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We develop a theory of solar cell light trapping based on directly solving Maxwell’s equations
through a non-equilibrium Green’s function formalism. This theory rigorously connects the max-
imum power absorbed by the solar cell to the density of states of the cell. With this theory we
are able to reproduce all standard results in solar cell light trapping previously derived using ap-
proximate formalisms. Therefore our development places solar cell light trapping theory on a much
firmer theoretical foundation. Moreover, here the maximum power formula is derived without the
assumption of reciprocity, unlike all previous theories on solar cell light trapping. Therefore, we
prove that the upper bound of light trapping enhancement cannot be overcome with the use of
non-reciprocal structures. As a numerical test, we simulate an absorber structure that consists of
a non-reciprocal material, and show that the absorption enhancement factor is largely independent
of non-reciprocity, in consistency with the theory.

I. INTRODUCTION

For practical solar cell design, various techniques of
light trapping have been widely applied in order to
achieve near-complete absorption of sunlight using a
cell with a thickness that is smaller than the absorption
depth of the material [1–23]. The use of light trapping
can reduce the amount of material used in a solar cell
and hence reduce the cost of solar energy. In addition,
the use of a thinner cell without sacrificing absorption
capability enhances carrier exaction and therefore the
efficiency of the solar cell [24].

The practical importance of light trapping in solar
cells, in turn, has motivated a significant body of
theoretical works aiming to understand the fundamental
limits of absorption enhancement that can be achieved
with light trapping techniques. Ref. [1] considered
the theoretical limits for light trapping in standard
crystalline silicon cells. Using an argument combining
ray optics with thermodynamics, it was shown that
compared to a single-pass absorption coefficient, light
trapping induced by a Lambertian surface roughness
can enhance the absorption by a factor of 4n2 when the
single-pass absorption is negligible, where n is the refrac-
tive index of silicon. For cells with emission restricted
to a cone with an apex angle of θ, the enhancement
factor can be further improved to 4n2/ sin2 θ, again for
a material with infinitesimal loss [3]. The effect of more
realistic material absorption on light trapping has been
considered in Ref. [25], which shows that in general
the light trapping enhancement factor goes down as the
material absorption increases. These classic papers form
the foundation of light trapping theory for solar cells
and have had substantial influence on the optical design
of crystalline silicon cells.

Since the thickness of crystalline silicon cell is typically

on the order of 50-100 microns [4], and the roughness
used for light trapping has a length scale on the order
of 10s of microns, the optical properties of standard
crystalline silicon cell can be well described by the ray
optics model. On the other hand, in recent years there
has been significant interest in the study of nanophotonic
solar cells, where both the thickness of the cell and the
size of features used for light trapping purposes are on
a single-wavelength or even deep sub-wavelength scale
[7–12, 14–16, 18, 20]. For these structures, ray optics
theory is no longer applicable. Therefore, there have
in parallel been substantial developments seeking to
formulate light trapping theory instead from an electro-
magnetic point of view [26–30]. In particular, in Refs.
[28–30] a statistical coupled mode theory formalism
for light trapping in solar cells was developed. Using
this formalism, the standard results of light trapping
in crystalline silicon solar cells as previously derived
with ray optics could be reproduced. Moreover, it was
predicted that in the nanophotonic regime, the 4n2

limit could be significantly overcome through nanoscale
modal confinement over broad bandwidths. Related to
these works, it was discussed in Ref. [31] that the light
trapping enhancement factor can be related to the local
density of electromagnetic modes.

The coupled mode theory formalism that underlies
the work of Refs. [28–30], however, is an approximate
formalism. While it is very well justified especially
when considering the coupling of external light with
a structure containing only a few modes [32–34], in a
solar cell system one needs to consider a large number
of optical modes. In order to place the theory of
light trapping in nanophotonic structures on a firmer
theoretical foundation, it is therefore of fundamental
importance to formulate the problem of light trapping
directly from Maxwell’s equations.

In this paper, we develop a theory of light trapping
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directly from Maxwell’s equations. For this purpose, we
adapt the Non-Equilibrium Green’s Function (NEGF)
formalism [35, 36], which has been widely used in
studying transport in nanoscale electronic systems, for
Maxwell’s equations. Our theory provides a rigorous
proof of the connection of light trapping enhancement
factor to the Density of States (DOS) of the device. This
connection can then be used to reproduce the standard
predictions of light trapping theory. Moreover, as a key
theoretical advancement, the proof here does not use
reciprocity or detailed balance. This is in contrast to
Ref. [28] where the underlying temporal coupled mode
theory formalism is derived using the assumption of
reciprocity. It is also in contrast with Ref. [1] which
uses a detailed balance argument that is equivalent
to reciprocity. Consequently, our theory shows that
introducing non-reciprocity alone does not enhance the
limit of light trapping. We validate this theoretical
prediction by a direct numerical simulation.

This paper is organized as follows: In Section II, we
setup the solar cell problem, discuss the statistical na-
ture of the incident solar radiation, and derive an ex-
pression for the absorbed power. In Section III, we apply
the NEGF formalism to this setup, and derive relations
regarding the density of states of the device. In Section
IV, we combine these formalisms to derive the power ab-
sorbed by a near-lossless solar cell under incident sun-
light. In Section V, we use the formalism to reproduce
the standard results of light trapping theory. In Section
VI, we discuss light trapping in non-reciprocal structures,
and provide a numerical test of our theory. In Section
VII, we extend the theory to materials where the loss is
not infinitesimal. We finally conclude in Section VIII.

