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The dual-fermion approach provides a formally exact prescription for calculating properties of
a correlated electron system in terms of a diagrammatic expansion around dynamical mean-field
theory (DMFT). Most practical implementations, however, neglect higher-order interaction vertices
beyond two-particle scattering in the dual effective action and further truncate the diagrammatic
expansion in the two-particle scattering vertex to a leading-order or ladder-type approximation. In
this work we compute the dual-fermion expansion for the two-dimensional Hubbard model includ-
ing all diagram topologies with two-particle interactions to high orders by means of a stochastic
diagrammatic Monte Carlo algorithm. We benchmark the obtained self-energy against numerically
exact Diagrammatic Determinant Monte Carlo simulations to systematically assess convergence of
the dual-fermion series and the validity of these approximations. We observe that, from high tem-
peratures down to the vicinity of the DMFT Néel transition, the dual-fermion series converges very
quickly to the exact solution in the whole range of Hubbard interactions considered (4 ≤ U/t ≤ 12),
implying that contributions from higher-order vertices are small. As the temperature is lowered
further, we observe slower series convergence, convergence to incorrect solutions, and ultimately
divergence. This happens in a regime where magnetic correlations become significant. We find
however that the self-consistent particle-hole ladder approximation yields reasonable and often even
highly accurate results in this regime.

I. INTRODUCTION

Strongly correlated fermion systems pose a formidable
challenge in contemporary condensed matter physics.
Due to the complexity of the problem, these systems
are primarily studied via numerical methods. Dynam-
ical mean-field theory1 (DMFT) has provided important
insights, notably into the Mott metal-insulator transi-
tion. However, as a mean-field theory it neglects spa-
tial correlations altogether and sometimes fails to de-
scribe the physics even qualitatively, in particular in low-
dimensional systems. Cluster extensions of DMFT im-
prove upon DMFT by including all the contributions to
the self-energy that are local to the cluster.2 The range
of the spatial correlations is determined by the cluster
size as a control parameter. The solution becomes exact
in the limit of infinite cluster size. Because of the expo-
nentially growing complexity however, convergence with
respect to the cluster size is seldom reached in practice.

Diagrammatic extensions of DMFT are complemen-
tary to cluster extensions. Unlike clusters, correlations
can be included in the self-energy up to all length scales
within certain approximations. A common feature un-
derlying these methods is that in addition to the local
self-energy, they utilize higher-order moments of the im-
purity, more precisely vertex functions, to construct dia-
grammatic approximations to the momentum dependent
self-energy. Examples comprise the dynamical vertex ap-
proximation (DΓA),3 the dual fermion (DF),4 dual boson
(DB),5 the one-particle irreducible approach (1PI),6 and

the triply irreducible local expansion (TRILEX).7

For a given approach, different levels of approximation
to the self-energy can be constructed. Almost all calcu-
lations, including those performed here, neglect vertex
functions beyond the two-particle level because the cost
for computing functions of six or more frequency argu-
ments quickly becomes prohibitive. Within this approxi-
mation, the parquet formalism allows to determine both
the self-energy and vertex function self-consistently and
incorporates important contributions from all scattering
channels and their interaction. Its feasibility has been
demonstrated for both DΓA8 and DF,9 but the substan-
tial computational effort limits applications to systems
consisting of a small number of lattice sites. Alterna-
tively, diagrams are chosen based on physical considera-
tions. An important approximation is the (particle-hole)
ladder approximation. In the two-dimensional Hubbard
model, this approximation captures the effects of collec-
tive spin and charge excitations on the self-energy and
has been shown to describe pseudogap physics.10 In cer-
tain regimes, where these fluctuations are dominant, the
approximation can even yield quantitatively accurate re-
sults. Examples can be found in the literature for self-
energies11 and critical exponents,12 and in the results sec-
tion of this paper. The restriction to a subset of diagrams
introduces a bias and potentially neglects relevant effects.
The applicability of such approximations is expected to
be limited to certain parameter regimes. Furthermore,
error bars of the solution are unknown.

In this work we propose a method that augments di-
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agrammatic extensions of DMFT with a controlled way
of summing the diagrammatic corrections to the DMFT
self-energy by means of a diagrammatic Monte Carlo (Di-
agMC) algorithm. In principle, the method samples di-
agrams of all allowed topologies and does not require
any momentum discretization. While our method can
be applied to any kind of diagrammatic extension such
as DΓA, DF, DB, 1PI, or TRILEX and to different mod-
els, we focus here on the dual fermion approach to the
Hubbard model on a square lattice as the first application
(DiagMC@DF). In our implementation of DiagMC@DF
we take into account all topologies of the DF diagrams in-
volving only the two-particle scattering vertex of the dual
effective action. As mentioned above, handling higher-
order vertices of the theory is currently infeasible and is
left for future work. The contribution of neglected dia-
grams is expected to be small in certain regimes, but can
not be accessed a priori. Therefore, benchmarking of
the obtained results against numerically exact Diagram-
matic Determinant Monte Carlo (DDMC) calculations
performed here is crucial for assessing applicability of the
new method. Correspondingly, the error bars claimed for
our DiagMC@DF results express the controlled statisti-
cal and systematic uncertainty of the dual theory trun-
cated at two-particle scattering. The combined contribu-
tion due to three-particle and higher-order vertices can
be evaluated as deviation from the benchmark.

The structure of the paper is as follows: In Sec. II we
give an overview of our results and discuss them in re-
lation to convergence properties of diagrammatic series.
Section III shortly reviews the dual-fermion approach for
the Hubbard model before giving a detailed description
of the DiagMC@DF algorithm. We also describe the es-
sentials of the DDMC method used for benchmarks. Sec-
tion IV contains the results of our benchmarks exploring
the reliability of the DiagMC@DF method and of differ-
ent approximation schemes. We wrap up with a discus-
sion of our findings and future directions in Sec. V and a
brief summary in Sec. VI.

II. CONVERGENCE OF DIAGRAMMATIC
SERIES AND OVERVIEW OF RESULTS

In diagrammatic theories where the answer is formally
represented by a sum of an infinite series of terms, un-
derstanding convergence properties of the series is key to
claiming a controlled result. Using DiagMC techniques
one can evaluate generic sign-alternating diagrammatic
series for fermionic models, in which the number of di-
agrams grows factorially with diagram order, up to or-
der N∗ ∼ 10. At orders greater than N∗ the statistical
noise due to the sign alternation explodes and obtaining
meaningful results is not possible. Thus, for the theory
to produce a reliable result the series must exhibit mani-
fest convergence—a plateau of the result within statisti-
cal errors as a function of diagram order or at least a fast
decay of higher-order corrections—at orders below N∗ or

be practically resummable, i.e. amenable to analytic con-
tinuation beyond convergence radius given the data up
to order N∗.

Divergence of a diagrammatic series naturally stems
from physical non-analyticity of observables as is for ex-
ample the case at second-order phase transitions – the
sum of all terms in the series is bound to diverge at the
transition point. If, in contrast, the sum is restricted
to specific diagram topologies only, such a series can di-
verge in the normal phase well before the actual phase
transition. A textbook example is the sum of all ladder
diagrams in a fluctuating channel, which, being the set of
fastest growing diagrams in the weak-coupling limit, typ-
ically diverges above the actual critical point. In the case
of the DF theory for the half-filled 2D Hubbard model,
such a ladder sum in the particle-hole channel built on the
bare dual propagators and two-particle vertex diverges at
the DMFT Néel temperature TDMFT

N ,13 whereas the ac-
tual antiferromagnetic order sets in at TN = 0 (the ladder
constructed from renormalized propagators does not ex-
hibit this divergence). Nonetheless, this does not imply a
priori that the bare series of all diagram topologies sam-
pled by DiagMC@DF is meaningless below TDMFT

N . On
the contrary, already in moderately correlated regimes,
divergence of ladder diagrams is typically compensated
by growing terms of other topologies so that the whole
sum is insensitive to the spurious divergence of the lad-
ders.14

However, divergence of diagrammatic series can also
be unrelated to physics. For instance, in models with
Hubbard interaction, an involved analytic structure of
the self-energy in the complex plane of the interaction
parameter U makes the diagrammatic series in terms of
U and the non-interacting Green’s function diverge in
the vicinity of half-filling. For the doped Hubbard model
with hopping t this leads to failure of DiagMC based on
the bare series at temperatures T . 0.5t and U & 4t.15

A very similar divergence is exhibited by the Hubbard
atom—the simplest model with Hubbard interaction and
t = 0, which features no non-trivial physics, let alone
a phase transition. An analysis of the self-energy for
the Hubbard atom reveals that the divergence is due to
multiple poles in the complex U -plane, which have no
clear physical origin.15 There is very little intuition on
where to expect such divergences and a systematic study
of the series is the only practical approach to controlling
the answer.

