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Motohiko Ezawa
Department of Applied Physics, University of Tokyo, Hongo 7-3-1, 113-8656, Japan

Borophene is a monolayer materials made of boron. A perfect planar boropehene called β12 borophene has
Dirac cones and they are well reproduced by a tight-binding model according to recent experimental and first-
principles calculation results. We explicitly derive a Dirac theory for β12 borophene. Dirac cones are gapless
when the inversion symmetry exists, while they are gapped when it is broken. In addition, three-band touching
points emerge together with pseudospin triplet fermions when all transfer energy is equal and all on-site energy
is equal. The three-band touching is slightly resolved otherwise. We construct effective three-band theories
for triplet fermions. We also study the edge states of borophene nanoribbons, which show various behaviors
depending on the way of edge terminations.

I. INTRODUCTION

Monolayer material science is one of the most active fields
of condensed matter physics in this decade. It has begun
with graphene1 and been extended to the group IV monolayer
materials2 including silicene3–5, germanene6–8 and stanene9.
Furthermore, experimental success of phosphorene10–12 has
opened a field of the group V monolayer materials includ-
ing arsenene13 and antimonene14. A search for new mono-
layer materials is extended to the group III monolayer ma-
terials including borophene and aluminene15. Especially,
several types of borophene are proposed by first-principles
calculation17–22. Recently, several types of borophene is syn-
thesized on Ag(111)23–26.

In particular, β12 borophene experimentally manufactured
on the silver surface27 is quite interesting. Dirac fermions
are clearly observed by the ARPES experiments as well as by
first-principles calculation. The band structure is well repro-
duced by a tight-binding model, where it is enough to take into
account only the pz orbitals due to its perfect planar structure.
The unit cell contains five atoms as in Fig.1(a). The lattice has
a perfectly flat structure as in Fig.1(b). It can be constructed
by adding atoms indicated in yellow into the honeycomb lat-
tice.

In this paper we study the band structure of β12 borophene
based on the tight-binding model27. In particular we ex-
plore the band touching problem at high-symmetry points.
When we assume an identical transfer energy tij and an on-
site energy εi, massless Dirac fermions emerge at two-band
touching points (K and K ′ points), and different types of
fermions emerge at three-band touching points (X , M , Λ and
Λ′ points). In particular, fermions at the X and M points con-
stitute pseudospin triplets separately. Then we construct an
effective two-band theory or three-band theory in the vicin-
ity of each touching point. Next, we consider the models to-
gether with realistic parameters for tij and εi. We consider
two models with and without the inversion symmetry by an
appropriate choice of the on-site energies. We find anisotropic
massive Dirac fermions with the use of inversion nonsymmet-
ric parameters. The degeneracy at the three-band touching
points are slightly resolved both for the inversion symmetric
and nonsymmetric models. Finally we study the edge states
of borophene nanoribbons.

This paper is composed as follows. In Sec. II we review the
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FIG. 1: (a) The unit cell of borophene, which contains five atoms.
Each atoms are colored by red, orange, yellow, green and blue, which
we label ”a”, ”b”, ”c”, ”d” and ”e” atoms, respectively. (b) The lat-
tice structure of borophene. The unit cell is indecated by the black
rectangle. (c) The honeycomb lattice obtained by removing the ”c”
atoms, which describes the effective four-band and two-band model.

basic properties of the lattice structure, the Brillouin zone and
the symmetry for β12 borophene. In Sec. III, we start with
a five-band model comprised of the pz orbitals of Boron. We
compare three types of models. One is a homogeneous model,
where we take an identical transfer energy and an identical
on-site energy. The second is the inversion symmetric model,
where the transfer and on-site energies are chosen so as to re-
spect the inversion symmetry. The third is the inversion non-
symmetric model, where on-site energies breaks the inversion
symmetry. We show that Dirac fermions are gapless (gapped)
when the inversion symmetry is present (absent). In Sec.IV,
we derive an effective Dirac theory for general parameters and
confirm the above results. In Sec.V, we derive effective the-
ories of fermions at three-band touching points. It is shown
that the set of fermions at the X or M point is unitary equiva-
lent to the triplet of the pseudospin (J = ±1, 0). In Se.VI, we
study edge states of borophene nanoribbons, where five dif-
ferent types of edges are introduced corresponding to the unit
cell size.

