen [2, 3]
and Stone [4] by higher derivative corrections that de-
pend on the “shift” S introduced in [5] and the second
derivative of the energy density ǫ(B) of the quantum Hall
fluid. In our work we proposed that the first term in Eq.
(1) is universal and suggested that a spectroscopic mea-
surement of the longitudinal conductivity might be a new
way to measure the “shift” S and the closely related Hall
viscosity.
In a recent Comment [6] on our paper, Höller and Read

computed the spectral weight (the real part of the lon-
gitudinal conductivity integrated over the frequency ω)
for the integer quantum Hall system of noninteracting
fermions that occupy any number of the lowest Landau
levels in the presence of an edge. For a linear confining
potential, they found a result consistent with our predic-
tion (1) except for a distinct numerical coefficient in front
of the “shift” S. They also demonstrated that the spec-
tral weight depends on the functional form of the confin-
ing potential leading to the conclusion that the electro-
magnetic response at the edge is not universal. In the
present paper we reexamine our field-theoretical analysis
in light of these findings and (i) correct our linear re-
sponse calculation and find that the numerical factor of
1/4 in the “shift” term of Eq. (1) should be replaced by
−1/2, see Eq. (7) below. This is in agreement with Ref.

[6]; (ii) confirm the non-universality of the coefficient of
p2x/B term by identifying new symmetry-allowed higher
derivative edge terms in the effective action.
First, we briefly summarize the improved edge field

theory derived in [1], for details we refer to the original
paper. Our system of interest is a clean quantum Hall
fluid that has translation, rotation and Galilean space-
time symmetries in the bulk. Although a generic edge
breaks these symmetries, a straight edge should preserve
translation and Galilean symmetries along the boundary.
A bosonized field theory of a chiral Luttinger liquid liv-
ing at the edge of a quantum Hall fluid was introduced
by Wen [2, 3] and Stone [4]. For a single chiral boson θ
coupled to the electromagnetic field Aµ the edge action
is
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where we introduced the covariant derivative Dµθ =
∂µθ−νAµ. The edge theory can be derived from an effec-
tive description of the quantum Hall fluid in terms of sta-
tistical gauge fields with a Chern-Simons action which we
will refer to as the hydrodynamic Chern-Simons model.
Importantly, we discovered in [1] that the edge theory

is not invariant under Galilean boosts along a straight
edge. In the bulk the electromagnetic response of a
gapped abelian quantum Hall fluid is encoded in the
Chern-Simons theory, which is Galilean invariant. To-
gether this implies that the total (bulk plus boundary)
action is not Galilean symmetric. We thus concluded
that for a Galilean-invariant quantum Hall liquid the the-
ory (2) is incomplete and must be improved. Building
on the previous work [7, 8], an improved edge theory was
constructed in [1] by considering a more general prob-
lem of a quantum Hall fluid living on an arbitrary two-
dimensional surface with a boundary and imposing gen-
eral coordinate invariance, electromagnetic and vielbein
gauge invariance. By starting from the hydrodynamic
Chern-Simons model, the resulting action for a (generi-
cally curved) edge was found to be given by
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with D̃µθ = ∂µθ − νÃµ. The action (3) looks almost
identical to Eq. (2), but the chiral boson in the im-
proved theory couples to the modified gauge potential
Ãµ instead of the electromagnetic gauge potential Aµ.
In this paper we restrict our attention only to a quan-
tum Hall fluid living on a flat two-dimensional surface
(parametrized by Cartesian coordinates) with a flat and
static edge. In this case the modified gauge potential (up
to a gauge) is given by

Ãt = At −
m

2
δijv

ivj +
s

2
ǫij∂ivj ,

Ãi = Ai +mvi,
(4)

where the parameter s is proportional to the “shift” S

(see below) and vi is the velocity of the quantum Hall
fluid. In the present formulation, the velocity field is not
independent, but is fixed by the electric and magnetic
fields Ei and B via the Euler equation

−m(∂t + vk∂k)vi = Ei +Bvkǫki. (5)

In [1] the effective theory of a chiral Luttinger liquid
was organized according to the derivative expansion with
the following power-counting scheme

θ ∼ ǫ−2, Ai ∼ ǫ−1, At ∼ ǫ0 ∂i ∼ ǫ, ∂t ∼ ǫ2, (6)

where ǫ ≪ 1. This power-counting is consistent with the
expansion used in [7]. In this derivative expansion the
Lagrangian in Eq. (2) is O(ǫ−1) and will be called the
leading-order Lagrangian. On the other hand, the im-
proved action (3) contains beyond the leading-order cor-
rections that start with the next-to-leading O(ǫ) terms.
Note also that in this power-counting the edge is smooth
in the following sense: the curvature of the confining po-
tential ∂2

yAt ∼ O(ǫ2) is parametrically small as compared
to its slope ∂yAt ∼ O(ǫ). Here y is a Cartesian coordinate
parametrizing the direction perpendicular to the edge.
Using the improved edge theory (3), in [1] we computed

the longitudinal conductivity (1) at the edge. We will
now compare our prediction with the results found in [6].
Consider first the case of a confining edge potential that
is strictly linear. In the small wave vector regime the real
part of the longitudinal conductivity of a non-interacting
integer quantum Hall fluid was found in [6] to be given
by
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which has the same structure as the real part of Eq. (1),
but differs from it by the sign and absolute value of the
numerical coefficient that multiplies the “shift” S. First,
we find that in order to be consistent with notations used
in [1], the shift S = −2s.1 Since it is different by a