In this paper we perform such a study of the series
evaluated by DiagMC@DF (summarised in Fig. 10 for
the half-filled model). We find that convergence prop-
erties of the dual bare series are considerably enhanced
compared to that of the original Hubbard model. In par-
ticular at temperatures T ∼ 0.5t the DF series converges
within order 6 up to the highest value of interaction at-
tempted, U = 12t. By benchmarking against DDMC
we verify that DiagMC@DF reproduces the exact self-
energy in this regime, implying that the contribution due
to neglected high-order vertices is indeed small. Here and
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below by convergence to the exact result we mean that
high-order results for the self-energy and the benchmark
agree within 1% of the absolute value.

Considerably worse than definite divergence of a series
is the case when it converges to a wrong answer. Such a
situation was observed recently in models with Hubbard
interaction for skeleton series built on the full interact-
ing Green’s function and was related to multivaluedness
of the corresponding Luttinger-Ward functional.16 Just
like divergence of the bare series, the misleading con-
vergence of the skeleton series happens in the Hubbard
model around half filling, T . 0.5t, and U & 4t and is
not obviously linked to any physics – the trivial Hubbard
atom and all other models with the Hubbard interaction
considered in Ref. 16 behave in the same way, consistently
with universality of the Luttinger-Ward functional. As
a result, none of the current DiagMC approaches based
on standard Feynman diagrammatics, neither bare nor
skeleton, can controllably access the regime of strong
coupling of U & 4t in the vicinity of half-filling at low
temperatures.17

We find that DiagMC@DF, in contrast, can reliably
reach U = 12t down to T ∼ 0.5t. However, as the
temperature is lowered further down to the DMFT Néel
transition the convergence of the evaluated DF series be-
comes worse and at U & 8t it clearly converges to a
wrong answer. Although we cannot rigorously rule out
the misleading convergence scenario of Ref. 16, it is quite
unlikely since the evaluated series is constructed in terms
of the non-interacting dual Green’s function, which has
no direct connection to the Luttinger-Ward functional.
Moreover, DiagMC@DF accurately reproduces the ex-
act result in the regime (T ∼ 0.5t, U & 4t) where the
standard skeleton expansion exhibits misleading conver-
gence to the unphysical branch of the Luttinger-Ward
functional. In the case of DiagMC@DF, where only the
part of the dual action truncated at two-particle scatter-
ing is solved in a controlled way, there is a more natural
explanation for the discrepancy – the omitted series in-
volving higher-order scattering vertices can naturally give
a substantial contribution to the answer. Our results,
therefore, allow to assess the validity of the standard ap-
proximation involved in the conventional DF approach,
namely the truncation of the dual fermion coupling to
two-particle interactions.

As the temperature reaches the regime of extended (to
about 4 lattice sites) magnetic correlations, the DF se-
ries is found to diverge. It seems plausible, at least in
principle, that the divergence could be a result of the
truncation of the effective action at two-particle scatter-
ing and the omitted series of diagrams could compensate
the divergence. A separate study is necessary to answer
this question.

We further asses the accuracy of the standard DF
particle-hole ladder approximation. We find that the
self-consistent ladder, which is known to converge far be-
low TDMFT

N due to self-consistent dressing of the dual
particle-hole bubble,13 produces meaningful results in

certain regimes where the bare DF series is divergent.
This suggests that a self-consistent DiagMC@DF ap-
proach built on dressed dual Green’s functions could po-
tentially extend the applicability range of the technique,
but this possibility requires a separate investigation. Our
results also shed light on the role of the mapping from
the dual to the physical self-energy.

Finally, it should be noted that our method is funda-
mentally different from the earlier proposal of combin-
ing DMFT with DiagMC.18 In that approach DiagMC
sums non-local skeleton diagrams for the original model
where at least one Green’s function connects different
lattice sites. The sum of all the purely local graphs is ob-
tained from the solution of the DMFT impurity problem
by non-perturbative means, such as a Monte Carlo im-
purity solver. However, being based on the skeleton dia-
grammatic technique for the original lattice fermions, the
approach of Ref. 18 fails for the Hubbard model in corre-
lated regimes because of the convergence of the skeleton
series to a wrong result as discussed above.

III. MODEL AND METHOD

To set the stage for the description of the DiagMC@DF
method, we first recapitulate the DF approach. Readers
familiar with this method may skip to Sec. III B, where
we explain the DiagMC algorithm adapted to sample DF
diagrams.

To avoid confusion, we note that our calculations in-
volve two kinds of Monte Carlo sampling: we employ a
hybridization expansion continuous-time quantum Monte
Carlo (CTHYB) solver19 for the solution of the underly-
ing impurity model and diagrammatic Monte Carlo sam-
pling of the dual-fermion diagrams. In the following we
only discuss the latter as it defines our method. The im-
purity solver can be replaced by any other method such as
another flavor of CTQMC or exact diagonalization. We
expect our conclusions to be independent of the choice of
impurity solver as long as it is numerically exact.

For definiteness we consider the single-band Hubbard
model on the two-dimensional square lattice both at and
away from half filling. Its Hamiltonian is given by20

H =
∑
kσ

εkc
†
kσckσ +

∑
i

[Uni↑ni↓ − µ(ni↑ + ni↓)] (1)

with bare dispersion εk = −2t(cos kx + cos ky). The
nearest-neighbor hopping t = 1 sets the unit of energy
for the remainder of this paper.

A. Dual fermions

We briefly sketch the derivation of the DF method,
concentrating on the arguments relevant for the subse-
quent discussion of the DiagMC@DF method. Further
details on the DF method can be found in the litera-
ture.4,21
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DF is essentially a perturbation expansion around an
impurity model which serves as a solvable reference sys-
tem. The underlying idea is to treat the strong local
correlations on the level of the single-site impurity model
and to embrace the presumably weaker coupling between
the sites perturbatively. A diagrammatic extension of
DMFT is obtained by setting the hybridization function
to its DMFT value.

In the Grassmann path integral formalism, the impu-
rity model is described by the action

Simp[c∗, c] = −
∑
νσ

c∗νσ[iν + µ−∆νσ]cνσ+ U
∑
ω

nω↑n−ω↓,

where ν is the Matsubara frequency and ∆νσ is the hy-
bridization function, which is arbitrary at this point. The
associated impurity Green’s function is defined in the
standard way, gνσ := −〈cνσc∗νσ〉, where 〈. . .〉 is the aver-
age with respect to the action Simp[c∗, c]. By adding and
subtracting the hybridization function, the lattice action
corresponding to the Hamiltonian (1) can be written in
the form

Slatt[c
∗, c] =

∑
i

Simp[c∗i , ci]−
∑
kνσ

c∗kνσ(∆νσ − εk)ckνσ.

The decoupling of the second term in this equation is
achieved through an exact integral transformation, which
leads to the partition function

Z = Df

∫
D[f∗, f ]e−

∑
kνσ f

∗
kνσg

−1
νσ (∆νσ−εk)−1g−1

νσ fkνσ×∫
D[c∗, c]e−

∑
i{Simp[c∗i ,ci]+Scf[c

∗
i ,ci;f

∗
i ,fi]}. (2)

Here Df is a determinant which is irrelevant for the cal-
culation of expectation values. The term Scf is the local
coupling between dual and physical fermions:

Scf[c
∗, c; f∗, f ] =

∑
νσ

(
f∗νσg

−1
νσ cνσ + c∗νσg

−1
νσ fνσ

)
.

The physical fermionic degrees of freedom in the second
line of (2) can be integrated out for each site separately
after expanding in Scf. Because of the Simp in the ex-
ponential, the integral over c, c∗ corresponds to taking
the impurity average. The result can be expressed in the
following form:

ln
〈
e−Scf[c

∗,c;f∗,f ]
〉

=−
∑
νσ

f∗νσg
−1
νσ fνσ − Ṽ [f∗, f ]. (3)

The left hand side generates the connected correlation
functions of the impurity model coupled to dual variables.
To leading order, the resulting dual interaction is given
by

Ṽ [f∗, f ] = −1

4

∑
νν′ω σi

γσ1σ2σ3σ4

νν′ω f∗νσ1
fν+ω,σ2f

∗
ν′+ω,σ3

fν′σ4+. . . ,

(4)

where γ is the reducible two-particle vertex of the im-
purity model. The higher-order terms contain the three-
particle (six-leg) and higher-order vertices of the impu-
rity.

Combining Eqs. (2) and (3), we obtain the action in
dual variables:

S̃[f∗, f ] =−
∑
kνσ

f∗kνσ[G̃
(0)
kνσ]−1fkνσ + Ṽ [f∗, f ]. (5)

The bare dual Green’s function can be identified by look-
ing at the bilinear terms in the same two equations:

G̃
(0)
kνσ =

[
g−1
νσ + (∆νσ − εk)

]−1 − gνσ. (6)

All steps so far are free from approximations. Exact rela-
tions between the physical and dual quantities can there-
fore be established. In particular, the physical self-energy
is given in terms of the dual self-energy Σ̃ by

Σkνσ = Σimp
νσ +

Σ̃kνσ

1 + Σ̃kνσgνσ
. (7)

Up to now the hybridization function is arbitrary.
Its value is generally fixed through the self-consistency
condition

∑
k G̃kνσ = 0. We refer to these calcu-

lations as self-consistent. In one-shot (i.e. non-self-
consistent22) dual-fermion calculations this condition re-

duces to
∑

k G̃
(0)
kνσ = 0. It has been shown4 that the so-

lution to this latter equation is ∆νσ = ∆DMFT
νσ . In that

case, Eq. (6) becomes equal to GDMFT
kνσ −gνσ, which estab-

lishes the connection to DMFT. The dual-fermion expan-
sion can therefore be understood as an expansion around
the DMFT solution, in the sense that a vanishing dual
self-energy leads to the DMFT solution Σkνσ = ΣDMFT

νσ .
Higher orders of dual-fermion perturbation theory yield
non-local corrections to the self-energy.