II. β12 LATTICE

The lattice structure of β12 borophene is illustrated in
Fig.1(b). The unit cell contains five atoms as in Fig.1(a). The
”a” and ”e” atoms have four bonds, the ”b” and ”d” atoms
have five bonds, and the ”c” atoms have six bonds, leading to
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FIG. 2: (a) Brillouin zone of borophene indicated by the yellow rect-
angle with the blue boundary, and that of the honeycomb lattice in-
dicated by a hexagon with the cyan boundary or equivalently a rect-
angle with the green boundary. The area of the former is one half of
the latter. (b) Positions at which Dirac fermions (K,K′) and triplet
fermions (X,M ) emerge in the Brillouin zone. Additionally there
appear three-band touching points at Λ and Λ′.

different on-site potentials.
The Brillouin zone is a rectangule given by −π/a ≤ kx ≤

π/a and −π/(
√

3a) ≤ ky ≤ π/(
√

3a), as shown in Fig.2(a).
However, it is convenient to use a shifted Brillouin zone
0 ≤ kx ≤ 2π/a and −π/(

√
3a) ≤ ky ≤ π/(

√
3a). The

area of the Brillouin zone of β12 borophene is one half of that
of the honeycomb lattice. This is understood as follows. The
β12 lattice without the ”c” atoms is identical to the honeycomb
lattice, where the unit cell contains four atoms. On the other
hand, the honeycomb lattice has only two atoms in the unit
cell. Namely, the Brillouin zone of the β12 borophene must be
one half of that of the honeycomb lattice. There are four high-
symmetry points in the Brillouin zone; K (2π/3a, 0), K ′

(−2π/3a, 0),X (π/a, 0) andM (π/a, π/
√

3a). Additionally
there are two points; Λ (π/3a, π/

√
3a), Λ′ (−π/3a, π/

√
3a).

They play important roles in our analysis.
The symmetries of the lattice are the inversion symmetry I ,

the two mirror symmetries with respect to the x and y axes,
Mx and My . There is a relation I = MxMy . On the other
hand, the C3 rotation symmetry present in the honeycomb lat-
tice is absent in the β12 lattice.

III. FIVE-BAND MODEL

A recent first-principles calculation demonstrates that the
system is well described only in terms of the pz orbitals of the
boron atoms27, implying that the tight-binding model is five
dimensional,

H5 =


εa tabg tacf

∗ 0 taef
tabg

∗ εb tbcg tbdf
∗ 0

tacf tbcg
∗ εc tcdg tcef

∗

0 tbdf tcdg
∗ εd tdeg

taef
∗ 0 tcef tdeg

∗ εe

 (1)

with

f = eiaky/
√

3, g = 2e−iaky/2
√

3 cos akx/2. (2)

The parameters obtained by fitting first-principles calculation
results are summarized as27,

tab = tde = −2.04eV, tac = tce = −1.79eV,
tae = −2.12eV,
tbc = tcd = −1.84eV, tbd = −1.91eV, (3)

showing that the transfer energies are symmetric along the x
axis, and

εa = εd = 0.196eV, εb = εe = −0.058eV,
εc = −0.845eV. (4)

The lattice constant is a = 2.9236Å. A characteristic feature
is that the inversion symmetry of the lattice structure is broken
by this set of on-site energies. The inversion symmetry break-
ing will be due to effects of the Ag substrate. We refer to this
tight-binding model as the inversion nonsymmetric model.