II. THE SOLAR CELL PROBLEM

The device under consideration in this work is a solar
cell with an arbitrary geometry. The cell surface may
be patterned with gratings [8, 28] or textured [4, 37]
to enhance coupling with incident radiation. Fig. 1(a)
depicts a typical solar cell setup, with the orange arrow
representing solar radiation incident from a narrow
angular range and the green arrows representing a
broad angular emission. A rear-reflector increases the
path length of the light inside the cell. Fig. 1(b)
describes a theoretically simpler problem to study, which
corresponds to a concentrated, isotropic source in the
upper half-space, and isotropic emission from the cell in
the upper half-space. Fig. 1(b) is theoretically related
to Fig. 1(c), which depicts a solar cell with an isotropic
emission in the presence of an isotropic source.

The solar radiation incident on the cell can be de-
scribed by a stationary random process, such that the
ensemble average of the incident electric and magnetic
fields are time-independent. Therefore, the field-field

(a)

(b)

(c)

FIG. 1. (a) A typical cell operating under solar radiation
that covers a narrow angular range (orange). The cell sur-
faces may be patterned to enhance coupling with incident
radiation. The emission from the cell has a broad-angular
(green) response. A rear reflector is usually placed under-
neath such a cell to enhance absorption. (b) The same cell
under concentrated, near-isotropic incident radiation from the
upper half-space and near-isotropic emission into the upper
half-space. (c) A setup theoretically related to (b), with a
near-isotropic incident radiation as well as emission from the
cell.

correlation for the incident electric field EI is given by〈
EI(r, ω)E†I (r′, ω′)

〉
= 2πδ(ω − ω′)

〈
EI(r)E†I (r′)

〉
ω

where

the δ(ω − ω′) term appears because of stationarity.
In this paper, the † superscript refers to a conjugate
transpose, while the T superscript refers to only a
transpose.
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Since the cell receives this stationary input field, the
electric field in the device, ED(t), is also described by a
stationary random process with a field-field correlation
function〈
ED(r, ω)E†D(r′, ω′)

〉
= 2πδ(ω−ω′)

〈
ED(r)E†D(r′)

〉
ω

(1)

The ensemble-averaged power absorbed by the cell can
then be determined from Poynting’s theorem (Ref. [38]
p. 259) in the absence of any currents:∮

dS · 〈ED ×HD〉 =

−
∫

dV
〈
ED(r) · ∂DD(r)

∂t
+ HD(r) · ∂BD(r)

∂t

〉
(2)

A non-zero value of the left hand side would indicate a
net flow of power into the cell, i.e. absorption in the cell.
We evaluate the first term on the right hand side of Eq.
(2) as follows:

P = −
∫
dV
〈
ED(r) · ∂DD(r)

∂t

〉
(3)

=

∫
dV

∫ ∫ ∞
−∞

dω′

2π

dω

2π

〈
ED(r, ω) · iω′D∗D(r, ω′)

〉
ei(ω−ω

′)t

(4)

=

∫ ∞
−∞

∫ ∞
−∞

dω′dω

(2π)2
iω′Tr

〈
ED(ω)D†D(ω′)

〉
ei(ω−ω

′)t

(5)

=

∫ ∞
−∞

∫ ∞
−∞

dω′dω

(2π)2
iω′Tr

[
ε†(ω)

〈
ED(ω)E†D(ω′)

〉]
ei(ω−ω

′)t

(6)

=

∫ ∞
−∞

dω

2π
iωTr

[
ε†(ω)

〈
EDE

†
D

〉
ω

]
(7)

=

∫ ∞
0

dω

2π
iωTr

[
(ε†(ω)− ε(ω))

〈
EDE

†
D

〉
ω

]
(8)

=

∫ ∞
0

dω

π
ωTr

[
Im ε(ω)

〈
EDE

†
D

〉
ω

]
(9)

Note that in Eqs. (2)-(3), the fields are the underlying
physical, time-dependent fields that are real, whereas in
the rest of the paper, the fields are complex phasors.

In obtaining Eq. (5), we use ED(ω) to represent
a column vector, which, when all indices are explic-
itly shown, denotes ED,m(r, ω), where m denotes the

indices for the polarization. ED(ω)D†D(ω′) therefore
represents a tensorial quantity, which corresponds to

ED,m(r, ω)D†D,n(r′, ω′), where m and n again denote
the polarization index. For any tensorial quantity A ≡
Amn(r, r′), the trace operator Tr is defined as:

TrA ≡
∑
m

∫
dV Amm(r, r) (10)

That is, the operator A can be considered a large matrix
indexed both in polarization and position. The Tr oper-
ation is then simply the sum of the diagonal elements
of the matrix. For the continuous position coordinate,
this sum is in fact an integral over the volume of the
device. For the rest of the paper, we will be using
such vector and tensor quantities whenever we do not
explicitly exhibit the coordinate and polarization indices.