1. Convergence properties

Equations (4)-(6) define an interacting fermionic lat-
tice model which is usually solved within perturbation
theory. Despite the formal equivalence to the original
model (1), one can expect different convergence behav-
ior for expansions in the original or the dual interaction
because, in the dual system, the presumably strong local
correlations are already taken into account on the level
of the impurity model. In the weak-coupling limit the
DF series converges fast since γ ∼ U . In the strong cou-
pling limit, the dual Green’s function plays the role of a
small parameter. The argument is that for strong inter-
action, the system is close to the atomic limit, so that
∆ and εk and therefore G̃(0) are small. Fast convergence
in both limits has been observed numerically, based on
the leading eigenvalue of the Bethe-Salpeter equation in
the particle-hole channel.10 A smaller eigenvalue implies
faster convergence of the ladder diagram series. Here
we use the DiagMC@DF approach to assess convergence
properties of the whole series in γ, including all possible
diagram topologies.
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2. Common approximations

While all steps in the derivation of the dual model are
exact, two approximations are usually employed in prac-
tical calculations based on the DF formalism: i) the DF

interaction Ṽ is truncated after the leading-order term,
restricting it to the two-particle vertex γ, and ii) in sum-
mation of the diagrammatic series for the dual self-energy
in terms of γ only a subset of diagrams is taken into ac-
count.

The first approximation is made because the compu-
tational effort of computing and handling the n-particle
interaction terms grows catastrophically (exponentially
with the base given by the frequency mesh size) with n.
On physical grounds, one may expect that three-particle
scattering processes are less relevant than two-particle
processes. In Ref. 10, the corrections due to diagrams
containing the three-particle vertex were found to be
much smaller than those due to ladder diagrams. How-
ever no rigorous argument exists. Here, by evaluating the
whole diagrammatic series in terms of the two-particle
vertex γ with DiagMC@DF we can assess the accuracy
of this approximation against numerically exact DDMC
benchmarks.

The dual self-energy is most commonly evaluated in
second-order or ladder diagram approximation. The
former describes dynamical short-range antiferromag-
netic correlations,23 while the latter additionally ac-
counts for pseudogap physics.10 The often made restric-
tion to particle-hole ladder diagrams is based on physical
considerations: in the repulsive Hubbard model, these
describe the dominant processes at half filling and inter-
mediate temperatures. The DiagMC@DF method allows
us to remove the restriction of diagram topologies and
verify the validity of such approximations in different pa-
rameter regimes.

B. Diagrammatic Monte Carlo for dual fermions

Diagrammatic Monte Carlo describes a general ap-
proach of computing a diagrammatic expansion via
stochastic sampling with a Markov chain Monte Carlo al-
gorithm.24 Instead of a deterministic sum, the sum over
all diagram topologies as well as the sums or integrals
over the internal variables of each diagram are performed
stochastically. Diagrams are sampled up to a fixed dia-
gram order cutoff N∗. A DiagMC configuration consists
of a given diagram topology with all the internal vari-
ables (such as momenta, times, and spin indices) fixed
to specific values, while a set of ergodic updates enables
transitions between different topologies and/or changes
of the internal variables with probabilities determined by
the value of the diagram of each configuration. During
the last ten years, the approach has found diverse appli-
cations such as polaron problems,25 the resonant Fermi
gas,26 correlated lattice fermions,27,28 and frustrated spin
systems.29 In the case of the Hubbard model, the method

has been shown to give reliable results in the regime of
moderate interactions U . W/2, where W denotes the
bandwidth of the system,11,30,31 but at larger interac-
tions and relevant temperatures the diagrammatic series
typically diverges so quickly that no physical results can
be extracted. This finding may not be surprising, since
the method evaluates a perturbative expansion around
the model’s non-interacting limit (albeit to high order),
which is in general not a good reference for the strongly
interacting system. In contrast, in this work we use the
DiagMC approach to evaluate the dual-fermion expan-
sion. As discussed in Sec. III A 1, it may be expected
to converge quickly whenever the impurity model consti-
tutes a good reference for the lattice model’s exact solu-
tion, in particular in both the weak- and strong-coupling
limits. Most of the sampling algorithm is a straightfor-
ward generalization of the conventional DiagMC method
for the Hubbard model, which has been described be-
fore in detail in Refs. 27 and 31. In the following we
give a self-contained description of the algorithm’s essen-
tial steps because readers from the DF community may
not be familiar with DiagMC, while some peculiarities of
DF diagrammatics that need to be accounted for in the
sampling process may not be obvious to DiagMC practi-
tioners.

1. Configurations

In the present work, we focus on computing the dual
self-energy Σ̃kνσ by sampling the corresponding DF di-
agrams with diagrammatic Monte Carlo. The result de-
termines the lattice self-energy via Eq. 7 and hence all
single-particle properties. The DF diagrams that define
the set of valid configurations consist of one or more
four-point vertices γσ1σ2σ3σ4

νν′ω connected by dual propa-

gator lines G̃
(0)
kνσ. In any given configuration, all spin,

momentum, and frequency indices are fixed to specific
values, such that the complex weight of the configura-
tion is directly given by the product of the vertices and
propagators at these indices. The values of these dia-
grammatic building blocks are usually determined by an
initial DMFT calculation, which yields the impurity ver-
tex γimp, hybridization function ∆, and impurity Green’s
function g and hence fixes the dual propagator (6).

We note that, unlike typical second-order and ladder
DF calculations, we do not use a diagrammatic theory
with symmetrized vertices, i.e. in our case all propagators
connected to a given interaction vertex are considered
distinct for the purpose of enumerating diagram topolo-
gies. A consequence is that the value of the interaction
vertex γ in our diagrams differs from the impurity ver-
tex γimp by a constant factor to avoid double counting:
γ = 1

4γ
imp. For a more detailed explanation of this sub-

tlety the reader is referred to appendix A.
For numerical convenience, we choose to work in mo-

mentum and imaginary-frequency space because here the
vertices are easily representable by a table for the dif-
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ferent frequency and spin configurations. Working in
imaginary-time space would have the advantage of purely
real diagram values but require interpolation of the ver-
tex in imaginary time and careful treatment of nonana-
lyticities in the vertex’s time-dependence.

The sampled self-energy diagrams formally have two
open ends (truncated in- and out-going lines), but it is
convenient27 for handling the configurations to use an in-
ternal representation where the open ends are connected
with a dummy propagator whose weight is one, so that
the diagram has no open ends. Since this dummy line
carries the momentum, frequency and spin index of the
self-energy diagram, which need to be queried at each
measurement, one refers to it as the “measuring propa-
gator”.

Since momentum and frequency conservation would
prevent any local update from changing the momentum-
and frequency indices of a line or vertex, we need to en-
large the configuration space to include unphysical dia-
grams where 4-momentum conservation is violated in two
locations. In the spirit of the seminal worm algorithm,32

following Ref. 27, we call these two locations “worms”,
denote them by the symbols I (“Ira”) andM (“Masha”),
and say that an excess 4-momentum δ flows from M to
I.

Additionally, we include an artificial normalization di-
agram in the configuration space that has the form of a
Hartree diagram where the interaction vertex is replaced
by a dummy vertex with unit weight. The only nontrivial
element of this diagram is hence a single dual propagator,

whose integral
∫

(dk)|G̃(0)
k | is straightforwardly evaluated

numerically. Together with the number of times Mnorm

this diagram is measured, the normalization factor re-
lating measurements to diagram value is then known as

N =
∫

(dk)|G̃(0)
k |/Mnorm.

Since the value of a configuration is a complex num-
ber, we need to store its complex sign (or phase) along
with the configuration. Accepted Monte Carlo updates
generally update the sign by the phase factor correspond-
ing to the move: s ← s · sgn(wc′/wc) with the complex
sign function sgn(z) ≡ z/|z| and wc the complex weight
of configuration c, i.e. the product of all vertices and
propagators in c. In order to avoid the accumulation of
rounding errors, the sign is reset whenever the normaliza-
tion diagram is encountered; in this case, the diagram’s

sign sgn(−Σ̃
(0)
kνσ) is determined by the value of the only

non-trivial propagator and a factor of -1 to account for
the presence of one fermion loop.