We first consider the model27 by setting all transfer energy
equal (tij = t = −2eV) and all on-site energy zero (εi =
0), which we refer to as the homogeneous model. We also
investigate the inversion symmetric model, which is defined
by the following set of the one-site energies instead of (4),

εa = εe = 0.196eV, εb = εd = −0.058eV,
εc = −0.845eV, (5)

where the magnitude of the on-site energy reflects the number
of adjacent atoms in each sites. We show the band structures
of the homogeneous model and the inversion nonsymmetric
model in Fig.3(a1) and Fig.3(b1), respectively. We also show
their project band structures along the kx axis in Fig.3(a2) and
Fig.3(b2). Those for the inversion symmetric model are quite
similar to these.

We start with the investigation of the homogeneous model:
See Fig.3(a1). We find Dirac fermions at the K and K ′ points
given by K± = (±2π/3a, 0), where the energy is explicitly
calculated as

U−1
1 H5 (K±)U1 = t diag.

(
0, 0, 1±

√
5,−2

)
(6)

with the use of a unitary transformation U1. It is interesting
that there are different types of three-band touching points.
Their positions in the Brillouin zone are shown in Fig.2(b).
One is at the X point given by X = (π/a, 0), where the
energy is

U−1
2 H5 (X)U2 = t diag. (−1,−1,−1, 1, 2) . (7)

The second one is at the M point given by M =(
π/a, π/

√
3a
)
, where the energy is

U−1
3 H5 (M)U3 = t diag. (1, 1, 1,−1,−2) . (8)

The third one is at the Λ and Λ′ points given by Λ± =(
±π/3a, π/

√
3a
)
, where the energy is

U−1
4 H5 (Λ±)U4 = t diag. (−2,−2,−2, 2, 4) . (9)
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FIG. 3: Bird’s eye’s views of the band structure of (a1) the homo-
geneous model and (b1) the inversion nonsymmetric model. The
projected band structure along the kx direction of (a2) the homoge-
neous model and (b2) the inversion nonsymmetric model. Gapless
Dirac fermions (K,K′) and gapless triplet fermions (X,M ) emerge
in the homogeneous model. In the inversion nonsymmetric model,
Dirac fermions have a tiny gap (∼ 0.254 eV), while the degeneracy
of triplet fermions is slightly resolved.

We show the detailed band structures of Dirac fermions and
triple-point fermions in Fig.4(a1),(b1),(c1) and (d1).

We may investigate both the inversion symmetric and non-
symmetric models in a similar way. Their overall band struc-
tures are very similar to that of the homogeneous model, as
shown in Fig.3(b1) for the inversion nonsymmetric model.
However, there arise differences with respect to the degen-
eracy at the band touching points. First, the Dirac fermions
remain gapless in the inversion symmetric model but gets
gapped in the inversion nonsymmetric model. On the other
hand, three-band touching points are slightly resolved both in
the inversion symmetric and nonsymmetric models. We show
the detailed band structure at these points in Fig.4.

IV. DIRAC FERMIONS

Since the dimension of the matrix in the tight-binding
model (1) is five, it is impossible to diagonalize it analytically.
It is highly desirable to construct such models with lower
dimensions that we can analyze analytically. We construct
an effective two-band Hamiltonian for Dirac fermions in this
section and effective three-band Hamiltonians for fermions at
three-band touching points in the next section.

It is reported27 that the amplitude of the zero-energy wave
function at the K and K ′ points is exactly zero at the ”c”
sites for the homogeneous model. Then, it is reasonable to
neglect the ”c” atoms in the Hamiltonian (1), and we obtain
the following four-band Hamiltonian to describe the physics
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FIG. 4: Band structures in the vicinity of the Dirac point (K)
indicated by a magenta circle and the three-band touching points
(X,M,Λ) indicated by cyan circles: (a1)∼(d1) for the homogeneous
model; (a2)∼(d2) for the inversion symmetric model; (a3)∼(d3) for
the inversion nonsymmetric model. Dirac fermions remains gapless
while the three-band touching are slightly resolved in the inversion
symmetric model. Dirac fermions become gapped in the inversion
nonsymmetric model.

in the vicinity of the K and K ′ points,

H5 =

 0 g 0 f
g∗ 0 f∗ 0
0 f 0 g
f∗ 0 g∗ 0

 . (10)

The energy is analytically obtained as

E = ±
√
f − g

√
f∗ − g∗,±

√
f + g

√
f∗ + g∗

= ±t

√
3 + 2 cos akx ± 2

√
(1 + cos akx)

(
1 + cos

√
3aky

)
.