Next, we used Eq. (1) to obtain Eq. (7). To obtain
Eq. (8), we use the fact that because the underlying
fields E(r, t) and D(r, t) are real, ε∗(−ω) = ε(ω) and
E∗(−ω) = E(ω) (Ref. [38] p. 262).

With a similar derivation, one can show that the
second term on the right-hand side of Eq. (2) is zero
since we assume the permeability to be µ0 with no
imaginary part.

In order to compute the absorption of the solar cell, we
need to relate the fields inside the device ED, to the in-
cident solar radiation EI. This relation is obtained from
the Non-Equilibrium Green’s Function (NEGF) formal-
ism in the next section.

III. NEGF FORMULATION FOR A LOSSLESS
SYSTEM

Certainly, the materials used in solar cells are absorp-
tive, and therefore are described by a dielectric function
ε(r) with a non-zero imaginary part. However, in the
understanding of light trapping theory, the computation
of the enhancement factor when the material loss
is infinitesimal plays a significant role [1, 4, 28, 39].
Therefore, in this paper we will start by considering
the case where the material absorption is infinitesimal.
The formalism that we develop here, however, can
be generalized to treat the case where the material
absorption is non-negligible, which we will discuss in
Section VII.

To compute the absorption enhancement factor where
the material absorption is infinitesimal, in this section we
consider the corresponding lossless system as described
by the real part εR(r) of the dielectric function ε(r)
i.e. εR(r) = Re[ε(r)], and describe the electromagnetic
structure and the coupling of externally incident waves
to such a system. In the next section we then relate the
absorption properties of the system with infinitesimal
loss to such a lossless system.

Further, for simplicity, we ignore material disper-
sion in the real part of the dielectric function, i.e.
εR(r, ω) = εR(r). This simplification is justified since for
light-trapping purposes, one typically considers a fre-
quency range near the semiconductor band-edge where
the variation in the real part of the dielectric function,
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i.e. in εR(r, ω), is usually small. In addition, we restrict
εR(r) to be positive definite, which is applicable for
typical semiconductors. However, we note that both the
material dispersion and the negative dielectric constant
cases can be treated in a similar fashion to what we
consider here by an auxiliary field approach [40]. With
this approach, one can formulate the modal structure of
a dispersive medium as a standard eigenvalue problem
where the system matrix has no explicit frequency
dependence. Therefore, the formalism that we develop
here can be generalized for systems such as plasmonics-
enhanced solar cells [11].

Consider the Maxwell’s Equations in frequency domain
for a system described by εR:

∇×E(ω) = −iωB(ω) (11)

∇×H(ω) = iωD(ω) (12)

with the constitutive relations

B(ω) = µ0H(ω) (13)

D(ω) = ε0εRE(ω) (14)

Since εR is positive semi-definite, a positive semi-definite
square-root

√
εR exists, and Eqs. (11) to (14) can be

combined to form a Hermitian eigenvalue problem [41]:

HF =

[√
ε−1
R ∇×∇×

√
ε−1
R

]
F =

ω2

c2
F (15)

where F =
√
εRE. To make a connection to the standard

NEGF literature, we refer to the operator H defined
above as the ‘Hamiltonian’ of the system.

We now apply Eq. (15) to the system containing both
the cell itself, as well as the surrounding air regions
that have a uniform ε = 1. The following derivation
is based largely on Ref. [35], starting p. 188, and its
results are summarized in Ref. [35] p. 223. The readers
are referred to Ref. [35] for a detailed discussion of the
concepts in this section, and to Ref. [42] for a more
formal treatment of NEGF.

The Hamiltonian of the system, H, can be decomposed
as

H =

(
HS τ †

τ HD

)
(16)

where HS and HD are the Hamiltonians of the surround-
ings and the cell, respectively. The off-diagonal terms
τ and τ † can be numerically obtained, for example, by
explicitly constructing H in Eq. (15) by discretizing the
spatial coordinates r. We note that τ is in general not
equal to τ †. In other words, H might not be a symmetric
matrix, and therefore we do not assume reciprocity in this
derivation. Using Eq. (16), Eq. (15) can be rewritten as

FI FSc

FD

FIG. 2. An illustration of Eq. (17). The incident field FI is
scattered in general into the scattered field FSc at the bound-
ary, and generates the device field FD.

(
(ωc )2 −HS −τ †
−τ (ωc )2 −HD

)(
FI + FSc

FD

)
= 0 (17)

where F = (FI + FSc,FD)T is an eigenvector of H. The
subscripts of F are used to distinguish components of
F: FI is the field incident from the surroundings onto
the device (solar cell), FSc is the scattered field from the
device back into the surroundings, and FD is the field
in the device. Fig. 2 depicts the incident, scattered and
the device fields as described here.

An expression for the field in the device FD can be
obtained by solving Eq. (17). To do this, we first note
that the incident field FI satisfies

[
(ωc )2 − HS

]
FI = 0.