2. Updates

In the following we describe a sufficient set of Monte
Carlo updates for sampling the diagrammatic space of
dual self-energy diagrams ergodically. For every Monte
Carlo step, one of these update types is randomly pro-
posed with equal probabilities and accepted or rejected

according to the Metropolis scheme. When stating pro-
posal probabilities for specific moves, we do not include
the implicit factor 1/Nupdates because it will drop out
whenever an acceptance ratio is calculated. We use the
symbols P for proposal and A for (complex) acceptance
weights. The meaning of a complex A is that the update
is accepted with probability |A| and in case of acceptance
the sign of the new configuration will differ from the old
one by a factor sgn(A).

CWO

DWO

δI

M

FIG. 1. The CWO update creates a pair of worms with excess
4-momentum δ on a random vertex corner. The converse
DWO move removes a pair of worms in the same location.

a. Create/Delete Worms (CWO/DWO) The sim-
plest pair of updates creates transitions between the
physical and worm sectors. If the diagram is already in
the worm sector, the CWO update is trivially rejected,
otherwise it creates a pair of worms on a random corner
of a random vertex. For simplicity, the excess momentum
δ is drawn from a uniform distribution over the Brillouin
zone Pδ = U([−π, π)d) and the excess frequency ∆ from
a discrete set of bosonic frequencies −ωN∆

, . . . , ωN∆
with

equal probabilities P∆ = 1/(2N∆ +1). In practice a win-
dow width ωN∆ ∼ 10πT is a good compromise between
high acceptance probabilities and efficient changes of fre-
quency indices. The proposal probability for a specific
CWO move is hence PCWO = PδP∆/4n, where n de-
notes the number of vertices in the current diagram.

The converse DWO update is even simpler: If the
worms I and M exist and are located on the same cor-
ner of a vertex, they are deleted and the diagram be-
comes physical again. Otherwise, the update is trivially
rejected. We are therefore left with the trivial proposal
probability PDWO = 1.

The postulate of detailed balance between these up-
dates implies the acceptance ratio

RCWO ≡
ACWO

ADWO
=
PDWO

PCWO
CW (n, δ)

=
4nCW (n, δ)

PδP∆
. (8)

Here we have made use of the fact that the unphysical
worm sector can be associated with an arbitrary weight
factor CW , which can be tuned to improve sampling ef-
ficiency. In particular, the choice CW (n, δ) = PδP∆/4n
ensures that all allowed updates are accepted.
b. Move Worm along Line/Vertically/Horizontally

(MWL/MWV/MWH) Once a pair of worms has been
created, the diagram’s 4-momentum indices can be
changed by moving either of the worms to a neighbor-
ing vertex corner. We allow for three directions, namely
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k
δ

MWL

k + δ
δ

γωνν′ δ MWV γω+∆
ν−∆,ν′+∆

δ

γωνν′

δ

MWH γων−∆,ν′

δ

FIG. 2. The MWL/MWV/MWH updates move a worm to
a neighboring location and update momentum and frequency
indices of the touched propagator or vertex accordingly. The
pictures show the moving of I. MovingM has the same effect
except that the sign of the 4-momentum δ = (∆, δ) is flipped.

along the propagator line that starts or ends in the cur-
rent position (MWL), or to the neighboring corner of
the current vertex in vertical direction (MWV), or to the
horizontally neighboring corner (MWH). Each of these
moves chooses one of the worms I or M with proposal
probability 1/2 and is balanced with itself. The accep-
tance ratios are therefore directly given by the ratios be-
tween the new and old values of the element (propagator
or vertex) whose 4-momentum indices are changed.

Implementation of these updates requires some care
regarding a consistent treatment of the frequency indices
of vertices with one or more adjacent worms. The sim-
plest algorithm is achieved by the convention that any
excess frequency enters the diagram between the end of
the propagator and the (amputated) leg of the vertex.
Then, the MWL update only affects the value of a prop-
agator, whereas the MWV and MWH moves only change
the adjacent vertex. The resulting acceptance ratios are
then simply

RMWL = G̃′/G̃, RMWV = γ′/γ = RMWH , (9)

where G̃ = G̃kνσ and G̃′ = G̃k±δ,ν±∆,σ denote the prop-
agators with old and new 4-momentum indices, respec-
tively, and correspondingly for the vertex.

c. Reconnect Worm Lines (RWL) Diagram topol-
ogy is changed by reconnecting a pair of propagators, i.e.

k

k′

δ

RWL

k

k′

δ′

FIG. 3. The RWL update reconnects the lines adjacent to
the worms. In this example, the new excess 4-momentum is
δ′ = δ + k − k′.

swapping the locations where the lines end (or where they
start). Due to spin and 4-momentum conservation, this
is only possible if the worms exist and are both at the end
(or both at the start) of different propagators with equal
spin indices. Otherwise the update is trivially rejected.
The move does not change the variables associated with
the reconnected lines, only the excess 4-momentum δ as-
sociated with the worms changes by the 4-momentum
difference k−k′ between the two lines. Furthermore, the
update may change the number of fermion loops in the
diagram. In fact, a moment of thought reveals that it
will either merge two loops into one (if both lines were
part of distinct loops before) or split one loop into two (if
the lines belonged to the same loop). Therefore the total
number of fermion loops always changes by ±1 and hence
the diagram’s complex sign is multiplied by the factor -1.
In conclusion, the acceptance ratio of this self-conjugate
update is

RRWL = −CW (n, δ′)/CW (n, δ). (10)

With the above choice for CW , |RRWL| = 1 unless the
new excess frequency would be too large and P∆′ = 0 =
CW (n, δ′).

σk

σ′k′

δ

AIV

RIV

γ

σ, k + δ

σ′, k′

σ, k

σ′, k′ + δ

FIG. 4. The AIV update replaces the worms by a new in-
teraction vertex γ. If σ 6= σ′, we may alternatively create
a vertex with different spin configuration by connecting the
(σ, k)-line to the lower right and the (σ′, k′ + δ)-line to the
upper right corner. The converse move is called RIV.

d. Add/Remove Interaction Vertex (AIV/RIV) The
most complex pair of updates changes the diagram order.
The AIV update is only possible in the worm sector, if
the worms are adjacent to different propagator lines, and
if the diagram order n is smaller than the maximum al-
lowed order N∗. In this case a new interaction vertex can
be inserted into the propagators adjacent to I and M.
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The new vertex carries the worms’ excess 4-momentum
δ from one propagator to the other, such that the worms
can be deleted and we are left with a physical diagram of
order n+ 1. If both affected propagators carry the same
spin index σ = σ′, we insert the vertex’s upper corners
intoM’s line and the lower corners into I’s line, such that
the configuration resulting from the move is completely
determined by the worms’ positions and 4-momentum
and the proposal probability is one. Otherwise, one of
the two spin configurations γσσ

′σ′σ or γσσ
′σσ′ needs to

be chosen. We do so with equal probabilities, so that in
general the proposal probability is PAIV = 1/(2− δσσ′).
Note that, if σ 6= σ′, the spin configuration of the cre-
ated vertex uniquely determines what corner each line
can be connected to and, if the spin exchange configura-
tion is chosen, the lines are effectively reconnected like in
the RWL update such that the number of fermion loops
changes by ±1 and the diagram’s complex sign needs
to be multiplied by -1. A final subtlety concerns the
case when one of the worms is adjacent to the measuring
propagator. For definiteness we use the convention that,
if the vertex is inserted into the measuring propagator,
the dummy line will become an outgoing line of the new
vertex.

The converse RIV update is trivially rejected if the
configuration is already in the worm sector or its order is
n < 2. Otherwise, a random interaction vertex is chosen
and deleted. Since the converse update never creates a
vertex at the end of the measuring propagator, we must
not remove the vertex at the end of the dummy line and
can only choose from n − 1 vertices. The deletion of a
vertex results in four dangling propagators. If all carry
the same spin index, we merge those that were connected
to the vertex’s upper corners into a single propagator and
correspondingly for the lower ones. If there are different
spin indices, the lines with equal spin must be merged and
a sign flip due to changed fermion loop count occurs if
an upper line merges with a lower line. Since the merged
propagators were typically carrying different 4-momenta,
momentum conservation will be broken at one of their
ends. This mismatch is accounted for by creating a worm
at one end of each propagator. Whether the worm is put
at the start or end of a line is arbitrary and we choose
randomly between the 2·2 = 4 possible configurations, so
the overall proposal probability is PRIV = 1/[4(n− 1)].