(11)

Indeed, as we show in Fig.5(a), it well reproduces the original
band structure of the Dirac fermions both at the K and K ′

points.
The corresponding lattice is a honeycomb lattice shown in

Fig.1(c). The unit cell contains four atoms comprised of the
”a”, ”b”, ”d” and ”e” atoms. On the other hand, the unit cell
of the honeycomb lattice contains two atoms such as ”b” and
”d”. Hence the above four-band model can be further reduced
to the two-band model.

We are able to construct actually the two-band model by
way of H2(k) = P2U

−1
1 H5(k)U1P2 in the vicinity of the

K and K ′ points, where P2 is the projection operator from
the 5 × 5 Hamiltonian to the 2 × 2 Hamiltonian containing
the two bands with the zero eigen-energy. The low-energy
effective Hamiltonian at the K point is given by

H2 =

(
(εb + εe) /2 F

F ∗ (εa + εd) /2

)
(12)
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FIG. 5: Bird’s eye’s views of the band structure of (a1) the effective
four-band model and (b1) the effective two-band model for the K
point. The band structure along the kx direction at ky = 0 for (a2)
the effective four-band model (in magenta), (b2) the effective two-
band models at the K point (in magenta) and at the K′ point (in
cyan), together with the band structure of the five-band model (in
black).

with

F =
tae + tbd

2
e−iaky/

√
3 + (tab + tde) e

iaky/2
√

3 cos
akx
2
.

(13)
It is identical to the Hamiltonian of the anisotropic honeycomb
lattice with on-site potentials,28 which corresponds to the lat-
tice without the ”c” atoms. This correspondence is due to the
fact that the amplitude of the wave function at the ”c” sites is
zero at the zero energy. We show a bird’s eye’s view of the
band structure in Fig.5(b1).

The gap closes at

K̃ =

(
2

a
arccos

− (tae + tbd)

2 (tab + tde)
, 0

)
, (14)

when εa − εb + εd − εe = 0. Especially, the gap closes in
the presence of the inversion symmetry since εa = εe and
εb = εd. The gap closing point shifts from the original K
point when tae + tbd 6= tab + tde. The gap opens when εa −
εb + εd − εe 6= 0 with the gap |εa − εb + εd − εe| /2. We
estimate the gap is 0.254eV by using the parameters (4) in the
inversion nonsymmetric model.

We show the band structure along the kx axis of the two-
band model as well as the five-band model in Fig.5(b2) in
magenta and black, respectively. The Dirac fermions at the K
point is well reproduced, while the Dirac fermions at the K ′

point disappear. This is due to the fact that the Brillouin zone
is enlarged twice since the unit cell becomes half compared
with that of the four-band model, as shown in Fig.2. We may
construct another two-band model at the K ′ point precisely in
the similar way, whose result we also present in Fig.5(b2) in
cyan. The combination of the two-band models at the K and
K ′ points perfectly reproduces the four-band model.

In the vicinity of the K point, the two-band Hamiltonian is

expanded as

HK
2 = −εa − εb + εd − εe

4
τz −

εa − εb + εd − εe
4

τ0

−

√
4 (tab + tde)

2 − (tae + tbd)
2

4
a
(
kx − K̃

)
τx

+

√
3

4
(tae + tbd) akyτy, (15)

which represents a Dirac cone. Here we have introduce the
unit matrix τ0 and the Pauli matrix τ = (τx, τy, τz) for the
pseudospin degrees of freedom describing the two bands. The
dispersion is isotropic only for the homogeneous model.