Therefore from the first row of Eq. (17),
[
(ωc )2−HS

]
FSc−

τ †FD = 0, so that

FSc = GSτ
†FD (18)

where GS =
[
(ωc )2 − HS − iη

]−1
with η being an in-

finitesimal positive number, is the retarded Green’s func-
tion for the free space surrounding the device. Note
that the retarded Green’s function contains a −η here,
in contrast with +η in Ref. [35] due to the +iωt con-
vention used here as opposed to the −iωt convention in
quantum mechanics. From the second row of Eq. (17),[
(ωc )2 −HD

]
FD − τ(FI + FSc) = 0, which gives[

(
ω

c
)2 −HD − Σ)

]
FD = τFI (19)

where Σ = τGSτ
† is the self-energy. Eq. (19) can be

succinctly written as

FD = GDτFI (20)

where we identify

GD =
[
(
ω

c
)2 −HD − Σ

]−1
(21)

as the effective Green’s function for the device coupled
to its environment.
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Before we provide a discussion of the density of
states of the device under consideration, we consider
the density of states of a closed system. Consider the
Green’s function for a general system with Hamilto-

nian H, G =
[
(ωc )2 − H − iη

]−1
. From the equation

HF(m) = (ω2
m/c

2)F(m), we have the retarded Green’s
function

G = c2
∑
m

F(m)F(m)†

ω2 − ω2
m − iη

(22)

The density of states is related to ImG, which from Eq.
(22), is given by

1

π
ImG = c2

∑
m

δ(ω2 − ω2
m)F(m)F(m)†

= c2
∑
m

1

2ωm
δ(ω − ωm)F(m)F(m)†

= c2
∑
m

1

2ω
δ(ω − ωm)F(m)F(m)† (23)

which gives us the relation

A ≡
∑
m

δ(ω − ωm)F(m)F(m)† =
2ω

πc2
ImG (24)

where following the nomenclature of NEGF [35], A is
called the spectral function. Note that we dropped the
negative frequency solutions−ωm in the summation since
we are interested only in an integration over positive fre-
quencies in Eq. (9). The local density of states (LDOS)
ρ(r) is given by [43]

ρ(r) ≡
3∑
i=1

Aii(r, r)

=
∑
m

δ(ω − ωm)E(m)∗(r) · εR(r)E(m)(r) (25)

Generalizing from the discussion above for the LDOS
of a closed system, we define a spectral function specific
to the device, given by

AD =
2ω

πc2
ImGD (26)

where GD is defined by Eq. (21). Eq. (26) can be manip-
ulated to form a useful identity [35] using the following
relation:

ImGD =
1

2i
(GD −G†D)

=
1

2i
GD(G†−1

D −G−1
D )G†D

=
1

2i
GD(

ω2

c2
−HD − Σ† − ω2

c2
+ HD + Σ)G†D

=
1

2i
GD(Σ− Σ†)G†D

= GD[Im Σ]G†D
= GDτ [ImGS]τ †G†D (27)

since Σ = τGSτ
†. Therefore,

AD =
2ω

πc2
GDτ [ImGS]τ †G†D (28)

AD(r, r, ω) has the interpretation of the ‘accessible’
density of states. To see this, note that if Σ is zero,
then GD is Hermitian, and therefore AD = 0 from Eq.
(26). This notion can be generalized: if a subset of modes
do not couple with the surroundings, then Σ for those
modes is zero, and AD corresponding to those modes is
zero. Therefore,

∑
mAmm,D(r, r, ω) is the local density

of device modes that can couple with the incident radi-
ation. On the other hand, the full Green’s function will
consist of the decoupled surroundings and device Green’s
functions. Therefore, G over the device coordinates will

simply be
[
ω2/c2−HD− iη

]−1
and

∑
mAmm(r, r, ω) will

then be the device local density of states, regardless of
whether these states actually couple to the incident radi-
ation. This means that

∑
mAmm,D(r, r, ω) is in general

lesser than or equal to the local density of states given
by
∑
mAmm(r, r, ω) corresponding to the isolated device,

i.e. ∑
m

Amm,D(r, r, ω) ≤
∑
m

Amm(r, r, ω) (29)

IV. ABSORPTION UNDER FULLY
CONCENTRATED SUNLIGHT

We now have a mathematical structure to connect the
device field FD to the incident field FI described through
Eq. (20). We have also established the concept of LDOS
defined through Eq. (26) and Eq. (28) for a lossless
system. As a step forward, suppose the device has a
small imaginary part of ε(r), i.e. Im(ε)/Re(ε)� 1, then
the solutions FD of the corresponding lossless system are
sufficiently good approximations to the solutions in the
lossy device. Therefore, for small losses, we can apply
the NEGF formulation in the previous section to Eq. (9)
to compute the absorbed power:

P =

∫ ∞
0

dω

π
ωTr

[
Im ε(ω)

〈
EDE

†
D

〉
ω

]
=

∫ ∞
0

dω

π
ωTr

[
Im ε(ω)

√
ε−1
R

〈
FDF

†
D

〉
ω

√
ε†−1
R

]
(using F =

√
εRE)

=

∫ ∞
0

dω

π
ωTr

[
Im ε(ω)

√
ε−1
R GDτ

〈
FIF

†
I

〉
τ †G†D

√
ε−1
R

]
(30)

where ε†R = εR. Eq. (30) provides the power absorbed by

the solar cell for incident solar radiation given by
〈
FIF

†
I

〉
.