Taking into account that the diagrammatic rules as-
sociate with each diagram order a factor −T/(2π)d, we
arrive at an acceptance ratio

RAIV =
1/4n

1/(2− δσσ′)
·
−sFTγ′(

∏4
i=1 G̃

′
i)/(2π)d

(
∏2
i=1 G̃i)CW (n, δ)

= −
sF (2− δσσ′)Tγ′(

∏4
i=1 G̃

′
i)

4(2π)dn(
∏2
i=1 G̃i)CW (n, δ)

, (11)

where sF = −1 if the updates change the number of
fermion loops and +1 otherwise, n is the diagram order
before the AIV update, the primed quantities denote the

vertex and propagators inserted by AIV, and the non-
primed G̃i the replaced propagators.
e. Switch To/From Normalization sector

(STN/SFN) As the names suggest, these updates
switch between the normalization and physical sectors.
For simplicity, they are only allowed for Hartree-like
first-order diagrams, i.e. a single vertex whose upper
(or lower) corners are connected by a dual propagator
and the lower (or upper) corners by the measuring
propagator. If the vertex is a physical interaction vertex
γ, the STN update replaces it by a dummy vertex with
unit weight. If, on the other hand, the old configuration
was the normalization diagram, the SFN update replaces
the dummy vertex by a physical interaction. Further-
more, we allow for a change of spin indices during this
update. This is crucial in ensuring that diagrams with
all possible spin indices are sampled, for example both
configurations where all propagators carry the same spin
and the ones with different spin indices. Specifically,
when going to the normalization sector, we randomly
choose the spin assigned to the upper corners of the
dummy vertex σ =↑ or ↓ and set the spin on the lower
corners to −σ. When leaving the normalization sector,
however, we set the spin indices at the upper and lower
corners, respectively, to independent random values. We
therefore have proposal probabilities PSTN = 1/2 and
PSFN = 1/4 and are left with the acceptance ratio

RSTN =
G̃′

2γG̃
. (12)

Here we have included the ratio of propagators before and
after the update in order to allow for the possibility of G̃
depending on its spin index. In the paramagnetic phase
they will generally be the same and RSTN = 1/(2γ).
f. Swap Measuring Propagator (SMP) This update

is not necessary for ergodicity, but it is simple and im-
proves the efficiency of sampling different spin and 4-
momentum indices of the dual self-energy. It randomly
chooses any propagator in the diagram and makes that
line the measuring propagator while converting the pre-
vious measuring propagator to a regular propagator line.
Since the proposal probabilities for a move and its in-
verse are identical, the acceptance ratio is just given by
the ratio of the changed propagators’ values.

3. Measurements

After each update, a measurement can be performed
according to the standard DiagMC protocol: If the cur-
rent configuration is the normalization diagram, the nor-
malization counter is incremented and the measurement
is finished. If the current diagram is physical, i.e. not in
the worm sector and not reducible, the momentum, fre-
quency and spin indices of the measuring propagator are
retrieved, projected onto a suitable basis (like a momen-
tum grid or lattice harmonics basis as detailed below),
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and the diagram’s complex sign is added to the accu-
mulator(s) for the corresponding basis function(s). If an
unphysical diagram other than the normalization one is
encountered, no action is required.

As usual in DiagMC, one-particle irreducibility of the
diagram can be efficiently checked by taking advantage
of momentum conservation: If the diagram is reducible,
there is at least one other line with exactly the same 4-
momentum index as the measuring propagator. Since in
an irreducible topology two lines will almost never have
the same 4-momentum, we can treat any such configura-
tion as reducible and hence unphysical. Such a check for
the presence of a line with a given momentum is much
more efficient than a global topology inspection. In par-
ticular, if a suitable hash table is maintained by the up-
dates, the check can be performed in constant time.

Stochastic error bars on our results are produced by a
jackknife analysis over M independent runs, with typi-
cally M ≥ 96. Each run is first equilibrated by perform-
ing a number of updates without measurements. In all
the cases presented in this paper, autocorrelation times
are several orders of magnitude smaller than the 107 ther-
malization steps we typically perform.

4. Optimizations

Here we mention a few optimizations that greatly re-
duce the numerical effort required for a given simulation.
Some of these are well-known in the dual-fermion or Di-
agMC communities, respectively, whereas others are spe-
cific to the DiagMC sampling of DF diagrams and have
not been described before.

a. Storage of impurity functions In practical calcu-
lations, the frequency-dependent quantities γνν′ω,∆ν , gν
can only be stored up to a finite cutoff frequency. How-
ever, we strongly mitigate cutoff effects by replacing
propagators beyond the cutoff frequency by their asymp-
totic high-frequency tails (up to fourth order in 1/ν)
and vertices by their high-frequency limit γσ1σ2σ3σ4 →
U(δσ1,−σ2δσ2,σ3 − δσ1,σ2δσ2,−σ3). For the temperatures
considered in this study all cutoff frequencies could be
chosen large enough to have no practical relevance.33

Furthermore, the use of symmetries allows for a sig-
nificant reduction in memory requirements for storage
of the vertex. In the paramagnetic phase only two spin
configurations need to be stored explicitly, e.g. γ↑↑↑↑ and
γ↑↑↓↓. The other non-vanishing configurations can be re-
constructed from these as

γ↓↓↓↓ = γ↑↑↑↑, (13)

γ↓↓↑↑ = γ↑↑↓↓, (14)

γ↑↓↓↑ = γ↓↑↑↓ = γ↑↑↑↑ − γ↑↑↓↓. (15)

Last but not least, values for negative bosonic frequencies
ω < 0 are related to values at ω > 0 by time reversal
symmetry

γνν′ω = γ∗−ν,−ν′,−ω (16)

and do hence not need to be stored explicitly.

b. Disconnected diagrams The RIV and RWL up-
dates as described above may generate a disconnected
diagram by removing the only vertex or reconnecting the
only two propagators connecting two subgraphs. These
disconnected diagrams will be in the worm sector with
one worm on each subgraph, so it is impossible to create
a disconnected diagram in the physical sector by moving
the worms to the same location and invoking the DWO
update. For this reason, measurements do not need to
explicitly check for disconnected diagrams. Creation of
unphysical disconnected diagrams can be suppressed al-
together by setting the worm weight for vanishing excess
momentum CW (δ = 0) = 0. Due to momentum conser-
vation, zero is the only allowed value for δ when there is
no path between the two worms. If there is such a path,
on the other hand, the diagram is connected and δ = 0
will almost never appear when continuous momenta are
sampled, so that such events have a vanishing contribu-
tion to overall statistics.

c. Measurement in symmetry-adapted basis Sam-
pling of a momentum-dependent quantity like Σ̃k con-
stitutes a classic example of a bias-variance tradeoff: Re-
construction of the k-dependence with high resolution,
e.g. by measuring on a fine k-grid, implies large stochas-
tic errors because only few samples effectively contribute
to each basis function. The stochastic errors can be re-
duced by choosing a lower resolution and effectively av-
eraging over more samples, but this increases the bias of
projecting the continuous function on a smaller number
of basis functions.

Use of spin, time-reversal, and point group symme-
tries allows to reduce the number of independent ba-
sis functions and hence the variance without introduc-
ing an unphysical bias. Additionally, the self-energy is
known to decay in real space, so capturing its value
on short to intermediate distances is in general more
important. For these reasons, we measure Σ̃k in a
lattice-harmonics basis, i.e. measurements are projected
on symmetry-adapted combinations of cosniki with in-
tegers ni = 0, . . . , nmax. As these integers directly corre-
spond to distances in real space, a cutoff to ni ≤ nmax

effectively corresponds to a restriction of Σ̃r to a finite
area in real space. We stress that the complete simula-
tion is performed for an infinite system with continuous
momenta and only the measurements project on a finite
basis. Variation of nmax during the evaluation allows for
a simple a posteriori -check that the chosen basis is large
enough and does not introduce any significant artifacts.
For details on the generation of suitable basis functions
for a given lattice the reader is referred to Ref. 31.

d. Frequency range of the dual self-energy The dual
self-energy decays quickly with frequency because the
leading-order tails of the lattice and impurity self-
energies agree. Therefore it is often beneficial to re-
strict the sampling process for Σ̃ν to a finite window
ν ∈ [−νc, νc] by rejecting any update that would set the
measuring line’s frequency to a value outside this win-
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dow, and checking a posteriori that the window was large
enough.

e. Local propagators A large fraction of valid di-
agrams contains at least one local propagator, i.e. a
propagator line whose both ends are connected to the
same interaction vertex. If this line represents the bare
dual propagator G̃(0) based on the DMFT hybridization
∆DMFT, we know it to be purely non-local per the discus-
sion below Eq. (7). In other words, the line’s momentum
integral will vanish and all diagrams with local propa-
gators do not contribute to the final result. In order
to avoid spending a major part of the simulation time
on the sampling of these irrelevant diagrams, the gen-
eration of configurations with local propagators should
be suppressed altogether. In fact it is straightforward
to add a check to the topology-changing updates RWL
and RIV that rejects any move that would create a lo-
cal propagator. Note that this optimization cannot be
employed when the dual-fermion expansion is based on
a different hybridization ∆ 6= ∆DMFT because then the
bare dual propagator generally does have a non-vanishing
local contribution.