In passing, it is intriguing to see that the four-band theory
reproduces precisely two bands at the X point though it is
constructed soley for the K and K ′ points in Fig.5.

V. FERMIONS AT THREE-BAND TOUCHING POINTS

We next construct three-band effective models for fermions
at three-band touching points. We construct effective models
as in the case of the Dirac fermions with the use of the unitary
transformation and the projection to the low-energy bands.

X point: The effective Hamiltonian valid in the vicinity of
the X point is given by

HX
3 = t

 FXaa FXab FXac
FX∗ab FXbb FXbc
FX∗ac FX∗bc FXcc

 , (16)

where

FXaa =FXbb = FXcc = − cos
aky√

3
,

FXab =2 cos
akx
2

cos
aky

2
√

3
, FAac = i

√
3 sin

aky√
3
,

FXbc =2i
√

3 cos
akx
2

sin
aky

2
√

3
(17)

in the case of the homogeneous model. See Appendix for
general parameters.

We show the band structure in Fig.6(a1). The vicinity of the
three-band touching point is well reproduced by this model.
Furthermore, comparing the band structure of the three-band
modelHX

3 along the ky = 0 line with that of the original five-
band model H5, the three-band model HX

3 is found to repro-
duce perfectly the two bands given byE = ±2 cos(akx/2)−1
all over the region: See 6(a2).

We wonder why there is no partner for the X point as in
the case of the K and K ′ points. We study this problem for
the homogeneous model. The three-band Hamiltonian is ex-
panded in the vicinity of the X point as

HX
3 = −t+ ta

 0 −k′x iky
−k′x 0 0
−iky 0 0

 (18)
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FIG. 6: Bird’s eye’s views of the band structure of the effective three-
band models describing fermions at (a1) the X point, (b1) the M
point and (c1) the Λ point. (a2)∼(c2) Black curves represent the
band structure of the five-band model (1) along the kx axis. Magenta
curves represent that of (a2) the two-band model (12) at the X point
(ky = 0), (b2) the three-band model (16) at the M point (ky =
π/(
√

3a)), and (c2) the three-band model (23) at the Λ point (ky =
π/(
√

3a).

with k′x = kx ∓ π
a . The corresponding wave functions are

ψ0 = {0, i sin θ, cos θ}t , (19)

ψ± =
1√
2
{±i,−i cos θ, sin θ}t . (20)

The Berry phase is zero for each band,

ΓB = −i
∫
dθ 〈ψ0|

∂

∂θ
|ψ0〉 = −i

∫
dθ 〈ψ±|

∂

∂θ
|ψ±〉 = 0.

(21)
Since the band carries no topological charge, the X point can
exist by itself. Furthermore, it indicates that the three-band
touching point is not topologically protected.

The energy eigenstate of the Hamiltonian (18) is given by
E = −t,−t ±

√
k′2x + k2

y . Hence it is unitary equivalent to
the following Hamiltonian,

H = −t+ ta(k′xJx + kyJy), (22)

where J = (Jx, Jy, Jz) is the pseudospin operator obeying
[Jx, Jy] = Jz , etc., whose magnitude is J = 1. Namely,
the three bands are members of a pseudospin triplet with J =
±1, 0. On the other hand, for realistic tij and εi, the three-
band touching point is slightly resolved.

M point: In the vicinity of the M point, we obtain the fol-
lowing effective three-band model,

HM
3 = t

 FMaa FMab FMac
FM∗ab FMbb FMbc
FM∗ac FM∗bc FMcc

 , (23)

where

FMaa =FMbb = FMcc =
1

2

(
cos

aky√
3

+
√

3 sin
aky√

3

)
,

FMab = (−1)
2/3

cos
akx
2

(√
3 sin

aky

2
√

3
− cos

aky

2
√

3

)
,

FMac =

√
3

2
(−1)

5/6

(
sin

aky√
3
−
√

3 cos
aky√

3

)
,

FMbc = (−1)
1/6
√

3 cos
akx
2

(
sin

aky

2
√

3
+
√

3 cos
aky

2
√

3

)
(24)

in the case of the homogeneous model. See Appendix for
general parameters.