Using Eq. (30), we can compute the power absorbed
by a solar cell in the presence of maximally concentrated
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sunlight, i.e. in the case of Fig. 1(c). Assuming the envi-
ronment surrounding the cell to be a blackbody of tem-
perature T at equilibrium, we have from the fluctuation-
dissipation theorem [44],

ε0
〈
EIE

†
I

〉
ω

= sgn(ω)
2~ω2/c2

e~|ω|/kT − 1
ImGS

= πΘ(ω)
[ 2ω

πc2
ImGS

]
, ω > 0 (31)

where GS is the free-space Green’s function that describes
the surroundings, and Θ(ω) = ~ω/[e~ω/kT − 1]. Note
that we are interested only in ω > 0 from Eq. (30).
We also note that to describe a realistic solar spectrum,
one could use a form of Θ(ω) different from the one used
here without affecting the results that follow. Continuing
from Eq. (30) we have

P =

∫ ∞
0

dω

π
ωTr

[
Im ε(ω)

√
ε−1
R GDτ

[
πΘ(ω)

2ω

πc2
ImGS

]
τ †G†D

√
ε−1
R

]
=

∫ ∞
0

dω · ωΘ(ω) Tr
[√

ε−1
R Im ε(ω)

√
ε−1
R ·

2ω

πc2
GDτ ImGSτ

†G†D
]

(32)

=

∫ ∞
0

dω · ωΘ(ω) Tr
[√

ε−1
R Im ε(ω)

√
ε−1
R AD(ω)

]
(33)

where we used Eq. (28) to obtain Eq. (33). This re-
sult also tells us the optimal structure of the cell: from

Eq. (29), maximum power absorption occurs when all
modes in the device become ‘accessible’ to the environ-
ment. That is,

Pmax =

∫ ∞
0

dω · ωΘ(ω) Tr
[√

Re ε−1 Im ε(ω)
√

Re ε−1A(ω)
]

(34)

The derivations leading to Eqs. (33) and (34) repre-
sent the major new results of this paper. The results
provide a rigorous derivation of the connection between
the absorption under maximum concentration to the
accessible density of states inside the device. This
connection has been previously argued in Ref. [1] using
the argument of detailed balance, assuming that the cell
consists of a bulk medium. This connection has also
been generalized in Refs. [28] and [31] for nanophotonic
geometry. Neither of these papers, however, provide
a rigorous derivation of this connection directly from
Maxwell’s equations. Our results here therefore provide
a rigorous justification of the foundation of light trapping
theory. In the next two sections we will explore the
consequence of Eqs. (33)-(34). In Section V we provide
a re-derivation of the standard light trapping results,
starting from these equations.

We note that to arrive at Eq. (34), we make no
assumption of the coupling between the free space
and the device as described by the matrix τ , other
than the assumption that all modes in the cell are
accessible. Thus, Eq. (34) is equally applicable to
a solar cell that has a Lambertian surface and hence
absorbs and emits isotropically, as well as to a solar cell
that has a strong angular selectivity. We will use this

observation in Section V when we discuss the light trap-
ping limit for a solar cell with a strong angular selectivity.

Before we discuss absorption enhancement, we would
like to make a brief comment on spatial coherence of
sunlight in the context of Eq. (31). In the formalism
of fluctuational electrodynamics, which we use to obtain
Eq. (31), the current-current correlation of the current
source in the sun has the form

〈J(r)J†(r′)〉ω = ~ω2 coth
~ω

2kBT
Im ε(r, r) · δ(r−r′) (35)

That is, the current source in the sun is spatially
incoherent. On the other hand, it is known that
the sunlight is partially coherent [45, 46], and that
coherence impacts device performance [47, 48]. We
would like to point out here that our formalism, which
builds upon fluctuational electrodynamics, takes spatial
coherence into account in a systematic fashion because
the field-field correlation of Eq. (31) is proportional
to ImGS, which in general is not proportional to δ(r−r′).

We also note that the derivation of Eq. (33) makes
no use of reciprocity. Therefore, in Section VI we use
these results to discuss light trapping in non-reciprocal
structures.
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V. ABSORPTION ENHANCEMENT

Various limits on absorption enhancement have been
derived previously. The 4n2 limit in [1] was derived from
a statistical thermodynamics and ray-tracing approach.
This can be extended to a 4n2/ sin2 θ limit [3, 49]
for the case of angle-selective emission from the solar
cell. In addition, Ref. [8] considers the case of light
trapping with a sub-wavelength grating, and concludes
that at normal incidence that enhancement factor can
significantly exceed the 4n2 limit. In this section, we
briefly re-derive these limits starting from Eq. (34).