C. Diagrammatic Determinant Monte Carlo

We briefly describe the DDMC algorithm we use for
the benchmarks. DDMC stochastically sums the weak-
coupling expansion series for the finite-temperature par-
tition function Z (for details, see Refs. 34 and 35). Ex-
panding Z with respect to the interaction U generates
the standard Feynman diagrammatic series: at a given
expansion order p there are (p!)2 diagrams corresponding
to all possible ways of connecting p four-pole interaction
vertices by single-particle non-interacting propagators.
Given a fixed configuration of p vertices, summing over
all the interconnections for each spin component amounts
to computing a determinant of a p× p matrix consisting
of non-interacting propagators. This effectively reduces
the factorial scaling of computational complexity with
the typical diagram order N to N3. Deterministic sum-
mation of all the diagrams for a particular vertex configu-
ration by means of calculating determinants is what con-
trasts DDMC with DiagMC. In DiagMC self-energy dia-
grams have to be sampled one by one since they cannot
be collected into a single determinant. In addition, the
particle-hole symmetry of the half-filled Hubbard model
on a bipartite lattice36 allows to change the sign of U
by an exact mapping that makes the expansion in terms
of such determinants sign-positive. Therefore this ex-
pansion can be efficiently summed by a straightforward
Metropolis-type scheme, which does not suffer from the
fermionic sign problem. A Monte Carlo configuration is a
particular arrangement of p vertices on the lattice and in
continuous imaginary time, while the updates are sam-
pling over all possible arrangements and different num-
bers of vertices p.

Since Z is an extensive quantity, one has to confine the

simulation volume to a finite lattice of L × L sites with
periodic boundary conditions (phase-twisted boundary
conditions can also be used to reduce shell effects35). On
a finite lattice, the diagrammatic series converges, and
thus DDMC produces numerically exact results for a sys-
tem of finite linear size L. An extrapolation with respect
to L → ∞ – based on data obtained for several values
of L – is therefore necessary to claim unbiased results in
the thermodynamic limit. The maximal accessible sys-
tem size is limited by the efficiency of the algorithm, the
bottleneck of which is the calculation of determinants for
each diagram order p. Thus the computational complex-
ity of DDMC on a square lattice scales as35 [U ∗ L2/T ]3

and systems of sizes up to L ∼ 20 can be reliably ad-
dressed in the range of parameters studied here. This is
typically sufficient for obtaining thermodynamic-limit re-
sults with acceptable error bars for the purpose of bench-
marking the approximate methods studied here.

IV. RESULTS

In the following we present detailed benchmarks of
the technique. For different representative parameter
regimes, we evaluate the convergence properties of the
dual-fermion series including all topologies with two-
particle interactions. In particular we compute dual and
lattice self-energies for successively higher values of the
diagram-order cutoff to study the convergence of the di-
agrammatic series and compare these results to the fre-
quently used second-order and ladder approximations to
the DF series. By the latter we mean the ladder approx-
imation in the symmetrized theory, which contains con-
tributions from the horizontal and vertical particle-hole
channels. We note that these approximations employ a
self-consistent renormalization of the dual propagators
while we sample diagrams with bare propagators in Di-
agMC@DF. We further refer to ladder DF results for
which the hybridization has been adapted to fulfill the
self-consistency condition

∑
k G̃kνσ = 0 in terms of the

renormalized propagators as self-consistent results (see
Sec. III A). Except for the comparison in Sec. IV E, all
our DiagMC@DF results are based on the DMFT hy-
bridization ∆DMFT.

At half filling (Sec. IV A), comparisons to numerically
exact DDMC simulations allow us to validate converged
results and assess the effects of neglecting higher-order
vertices. Having obtained a good understanding of the
DF series’ behavior in different interaction and temper-
ature regimes we then turn to densities away from half
filling (Sec. IV B), where numerically exact techniques
are lacking in general. Finally, we address some tech-
nical questions regarding the DF approach and possible
improvements in Secs. IV C - IV E.

The reader can find raw data from all our simulations
in the supplemental material of this manuscript.37 This
includes the hybridization function used as input for the
DiagMC@DF calculations and lattice self-energies ob-
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FIG. 5. Dual (top) and lattice-fermion (bottom) self-energy
at the lowest Matsubara frequency along the high-symmetry
lines of the Brillouin zone for moderate interaction U = 4 and
temperature T = 0.5 at half filling n = 1. The imaginary part
of Σ̃ has been multiplied by a factor of two for better visibility.
Different colors correspond to diagram order cutoffs N∗ = 1
(DMFT), 2, 4, 6. Grey crosses indicate results from the one-
shot (×) and self-consistent (+) ladder approximation, circles
the DDMC benchmark. Real (imaginary) parts are shown
with solid (dashed) lines. Stochastic errors on DDMC and
DiagMC@DF data are displayed as vertical bars, but often
indiscernible because they are smaller than the line width.

tained by DiagMC@DF as well as the ladder DF approx-
imations, DDMC and DiagMC benchmarks.

A. Dual-fermion expansion at half filling

We first concentrate on three representative values of
the interaction, namely U = 4 (Fig. 5), 8, and 12 (Fig. 6)
at moderate temperature T = 0.5. The first interaction
value is on the weak-coupling side of the phase diagram
and smaller than the critical value for the finite temper-
ature Mott transition within DMFT (Uc = 9.35) and cel-
lular DMFT (Uc = 6.05).38 The second case corresponds
to the strong-correlation regime with possible relevance

to the cuprate superconductors and the last one to the
strong-interaction regime. Figures 5 and 6 show the mo-
mentum dependence of dual and lattice self-energies at
the lowest Matsubara frequency ω0 = iπT . In all cases
rapid convergence with diagram order to the exact solu-
tion is apparent: While the first-order result corresponds
to the momentum-independent DMFT self-energy, the
second-order diagrams already contribute a major part
of the correct momentum variation and fourth-order re-
sults are essentially indistinguishable from the exact so-
lution. For comparison, we also indicate results from the
popular DF ladder approximation: Grey × symbols cor-
respond to the one-shot ladder approximation whereas
+ symbols represent lattice self-energies resulting from
self-consistent ladder calculations. We do not display
dual self-energies for the self-consistent calculations be-
cause dual self-energies cannot be meaningfully compared
when they are based on different hybridization functions.
While differences between the one-shot ladder approx-
imation and the converged dual self-energy prove that
non-ladder diagrams do give a non-zero contribution, a
self-consistent adjustment of the hybridization function
is apparently enough to reproduce very accurate results
for the lattice self-energy at this temperature, which con-
firms what has been found in earlier benchmark compar-
isons.11 We do not explicitly show results from calcu-
lations that iterate the second-order approximation to
self-consistency; we found that this scheme typically un-
derestimates the self-energy and is inferior to both the
one-shot realization of the second-order approximation
and the self-consistent ladder approximation.

The impressive agreement between the converged re-
sults for the lattice self-energy and DDMC reference data
further shows that in the considered cases the effect of
higher-order interaction vertices must be essentially neg-
ligible. We discuss this point below in more detail. We
note, however, that the efficiency of the DDMC and Di-
agMC@DF algorithms at high temperature and moder-
ate coupling allows us to resolve small differences in the
imaginary part of the self-energy throughout the Bril-
louin zone for U = 4 and at some k points for U = 8.
Since it would be impossible to resolve such small dif-
ferences at lower temperatures or stronger interactions,
where error bars are significantly larger, we consider con-
verged self-energies with deviations from the benchmark
|∆Σ|/|Σ| < 1% as exact. One should however keep in
mind that there is no reason in general why contribu-
tions from higher-order vertices should vanish identically
and benchmarks with sufficiently high accuracy will be
able to resolve the effect of neglecting a small but nonzero
contribution.

Figure 7 shows the frequency dependence of the lattice
self-energy for the example of U = 12. It is obvious that
the nonlocal corrections quickly decay with frequency be-
cause the high-frequency tail of the self-energy is local
and accurately captured by DMFT. The real and imagi-
nary parts of the dual self-energy decay with O(1/ω2

n)
and O(1/ω3

n), respectively, so that the DF result for
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FIG. 6. Dual (top) and lattice-fermion (bottom) self-energy at the lowest Matsubara frequency along the high-symmetry lines of
the Brillouin zone at half filling and T = 0.5 for stronger interactions U = 8 (left) and U = 12 (right). For better visibility, the
imaginary parts of the dual self-energies have been magnified by factors of 2 and 10, respectively. See Fig. 5 for an explanation
of the different lines and symbols.

the lattice self-energy inherits the exact high-frequency
asymptotics from the DMFT solution. This is an advan-
tage over the DΓA and 1PI approaches, where the correct
high-frequency behavior must be enforced by additional
correction factors, unless the self-energy is computed in
the parquet approximation. In the following we will con-
centrate on the lowest Matsubara frequency, where the
non-local corrections are largest.