1 The “shift” S is defined on a sphere by Nφ = ν−1N − S, where

sign from the relation we used in [1], this fixes the sign
difference between the real part of (1) and Eq. (7). Even
after taking this into account, the numerical prefactors
extracted from Eqs. (1) and (7) differ by a factor of
1/2. We revised carefully our calculation and realized
that in [1] we have incorrectly treated the velocity field
vi as independent when deriving the consistent current
as a variation of the action with respect to the gauge
field (see Eq. (46) in [1]). In our construction, however,
the velocity should not be considered independent, since
it is a function of the electromagnetic field satisfying Eq.
(5). Taking this into account and going through the same
steps as in [1], one recovers the result that is identical to
Eq. (7).
The real part of the conductivity (7) is however not a

universal result for a flat quantum Hall edge because one
can write additional terms in the chiral Luttinger edge
action which are consistent with symmetries (translations
and Galilean boosts along the edge). As the first exam-
ple, we construct a term that contributes at the next-to-
leading O(ǫ) order in the derivative expansion (6) and
is invariant under (time-dependent) boundary diffeomor-
phisms. First, we notice that any smooth spatial bound-
ary has an associated extrinsic curvature Kµ = ni∇µt

i

that is constructed from the normal and tangent vec-
tors ni and ti, respectively. Up to a gauge, the extrinsic
curvature Kµ coincides with the bulk spin connection
evaluated at the edge [12]. As a result, Kµ does not
transform as a one-form under time-dependent spatial
diffeomorphisms on the boundary, but can be improved
to become a one-form K̃t = Kt −

1

2
εij∂ivj and K̃i = Ki.

Due to the presence of the vorticity, the time component
of the improved extrinsic curvature is non-trivial even
for a flat and static boundary. With K̃µ at hand, we can
construct an additional diffeomorphism-invariant contri-
bution to the edge action

∆Sθ =
α

4π

∫

d2x(K̃t + vxK̃x)D̃xθ. (8)

For a flat and static boundary this term is Galilean-
invariant with respect to boosts along the edge and thus
has to be included into the effective edge theory. Also
note that since Eq. (8) is invariant on its own under
electromagnetic gauge transformations, the coefficient α
cannot be determined from effective theory considera-
tions only, but depends on the microscopic details of the
edge model. Presently, the microscopic origin of this term
is not understood. Importantly, the addition (8) modi-
fies the current and the longitudinal conductivity. The

N > 0 is the particle number and Nφ is the magnetic flux num-
ber. Using this definition and following the arguments from Sec.
4.2 of [9], we find that the hydrodynamic Chern-Simons model
Eq. (36) in [1] fixes S = −2s. The parameter s in our effective
theory differs by a sign from (i) the parameter s introduced by
Wen and Zee in [5]; (ii) the parameter s̄ commonly used in the
literature [10, 11]. Our parameter s is (plus) the “mean orbital
spin per particle”.
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resulting real part of the conductivity has still a delta-
function form (7), but with S → S − α.

It was argued in [6] that if the edge mode dispersion is
not strictly linear, the real part of the conductivity is not
a delta-function of frequency, but is spread in frequency
with a width of order p2x in the limit px → 0. In particu-
lar, Höller and Read explicitly demonstrated that for the
integer quantum Hall problem confined by a potential
that has a non-zero curvature, the edge mode dispersion
is not linear and the result (7) is not valid. We note here
that the correction to Eq. (7) due to the curvature of the
confining potential found in [6] is of the next-to-next-to-
leading order in the expansion (6) because as mentioned
above in this expansion the curvature of the potential
is parametrically small. This goes beyond the next-to-
leading order effects we intended to incorporate in [1].

In a chiral Luttinger liquid edge excitations will ac-
quire finite width as a result of interactions between
chiral bosons. For example, one can start from the
chiral Luttinger model (2) and introduce into the La-
grangian interaction terms between chiral bosons such as
∼ (Dtθ+ cDxθ)

2Dxθ which is of the leading order in our
derivative expansion. The interaction gives rise to a self-
energy that might generate non-linear corrections to the
edge dispersion and a finite decay width of chiral edge
excitations. In one-dimensional Luttinger liquids this is
exactly what happens, if one goes beyond the Luttinger
model and takes into account non-linear corrections to
the band structure close to the Fermi points which pro-
duce interaction terms such as (∂xθ)

3 [13–15]. We em-
phasize that the edge model (3) derived from the general
coordinate invariant hydrodynamic Chern-Simons theory

has no interactions between chiral bosons and thus does
not lead to a finite decay width of edge excitations. We
expect, however, that a generic Galilean-invariant edge
theory will contain interaction terms already at the lead-
ing order in the derivative expansion such as the one
quoted above. A systematic construction of such an ac-
tion will not be attempted here and is postponed to a
future work.
In summary, the Comment by Höller and Read [6] mo-

tivated us to reexamine the calculation of the longitudinal
conductivity at the edge of a Galilean invariant quantum
Hall fluid. After correcting our linear response computa-
tion [1], the conductivity that follows from the improved
theory (3) of a chiral Luttinger liquid agrees with the re-
sult found in [6] in the case of a linear confining potential.
As argued in [6], this result however is not universal and
depends on the details of the edge theory. Here we pre-
sented additional arguments supporting this statement.
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