To derive the 4n2 limit, following Ref. [1], we con-
sider a solar cell as described by a dielectric slab with a
uniform dielectric constant ε = n2 + i · 2nn′′ such that
n′′/n � 1, where n and n′′ are the real and imaginary
parts of the refractive index, respectively. The absorp-
tion coefficient is α0 = 2 Im(ω

√
ε/c) = 2ωn′′/c. To start

we assume that the device is under a full concentration
of sun light, as shown in Fig. 1(c). To achieve light trap-
ping in such a solar cell, one applies random roughness
with a Lambertian profile on the surface of the solar cell,
which allows all modes in the device to be accessible. As
a result we can use Eq. (34) to compute the absorption
in the cell. For such a slab TrA = L2d ·n3ω2/π2c3. With
ε′′/ε′ = 2n′′/n and Θ(ω) = ~ω/(exp(~ω/kBT ) − 1), the
absorbed power in a narrow frequency range between ω
and ω + ∆ω is then,

Pmax =
~ω

e~ω/kBT − 1

2ωn′′

n

n3ω2

π2c3
∆ωL2d

= 2n2α0d ·
[ω2∆ω

4π2c2
· ~ω
e~ω/kBT − 1

· 2L2
]

(36)

where the quantity in the brackets is the well-known for-
mula for power from isotropic blackbody radiation, inci-
dent in this case on a surface of area of 2L2. With the
bracketed quantity as the input power Pin, the maximum
enhancement is

f =
1

α0d

Pmax

Pin
= 2n2 (37)

The standard result of 4n2 corresponds to the case where
a perfect rear reflector is placed with the source only
incident from the upper half hemisphere. Because of the
reflector, the absorbed power remains the same; but the
incident power is only a half of the isotropic radiation:

f =
1

α0d

Pmax

Pin/2
= 4n2 (38)

The commonly derived limit of 4n2 corresponds to a
single incident mode on a solar cell with a Lambertian
surface. However, since a Lambertian surface results in
equal absorption from all incident modes, the absorbed

power as well as the incident power are scaled by the
same factor in going from isotropic illumination to a
single incident mode. In other words, the absorption
enhancement factor remains unaffected by the angular
range of incident radiation on a solar cell with a Lam-
bertian surface.

The derivation above can be generalized to describe a
solar cell with strong angular selection. As an illustra-
tion, we consider a solar cell that has equal absorption
for light within the absorption cone having an angle of
incidence within a range θ around the normal direction,
and has zero absorption for incident light outside the
absorption cone. In this case, assuming all modes
within the cell is accessible, under full concentration
the absorption of solar cell is described by Eq. (36).
On the other hand, since the incident light outside
the absorption cone does not contribute to the solar
cell absorption, the absorption remains unchanged if
we restrict the incident radiation to only within the
absorption cone. That is, the absorption remains
unchanged even when the incident radiation is reduced
to Pin = [ω2∆ω/4π2c2]Θ(ω) sin2 θ, which leads to the
limit of 4n2/ sin2 θ.

Ref. [8] considered the case where the light trapping is
accomplished by placing a grating with a sub-wavelength
periodicity on the surface of solar cell, and showed that
in this case the enhancement factor can significantly ex-
ceed 4n2 for normally incident light. This increased en-
hancement factor arises due to angle-selectivity of the
grating structure in the single-channel regime, and comes
at the expense of lower enhancement at large angles [8]
since the total enhancement integrated across all angles
is constrained for any solar cell structure [50]. This is
in contrast with the scheme of Refs. [28, 51], where an
enhancement factor exceeding 4n2 for all angles of inci-
dence were achieved in a thin, low-index absorber sur-
rounded by high-index media. We re-derive the result of
Ref. [8] for normal incidence using the formalism devel-
oped in Section IV. When the grating period is less than
the free-space wavelength, normally incident light can-
not scatter into any other directions aside from normal.
Therefore, the surrounding medium can be described as
a one-dimensional system. In using Eq. (31) to describe
the incident light, one needs to use an expression for
ImGS that is appropriate for the one-dimensional sys-
tem. With this modification, the derivation to Eq. (36)
remains unchanged. That is, assuming that all modes in
the cell are accessible, the power absorbed by the cell is

Pmax = 4n2α0d ·
[ω2∆ω

4π2c2
· ~ω
e~ω/kBT − 1

· l2
]

(39)

where l is the periodicity of the patterning on the top
surface. On the other hand, the incident power changes
from its 3D expression of Θ(ω) · ω2∆ω/4π2c2 · l2 to the
1D expression of Θ(ω) · ∆ω/π, where we used the fact
that the 1D density of states is ∆ω/πc. Therefore, the
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FIG. 3. (a) One unit cell of the solar cell structure consid-
ered, with a back-reflector (yellow). The unit cell is a square
with side length l = 600 nm, which also corresponds to the
periodicity of the structure. The thickness of the bulk ab-
sorbing material (grey) is d = 3 µm. The orange regions are
non-absorbing dielectric material. The air slots between the
orange regions have widths that are 20%, 5% and 2% of the
period along one direction, and 20%, 5% and 6% of the period
along the other. The thickness of the patterning region is 50
nm. (b) Enhancement factor as a function of the strength of
non-reciprocity. The black solid curve was obtained using Eq.
(34), which presents the theoretical upper limit of enhance-
ment. The blue curve is the result of our numerically obtained
absorption enhancement averaged over the wavelength range
of interest and over the two polarizations. The 4n2 limit is
shown in red for reference. (c) and (d) Absorption spectra
with spectrally averaged absorption, i.e. f̄(δ)α0(δ)d (red) and
single-pass absorption, i.e. α0(δ)d (blue) for δ = 0 and δ = 4
respectively.

enhancement factor in this scenario is modified from the
expression in Eq. (38) to

f = 4n2 ·
Θ(ω)ω

2∆ω
4π2c2 · l

2

Θ(ω) · ∆ω
π

= 4πn2s2 (40)

where s = l/λ.