At lower temperatures, the DF series converges sig-
nificantly less quickly as can be seen in the examples of
Fig. 8, which shows lattice self-energies for the same in-
teractions as before but at lower T . Additional issues are
apparent in the different subplots. At U = 4, T = 0.2 the
series seems to converge slowly towards the correct solu-
tion. In this case a sign problem makes it computation-
ally very expensive to converge the stochastic DiagMC
error bars for higher diagram orders and ultimately pre-
vents us from examining series convergence properties at
even lower temperatures. This sign problem is likely con-
nected to the fact that the metallic dual-fermion propa-
gators in Matsubara-frequency space G̃(k, iωn → 0) ac-
quire large values close to the Fermi surface. It could in

principle be resolved by performing the DiagMC sam-
pling in a different representation such as imaginary-
time space. The latter is standard practice for conven-
tional DiagMC schemes sampling the weak-coupling ex-
pansion,27 where no temperature-dependent sign prob-
lem is observed in the Fermi liquid regime. Unfortu-
nately, the Fourier transform of the reducible vertex to
imaginary times is numerically much less convenient and
contains delta functions whenever two or more time ar-
guments coincide. We therefore defer this issue to further
studies.

In contrast to the previous cases, at U = 12, T =
0.25, the series slowly converges towards a self-energy
that differs significantly from the exact solution, whereas
at U = 8, T = 0.3 there are no signs of convergence at all.
The self-consistent ladder result however, in which the
diagrams are evaluated using renormalized propagators,
is still close to the DDMC result. Also on the strong-
interaction side U = 12, series divergence can be observed
at lower temperatures, as demonstrated in Fig. 9. Here
the dual self-energy quickly becomes so large that poles
appear in the mapping of the dual to the lattice self-



13

0 5 10 15
ωn

10

0

10

Σ
(ω

n
)

U= 12, T= 0.5

DMFT
order 6

Γ

X
M

FIG. 7. Lattice self-energy for U = 12, T = 0.5, n = 1 at the
high-symmetry points Γ(0, 0), X(π, 0), and M(π, π) plotted
versus Matsubara frequency ωn. Shown are the 6th-order
DiagMC@DF result (yellow filled symbols) and the DDMC
benchmark (open black symbols) as well as the momentum-
independent DMFT data (blue lines). Symbols referring to
real and imaginary parts are connected by solid and dashed
lines, respectively.

energy Eq. (7) and no meaningful lattice self-energy can
be computed.

1. Temperature scale where DF expansion breaks down

For all considered interactions, convergence of the DF
expansion with diagram order becomes slower at low tem-
peratures and eventually the series even starts to diverge.
Figure 10 gives an overview of where in the T −U plane
these problems start to appear: The crossover from fast
to slow convergence and further to divergence is visible in
the succession of green circles, yellow squares, and red di-
amonds. We classify a case as slowly convergent when the
self-energy appears to converge to a finite result, but the
fourth-order result still differs significantly from higher
orders, such that an accurate determination of the con-
verged result becomes challenging. Cases marked as di-
vergent show no sign of convergence up to sixth order.
Red crosses indicate cases where the series converges to-
wards a result that differs significantly from the exact
solution. We note that at U = 8 series divergence sets in
at rather high temperature, whereas at U = 12 there is
a comparably broad window 0.25 . T . 0.4 where the
series converges to a quantitatively incorrect but qual-
itatively reasonable solution before the series becomes
divergent at even lower temperature.

In all cases the breakdown regime agrees rather well
with the temperature range where the system devel-
ops significant magnetic correlations. Physically, both
short-range correlations become stronger and the corre-
lation length grows exponentially with 1/T after entering
into the renormalized classical regime, known to cause
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FIG. 8. Lattice self-energies at half filling and lower temper-
atures. The parameters are U = 4, T = 0.2 (top), U = 8,
T = 0.3 (center), and U = 12, T = 0.25 (bottom). See Fig. 5
for an explanation of the different lines and symbols.

a pseudogap phenomenon.40,41 Short-range magnetic or-
der is directly accessible in our DDMC reference simula-
tions via the nearest-neighbor magnetic correlation func-
tion Cs = −4〈Szi Szi+1〉 (normalized such that the max-
imum possible value is unity). In Fig. 10 we indicate
the approximate locations where Cs has grown to 20%
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FIG. 10. Overview of our DiagMC@DF simulations at
half filling (filled symbols). Red diamonds mark parame-
ters where the DF series appears to diverge. Green cir-
cles (yellow squares) indicate rapid (slow) series convergence,
red crosses convergence to incorrect results. For compari-
son, the lines show DMFT Néel temperatures from Ref. 39
and temperatures where nearest-neighbor spin correlations
Cs = −4〈Szi Szi+1〉 or the correlation length ξ reach a given
value (see main text for details).

and 25%, respectively. As a proxy for the development
of quasi-long-range correlations, we consider the system
size dependence of the antiferromagnetic structure factor
measured in the DDMC simulations: at the ξ ∼ 4 line
SAFM (L = 8) starts to differ significantly (i.e. by more
than 10%) from SAFM (L = 12), witnessing the presence
of non-negligible correlations over at least half the linear
extent of the smaller system.

In correspondence to the buildup of magnetic correla-

tions in the physical model, DMFT predicts an antifer-
romagnetically ordered state below a finite Néel temper-
ature TDMFT

N , in violation of the Mermin-Wagner theo-
rem. Our DF simulations below TDMFT

N hence use the
metastable paramagnetic solution of DMFT. Since the
impurity construction of DMFT can neither account for
short-range singlet formation nor for quasi-long-range
magnetic correlations, it is not unexpected that at low
temperature the DMFT solution for the half-filled Hub-
bard model is so far away from the exact solution that
the perturbative expansion around the former fails.

Despite the breakdown of the series at low tempera-
ture we find that sampling diagrams up to a low cut-
off can yield reasonable results. For U = 0.8, T = 0.3
and U = 12, T = 0.25 in Fig. 8 the results for a cutoff
of N∗ = 3 are closest to the benchmarks. For U = 4,
T = 0.2 the result can still be significantly improved
by including higher orders, because of the slow conver-
gence of the series. This finding is consistent with the
fact that the particle-hole ladder diagram series with self-
consistently renormalized propagators appears to behave
like an asymptotic series at temperatures significantly
below TDMFT

N : while at second order the approxima-
tion captures the first-order Mott transition at a critical
Uc ≈ 6.64 at T ≈ 0.11 that is close to the value obtained
in cluster approaches,10 higher orders give unphysical re-
sults.42 We note that our DiagMC@DF results cannot be
directly compared to these calculations: First, DiagMC
is not restricted to ladder-type diagrams and second, the
dual Green’s functions in the ladder-type approximation
of order n contain all self-energy insertions constructed
from ladder diagrams up to this order (because they are
included via Dyson’s equation), while in DiagMC@DF
they are limited by the diagram order cutoff.

From Fig. 10 one is tempted to conclude that the
breakdown of the series is directly linked to TDMFT

N .
While this is true for the ladder diagram series in terms
of bare dual propagators which diverges at TDMFT

N ,43 this
need not be the case for DiagMC@DF. Because the algo-
rithm samples all possible topologies, cancellations may
occur. We refer the reader to Ref. 14 for an example
from conventional (weak-coupling) DiagMC where the
bare particle-hole ladder series diverges quickly, whereas
the sum over all topologies stays close to the second-order
result.

The ladder approximation in terms of self-consistently
renormalized propagators, on the other hand, yields a fi-
nite result. Here the self-energy insertions contain ladder
diagrams up to infinite order that describe the fluctua-
tions that destroy the mean-field long-range order. The
result is close to the benchmarks for U = 4, T = 0.2 and
U = 0.8, T = 0.3 (upper and middle panels of Fig. 8), de-
spite the fact that in the latter case the series sampled by
DiagMC@DF appears to diverge. A bold DiagMC@DF
scheme which includes ladder diagrams into the propaga-
tors may improve the convergence. At U = 12, T = 0.25
the series however seems to converge to a value which is
very close to the ladder result, but differs quantitatively
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FIG. 11. Double occupancy of the half-filled model at U = 8
and temperatures T = 0.5, 1. Shown are DF series con-
vergence with diagram order N∗ and finite-size extrapolated
DDMC results. Diagram orderN∗ = 1 corresponds to DMFT.

from the exact result.

2. Scalar observables

The present work concentrates on the non-local cor-
relations, which are completely neglected in DMFT and
recovered by the diagrammatic extension. For this rea-
son we mainly investigate the momentum dependence of
the self-energy. While in principle an accurate determi-
nation of the self-energy implies accurate knowledge of
all thermodynamic one-particle observables, one should
keep in mind that stochastic and systematic error bars on
momentum- and frequency-resolved observables are gen-
erally considerably larger than for a scalar observable. In
some scalar observables one may therefore observe sys-
tematic deviations of the converged DF result from the
exact solution already at temperatures where Σ(k) still
appears perfectly compatible with the benchmarks. This
is demonstrated for the double occupancy in Fig. 11: At
T = 1 the DF corrections lead to a clear improvement
over the DMFT value and the converged DF and DDMC
results match perfectly within small error bars.44 In con-
trast, at T = 0.5 the DF corrections overshoot the bench-
mark, leading to a clear deviation of about 5%. This
example also shows that the inclusion of non-local cor-
relations may, but need not, result in a commensurate
improvement of local correlation functions.