We show the band structure in Fig.6(b1). In Fig.6(b2), com-
paring the band structure of the three-band model HM

3 along
the ky = π/

√
3a line with that of the five-band model H5,

we find that the three-band model HM
3 perfectly reproduces

the two-bands given by E = t ± 2 cos akx2 all over the re-
gion. On the other hand, the middle band becomes a perfect
flat band in the three-band model HM

3 , while it is dispersive
in the five-band model H5.

We expand the three-band Hamiltonian in the vicinity of the
M point as

HM
3 = t+ ta

 0 0 e5iπ/6k′y
0 0 −

√
3eiπ/6k′x

e−5iπ/6k′y −
√

3e−iπ/6k′x 0


(25)

with k′x = kx − π/a, k′y = ky − π/
√

3a. The energy

is obtained as E = t, t ±
√

3k′2x + k′2y . Hence it is unitary
equivalent to the following Hamiltonian,

H = t+ ta(
√

3k′xJx + kyJy). (26)

The three bands are members of a pseudospin triplet with J =
±1, 0. The Berry phase is zero for each band. Consequently,
theM point is not accompanied by a partner. These properties
are quite similar to those of the X point.

Λ point: In the vicinity of the Λ point, we obtain the fol-
lowing effective three-band model,

HΛ
3 = t

 FΛ
aa FΛ

ab FΛ
ac

FΛ∗
ab FΛ

bb FΛ
bc

FΛ∗
ac FΛ∗

bc FΛ
cc

 (27)
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FIG. 7: Band structures of zigzag borophene nanoribbon. (a) The
upper edge is terminated by ”a” atoms, while the lowe edge is termi-
nated by ”e” atoms. (b) The upper edge is terminated by ”b” atoms,
while the lowe edge is terminated by ”d” atoms. (c) Both edges are
terminated by ”c” atoms. (d) The upper edge is terminated by ”d”
atoms, while the lowe edge is terminated by ”b” atoms. (e) The
upper edge is terminated by ”e” atoms, while the lowe edge is ter-
minated by ”a” atoms. One edge state connects a Dirac point and
a triple point. The edge states are colored in magenta. (f) The pro-
jected band structure of the bulk along the kx axis, which is the same
one as Fig.3(a2).

with

FΛ
aa =FΛ

bb = FΛ
cc = −1

4
[cos

aky√
3

+
√

3 sin
aky√

3

+ 2
√

3 cos
akx
2

(√
3 cos

aky

2
√

3
+ sin

aky

2
√

3

)
],

FΛ
ab =

1

4
(−1)

2/3
[−3 cos

aky√
3

+
√

3 sin
aky√

3

+ 2 cos
akx
2

(√
3 sin

aky

2
√

3
− cos

aky

2
√

3

)
],

FΛ
ac =

√
3

2
e−iaky/

√
3 (−1)

2/3
+

√
3

4
eiaky/

√
3

− 3i

2
e−iaky/2

√
3 cos

akx
2
,

FΛ
bc =

[√
3

2
(−1)

1/6
e−iaky/2

√
3 +
√

3eiaky/2
√

3

]
cos

akx
2

+
3

4
(−1)

1/6
eiaky/

√
3. (28)

We show the band structure in Fig.6(c1). In Fig.6(c2), we
compare the band structure of the three-band modelHC

3 along
the ky = π/

√
3a line with that of the original five-band model

H5, and find that the three band model HC
3 perfectly repro-

duces the two bands given by E = −2t, t− 2 cos akx2 all over
the region.