VI. LIGHT TRAPPING IN NON-RECIPROCAL
SYSTEMS

In the previous section we used the NEGF formalism
to reproduce the standard theoretical results for solar
cell light trapping. As noted in Section IV, however,
our result here is in fact more general as compared to
previous theoretical work on solar cell light trapping in
that we do not make assumption on reciprocity. This
is in contrast to all previous theoretical works in this
area. For example, Ref. [1] assumes detailed balance
in order to reach a conclusion similar to Eq. (33).

Detailed balance is a consequence of reciprocity. In Ref.
[28], results similar to Eq. (33) were derived using the
temporal coupled mode theory formalism, which again
assumes reciprocity. In our work here, by re-deriving
all these previous results in Section V, we have in fact
shown that these results are equally applicable to a cell
containing non-reciprocal materials.

The potential of using non-reciprocal material for solar
energy conversion is a subject that is of fundamental
interest. It is known that the Landsberg limit, which
represents the upper limit of solar energy conversion, can
only be reached with the use of non-reciprocal materials
[52–55]. On the other hand, it is also known that the
reciprocity between emission and absorption can be
broken with the use of magneto-optical media, and such
a reciprocity breaking can be further enhanced with the
use of nanophotonic structures [56, 57]. These results
raise the question as to how breaking reciprocity affects
the light trapping limit. Since Eq. (34) is applicable
for both reciprocal and non-reciprocal cases, our results
show that as long as the accessible density of states
within the solar cell is the same, the upper limit of
light trapping enhancement should not be affected by
reciprocity-breaking.

We validate the theoretical results above using numer-
ical simulations. For the absorber we consider a slab of
a non-reciprocal material. The slab has a thickness of 3
micron. The dielectric constant of such a material is in
general asymmetric, i.e. εT 6= ε. As an illustration, we
choose the following form [58]:

ε =

(n+ iκ)2 iδ 0
−iδ (n+ iκ)2 0
0 0 (n+ iκ)2

 (41)

where n2 = 12.5. δ characterizes the strength of the
non-reciprocity, with δ = 0 describing the reciprocal
material. The loss κ is chosen such that the absorption
length α−1

0 in the reciprocal case of δ = 0 equals
(2ωκ(ω)/c)−1 = 22.5 mm over the wavelength range
of interest. For typical magneto-optical materials, the
maximum δ/n2 is typically < 10−2 (see for e.g. Refs.
[59, 60]). In our numerical simulation, however, to
explore the effect of non-reciprocity, we consider a much
wider range δ from 0 to 4.

To achieve light trapping in such an absorbing layer,
we place a perfect electric conductor mirror at the
bottom of the layer (yellow layer, Fig. 3(a)). On the
top surface we place a grating layer (orange) following
Ref. [8]. The grating layer consists of several rectangle-
shaped dielectric regions with dielectric constant of n2,
separated by air slots. The grating layer has a thickness
of 50 nm. The periodicity l of the grating is chosen to
be 600 nm on both in-plane directions. We consider a
wavelength λ ranging from 600 nm to 1200 nm. The
pattern of the grating is such that there is not any
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mirror or rotational symmetry within the plane. This
choice of periodicity and the use of such an asymmetric
grating pattern ensure that there is not any uncoupled
mode in the slab due to either translational symmetry or
point-group symmetry considerations, in our wavelength
range of interest.

Within our wavelength range of interest the cell op-
erates at the single channel regime [28], where for nor-
mally incident light in this regime there is only zero-th
order diffraction in the air region outside the cell. For
the reciprocal case of δ = 0, the theoretical upper-limit
of absorption enhancement in this wavelength range is
given by Eq. (40) where s = l/λ takes values between
0.5 and 1. Therefore, the spectrally averaged absorption
enhancement over this wavelength range is

f̄TH =
1

ωR − ωL

∫ ωR

ωL

4πn2s2 · dω = 4π · 7

12
· n2 ≈ 91.6

(42)
Following the same derivation that leads to Eq. (40), the
light trapping enhancement factor for the non-reciprocal
case can be derived as:

f̄TH(δ) =
1

ωR − ωL

∫ ωR

ωL

Pmax(ω, δ)

α0(δ)d ·Θ(ω) ·∆ω/π
dω (43)

as shown by the black solid curve in Fig. 3(b). Here
α0(δ) is the single-pass absorption length for normally
propagating light in the non-reciprocal material. The
theoretical results show that the light trapping enhance-
ment factor is largely independent of δ, in spite of the
large range of δ that we have used. We note that with
our choice of a fairly sizable range of δ, the density of
states does depend on δ. This dependency, however, is
largely cancelled out by the dependency of the group
velocity on δ.