In the vicinity of the Λ point, the Hamiltonian is expanded
as

HΛ
3 = −2t+

√
3

4
akx +

ta

4

 0 FC
′

ab FC
′

ac

FC
′∗

ab 0 FC
′

bc

FC
′∗

ac FC
′∗

bc 0

 (29)
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FIG. 8: Band structures of zigzag borophene nanoribbon with the
inversion symmetric parameters. The edge states are almost identi-
cal to the case for the homogeneous parameters although three-band
touchings are slightly resolved at the X , M , Λ and Λ′ points. These
results show that edge states are robust for the choice of the parame-
ters. See also the caption of Fig.7.

with

FC
′

ab =3 (−1)
2/3

ky

FC
′

ac =
1

2
(−1)

1/3
(3kx + iky)

FC
′

bc =−
√

3

2
(−1)

1/6
k− (30)

and k′x = kx − π/(3a), k′y = ky − π/
(√

3a
)
.

Although the Λ and Λ′ points appear in a pair, we are unable
so far to reveal the reason. Indeed, we are unable to assign
topological charges to them, because the triple band touching
at the Λ point is highly tilted as in Fig.6(c1) and the Fermi
surface is no longer a point. Accordingly there is no loop
encircling the triple band touching point without touching the
Fermi surface, as disables us to calculate the Berry phase.

VI. BOROPHENE NANORIBBONS

When a nanoribbons is along the zigzag direction there are
zigzag and beard edges in the case of the honeycomb system.
This is because there are two atoms in the unit cell. There are
five types of borophene nanoribbons with zigzag edges corre-
sponding to the fact that the unit cell contains five atoms. For
example, the edge terminated by ”a”,”b”, ”c” and ”d” atoms
forms a zigzag edge, while that terminated by ”e” atoms forms
a beard edge on one side. Thus there are 5× 5 = 25 different
nanoribbons.

We show the band structure of typical nanoribbons in
Fig.7(a)∼(e). In Fig.7(f), we show the bulk band structure
projected to the kx axes for the sake of comparison. The band
structure of nanoribbons are almost identical to those of the
projected bulk band structure except for the edge states, which
are marked by magenta curves. The edge states emerge in the
region connecting between the Dirac point and the triple point.
Among them, there emerge almost flat bands at the zero en-
ergy in Fig.7(e), which corresponds to the beard edge states.
If the two terminations are different, the edge states are the
sum of the two terminations.
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We also show the band structure of borophene nanoribbons
with the use of the inversion symmetric parameters in Fig.8.
Edge states remain as it is although the band touchings are
resolved at the three-band touching points. These results show
that edge states are robust for the choice of model parameters.

VII. DISCUSSION

It is interesting that Dirac fermions and triplet fermions
emerge at the high-symmetry points in the β12 structure of
borophene. There is a distinctive difference between them.
On one hand, Dirac fermions emerge always in a pair: They
emerge at theK andK ′ points just as in graphene. The reason
is the Nielsen-Ninomiya theorem. Namely, the gapless Dirac
fermion has ±π Berry phase while the gapped Dirac fermion
has ±1/2 Chern number. They appear in a pair so that the
total topological number is zero.

One the other hand, this is not the case for triplet fermions.
There are no partners for the X and M points. Indeed, cal-
culating the Berry phases of the bands at X and M , we find
them to be zero. With respect to the Λ and Λ′ points, although
they appear in a pair, we are unable reveal the reason, because
we are unable to assign topological charges to them.

We have considered the homogeneous, inversion symmet-
ric and nonsymmetric models. All of the three models are not
applicable to borophene on the Ag substrate due to the incom-
mensurability of the lattices. Furthermore, the β12 structure
itself already induces some inhomogeneity: there are four-
fold (a,e), five-fold (b,d) and six-fold (c) coordinated atoms,
as in Fig.1. Nevertheless, it is important to study free-standing
borophene although it has not yet been manufactured. Among
them, the homogeneous model provides us with a basic and
clear understanding of the electronic properties of borophene.

The lattice structure of β12 borophene has the inver-
sion symmetry, where massless Dirac fermions are expected.
However, the inversion symmetry is broken in the Hamil-
tonian together with the parameters (3) presented in Ref.27,
where Dirac fermions are gapped. Our results show that there
exists a gap (0.254eV) with the use of the inversion nonsym-
metric parameters. On the other hand, the ARPES experiment
and first-principles calculations show that the gap is absent
within the experimental resolution. The incosistency between

the inversion nonsymmetric model and the ARPES experi-
ment will be due to the incommensurability of the Ag and
borophene lattices, which breaks the symmetry given by (4).
It seems that the inversion symmetric model is most natural
among the three models studied in this paper.

We note that there is a metallic band at the zero-energy in
the five-band model, while it is absent in the effective lower-
band theories. This is because that they are valid only in the
vicinity of the high-symmetry points. We should use the five-
band model when we calculate the conductivity and others.

We have so far ignored the spin-orbit interactions because
they are expected to be small in the absence of the substrate
due to the following reasons. One is that boron is a light el-
ement which is comparable to carbon. Spin-orbit interactions
are tiny in materials consisting of light elements. For exam-
ple, it is well known that graphene has tiny spin-orbit inter-
actions. In addition, phosphorene is also known to have neg-
ligible spin-orbit interactions. Another reason is that planar
monolayer materials have tiny spin-orbit interactions such as
graphene since the inversion symmetry is not broken. For ex-
ample, the Kane-Mele interaction is negligible for the planar
honeycomb system, although it is significant for buckled hon-
eycomb system such as silicene, germaene and statene. Fur-
thermore, the Rashba interaction is also zero in the absence of
the perpendicular electric field since it requires inversion sym-
metry breaking. On the other hand, there is a possibility that
the substrate induces the Rashba interaction as in the case of
graphene on the substrate, where the Rashba spin-orbit inter-
action is introduced by the inversion symmetry breaking due
to the substrate29.

The author is very much grateful to N. Nagaosa for many
helpful discussions on the subject. He thanks the support
by the Grants-in-Aid for Scientific Research from MEXT
KAKENHI (Grant Nos. JP17K05490, JP25400317 and
JP15H05854). This work is also supported by JST, CREST
(Grant No. JPMJCR16F1).

Appendix: Three-band theories with general parameters

In this appendix we present the matrix elements of the ef-
fective three-band theories (16) for the X point and (23) for
the M point with general parameters tij and εi.
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For the X point we obtain

FXaa =
εa + εe

2
− tae cos

aky√
3
,

FXbb =
εb + εd

2
− tbd cos

aky√
3
,

FXcc =
εa + 4εc + εe

6
− 2tac − tae + 2tce

3
cos

aky√
3
,

FXab =

(
tabe

− iaky

2
√

3 + tcde
iaky

2
√

3

)
cos

akx
2
,

FXac =
εa − εe

2
√

3
+
−tac + tce√

3
cos

aky√
3

+ i
tac + tae + tce√

3
sin

aky√
3
,

FXbc =
− (tde + 2tbc) e

− iaky

2
√

3 + (tab + 2tcd) e
iaky

2
√

3

√
3

cos
akx
2
. (31)

For M point we obtain

FMaa =
εa + εe

2
+
tae
2

cos
aky√

3
+
√

3tae sin
aky√

3
,

FMbb =
εb + εd

2
+
tbd
2

cos
aky√

3
+
√

3tbd sin
aky√

3
,

FMcc =
εa + 4εc + εe

6
+

2tac − tae + 2tce
6

(
cos

aky√
3

+
√

3 sin
aky√

3

)
,

FMab =

(
e−2iπ/3

4
tabe

i
aky

2
√

3 + tdee
−i aky

2
√

3

)
cos

kx
2
,

FMab =
e−iπ/3 (2tac − tae) e−i

aky√
3 + (tae + tce) e

−i aky√
3

2
√

3
+
−eiπ/3 (εa − εe)

2
√

3
,

FMbc =

(
(tab + 2tcd) e

−i aky

2
√

3 +
(−1)

1/3

√
3

(tbc + 2tde) e
i
aky

2
√

3

)
cos

akx
2
. (32)
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