As a validation of the theoretical results, we perform
a numerical simulation (blue dotted curve) using S4 [61],
an electromagnetic solver for layered media based on the
method of Rigorous Coupled Wave Analysis (RCWA).
We vary the strength of non-reciprocity by changing δ
between 0 and 4, and compute for each case the enhance-
ment

f̄(δ) =
1

ωR − ωL

∫ ωR

ωL

a(ω)

α0(δ)d
dω (44)

where a(ω) is the spectrum of the absorption coefficient,
averaged across polarizations. Fig. 3(c)-(d) show such
spectra for the cases of δ = 0 and δ = 4 respectively.
The red curve in Fig. 3(b) serves as a reference level
corresponding to the 4n2 enhancement of the single-pass
absorption. We note that in consistency with the theo-
retical results, the simulated enhancement f̄ varies only
slightly for a large variation in the non-reciprocity δ.
The simulation supports our claim based on Eq. (34)
that the maximum possible enhancement is set by the

DOS of the material, and is unaffected by the breaking
of reciprocity. The simulated enhancement f̄ in all cases
remains below the theoretical upper-limit f̄TH, because
at the chosen absorption length, some modes are not in
the over-coupling regime, where the external coupling is
much greater than the intrinsic loss rate [8]. In the for-
malism developed here, this means that the accessible
density of states AD is smaller than the density of states
A of the isolated cell.

VII. NON-NEGLIGIBLE LOSS

In this section, we extend the discussion of the NEGF
formulation to solar cells whose loss is not infinitesimal.
The wave equation upon combining Eq. (11)–Eq. (14) is

∇×∇×E(ω) =
ω2

c2
ε(ω)E(ω) (45)

A non-Hermitian ε(r, ω) can in principle have many

square roots
√
ε(r, ω); however, any choice of the

square root will mathematically give the same power
absorption, since Eq. (9) depends only on ε(r, ω) and
E(r, ω). Further, we neglect material dispersion again
by considering a narrow frequency range.

Choosing one such square root
√
ε(r), we have

HF ≡
[√

ε−1∇×∇×
√
ε−1
]
F =

ω2

c2
F (46)

where the ‘Hamiltonian’ H is no longer Hermitian. H can
still be decomposed in a manner similar to Eq. (16) as

H =

(
HS τ1
τ2 HD

)
(47)

The cross-terms τ1 and τ2 correspond to the cell bound-
aries, and we make a simplifying assumption that the
non-Hermiticity arising from Eq. (46) is captured purely

in the bulk of the cell, i.e. τ2 = τ †1 = τ but H†D 6= HD.
The Hamiltonian for the environment, HS, remains
Hermitian since it is unaffected by the dielectric function
of the cell ε(r).

The relations given by Eqs. (19)-(21) continue to hold
for the non-Hermitian HD. By defining the spectral func-
tion AD as in Eq. (26), we observe a departure from Eq.
(27)

ImGD =
GD −G†D

2i

= GD
G†−1

D −G−1
D

2i
G†D

= GD[Im Σ]G†D + GD[ImHD]G†D
= GDτ [ImGS]τ †G†D + GD[ImHD]G†D (48)
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where the first term on the right hand side is the same
as Eq. (27). The second term corresponds to mate-
rial loss. In the limit of the lossless system, we see

that Eq. (48) reduces to Eq. (27) as ImHD → 0. In-

serting this relation, rearranged as GDτ [ImGS]τ †G†D =

ImGD −GD[ImHD]G†D, in Eq. (32), we get

P =

∫ ∞
0

dω · ωΘ(ω) Tr
[(√

ε†
)−1

Im ε(ω)
√
ε−1 · 2ω

πc2
GDτ ImGSτ

†G†D
]

=

∫ ∞
0

dω · ωΘ(ω) Tr
[(√

ε†
)−1

Im ε(ω)
√
ε−1 · 2ω

πc2
ImGD

]
−
∫ ∞

0

dω · ωΘ(ω) Tr
[(√

ε†
)−1

Im ε(ω)
√
ε−1 · 2ω

πc2
GD[ImHD]G†D

]
=

∫ ∞
0

dω · ωΘ(ω) Tr
[(√

ε†
)−1

Im ε(ω)
√
ε−1AD

]
−
∫ ∞

0

dω · ωΘ(ω) Tr
[(√

ε†
)−1

Im ε(ω)
√
ε−1 · 2ω

πc2
GD[ImHD]G†D

]
(49)

where AD ≡ (2ω/πc2) ImGD as before. The result here
indicates that due to the second term on the right, the
enhancement factor decreases as the material absorption
strength increases, in consistency with the derivation [30]
from statistical-temporal coupled mode theory.

VIII. CONCLUSION

In this paper, we derived a theory of light-trapping
in solar cells based on the Non-Equilibrium Green’s
Function formalism applied to Maxwell’s Equations.
The theory provides a rigorous connection between light-
trapping and the accessible density of states of the cell,
in the form of an upper bound on the power absorbed
by the cell. The derived upper bound was used to obtain
the standard light-trapping results involving Lambertian
cells or periodic patternings. Further, since the theory

was derived without the assumption of reciprocity,
the upper bound on absorption was applicable to non-
reciprocal cells, showing that the standard light-trapping
enhancement cannot be overcome by breaking reciprocity
alone. This result was numerically tested and verified
on a slab-like cell with periodic patterning, where it
was seen that the enhancement was largely independent
of non-reciprocity for wide range of parameters. Our
results here provide a rigorous theoretical foundation
for the light trapping of solar cells. In addition, the
development points to the potential significance of the
Non-Equilibrium Green’s Function (NEGF) formalism
in the treatment of solar and thermal radiation problems.
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