B. Doped Hubbard model

The DiagMC@DF method can be applied without
modification to systems away from half filling. The only
caveat is that non-local corrections generally give rise
to corrections to the charge density, so, if a fixed den-
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FIG. 12. Lattice self-energy at 24% doping for U = 4 and
T = 0.5. Grey bands indicate the estimate from conventional
(weak-coupling) DiagMC calculations. Different colors repre-
sent DiagMC@DF data with varying order cutoff. Real and
imaginary parts are indicated by solid and dashed lines, re-
spectively. Stochastic errors are displayed as vertical bars,
but often indiscernible because they are smaller than the line
width.

sity is to be targeted, the chemical potential needs to
be adjusted self-consistently. Since DDMC calculations
are not feasible for the doped system due to the sign
problem, we first concentrate on the case of moderate
interaction U = 4, where unbiased benchmarks can be
obtained using the standard DiagMC technique.27,30 It
is based on the diagrammatic series in the bare cou-
pling U and non-interacting Green’s function G0 (weak-
coupling expansion), which converges in the regime of
weak to intermediate interactions. Results for a sys-
tem at density n = 0.76 are presented in Figs. 12 and
13 for two different temperatures. In the latter case we
also plot the DiagMC@DF and conventional DiagMC re-
sults for a few selected momenta versus diagram order
cutoff N∗ (lower panels of Fig. 13). The DF expansion
starts from the momentum-independent but frequency-
dependent DMFT self-energy. In the weak-coupling ex-
pansion, on the other hand, the contribution at first order
is the momentum- and frequency-independent Hartree
term ΣH = Unσ. Apparently, the DF series converges
much quicker than the weak-coupling series sampled by
DiagMC. The latter series appears to be close to, and
possibly beyond, its convergence radius, as seen from the
erratic behavior with diagram order and slow, if any, de-
cay of oscillations. The dual series, in contrast, is well
within its convergence radius, with the data showing
a plateau as a function of diagram order beyond order
N∗ = 3. Given the oscillations of data with diagram or-
der and combined systematic and statistical uncertainty
of each data point, both the weak-coupling and DF se-
ries are consistent with the same result for Σ(k) homo-
geneously for all momenta k.45

It is also interesting to compare convergence of the DF
expansion at and away from half filling for the same in-
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FIG. 13. Lattice self-energy at 24% doping for U = 4, T =
0.2. Top: Momentum dependence of Σ(ω0), see Fig. 12 for
an explanation of the different lines. Bottom: Convergence
at the high-symmetry points Γ, X, M (blue, orange, green)
with diagram order N∗ in the DF series (squares connected
by solid lines) and in the weak-coupling expansion sampled
by conventional DiagMC (triangles, dashed lines).

teraction and temperature, e.g. the top panels of Figs. 8
and 13: At half filling, non-local corrections to the self-
energy are at a similar scale as its local part and high
diagram orders contain significant corrections. In the
doped case, on the other hand, non-local corrections are
much smaller (note the scales of the plots) and the sec-
ond order already captures the converged result up to a
few percent. Like in the metallic region at half filling, a
sign problem appears at low temperature and prevents
us from investigating whether the DF series convergence
slows down at even lower temperatures.

At stronger interaction, the weak-coupling series di-
verges very quickly. In contrast, the DF series still fea-
tures rapid convergence as demonstrated for two exam-
ples in Figs. 14 and 15: In both cases the second order
already contains the major momentum-dependent correc-
tion to the DMFT self-energy and orders N∗ = 4 to 6 are
essentially indistinguishable within the stochastic errors.
(We note that at lower temperatures, like the example of
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FIG. 14. Lattice self-energy at 20% doping for U = 12,
T = 0.5. Different colors represent DiagMC@DF data with
varying order cutoff. Real and imaginary parts are indicated
by solid and dashed lines, respectively. Stochastic errors are
displayed as vertical bars, but often indiscernible because they
are smaller than the line width.

Fig. 15, the sampling noise in the highest order is again
rather large.) Similar to the weak-coupling case discussed
above, the comparison to the half-filled case shows that
doping significantly improves the convergence properties
of the DF series at low temperatures: At T = 0.25, the
series for the half-filled model diverges or converges only
slowly for U = 8, 12, whereas for a doping of 20% the
series converges essentially as quickly as at T = 0.5 for
both values of U (only U = 8 is shown). At U = 12 we
find rapid convergence already at a moderate doping of
12.5% (not shown). These findings corroborate the hy-
pothesis that series divergence at half filling is caused by
the development of strong magnetic correlations, which
are effectively suppressed by doping.

1. Scalar observables and high-frequency tails

While doping improves series convergence at low tem-
peratures, a close look at scalar observables such as the
double occupancy draws attention to a subtlety concern-
ing the high-frequency asymptotics of the self-energy that
has not been discussed in the DF literature so far. Fig-
ure 16 shows convergence of the double-occupancy with
diagram order at strong coupling and moderately high
temperature for three different doping levels. These can
be compared to published results obtained by extrapolat-
ing dynamical cluster approximation (DCA) calculations
in cluster size11 and, at half filling, to our own DDMC
data. Away from half filling the DF corrections to the
DMFT result are larger and strongly overshoot the re-
spective reference values, in particular around optimal
doping. This overshooting even results in a pronounced
non-monotonicity in the doping dependence of the DF
observable, which is absent in the reference results.
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The strong increase in the DF corrections to DMFT
away from half filling appears to be linked to the fact
that in the absence of particle-hole symmetry the DF
density, which we iterate to the target density, differs
from the impurity density, which leads to a small but sig-
nificant inconsistency in the high-frequency asymptotics
of the DF self-energy. It is well known that the asymp-
totic behavior of the Hubbard model’s self-energy at large
Matsubara frequencies is exactly determined by the spin
density 〈nσ〉:

Σkνσ = U〈n−σ〉+
U〈n−σ〉(1− 〈n−σ〉)

iν
+O(1/(iν)2).

(17)

In the DF approach this tail is produced by the im-
purity solver. When the impurity density equals the
target density, like in the particle-hole symmetric case,
a quickly decaying dual self-energy Σ̃ ∼ 1/(iν)2 natu-
rally preserves the correct asymptotic behavior. This
is in contrast to the DΓA and 1PI approaches, where
practical approximations such as the ladder approxima-
tion typically lead to incorrect high-frequency tails un-
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FIG. 16. Double occupancy versus order cutoff N∗ at U = 12,
T = 0.5 for three different values of the doping δ = 1 − n.
Points at N∗ = 1 correspond to DMFT. Triangles indicate
cluster-size extrapolated DCA results from Ref. 11, the cir-
cle our DDMC benchmark calculation at half filling. Error
estimates are indicated by black vertical lines.

less the correct asymptotics is enforced by so-called λ-
corrections.6,46 In the absence of particle-hole symme-
try the dual self-energy corrections generally give rise to
a correction of the density with respect to its impurity
value

n− nDMFT = Tr Re[G− g]. (18)

However, we find that this density correction arises al-
most exclusively from the dual self-energy’s values at the
lowest few Matsubara frequencies. At large ν, Σ̃ still
decays quickly and leaves the impurity self-energy essen-
tially unchanged.47

For self-consistent calculations it is in fact easy to
show that the dual-fermion expansion truncated to two-
particle interactions always produces a dual self-energy
that decays at least as fast as O(1/ν2). The reasons
are (1) all local dual self-energy diagrams, i.e. diagrams
where the external legs are attached to the same interac-
tion vertex, vanish due to the self-consistency condition∑
k G̃kνσ = 0 and (2) all other dual self-energy diagrams

cannot have a constant or O(1/ν) tail due to the fast de-

cay of the dual propagator G̃kνσ = O(1/ν2).48 When
at least three-particle interactions are included in the
expansion, there are local diagrams that do not vanish
and can change the self-energy’s tail, in accordance with
the expectation that the DF formalism is exact indepen-
dent of whether the impurity and target densities agree
or not. In our non-self-consistent DiagMC@DF calcula-
tions, Hartree- and Fock-like diagrams with self-energy
insertions on the propagator line may in principle pro-
duce corrections to the tail, too. Our numerical find-
ing that these are small indicates that, independent of
whether self-consistency is employed, high-frequency cor-
rections to the self-energy are mostly contained in the
neglected higher-order vertices. This does not contradict
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our earlier finding that the effect of higher-order vertices
is relatively small: Even in the 12.5% doping case shown
in Fig. 16, the relative density difference – and hence the
expected correction to the high-frequency coefficients –
is only (n − nDMFT)/n = 2.5%. But considering the
importance of the self-energy’s high-frequency behavior
for sum rules and the evaluation of scalar observables a
better treatment would clearly be desirable.

C. Diagram topologies

The DiagMC@DF technique can provide information
about which diagram topologies prevail in the sampling
process: Since the frequency of a specific topology in the
Markov chain is directly proportional to its weight (i.e.
the absolute value of the integrand, averaged over inter-
nal variables), configurations with a large impact on the
result should be sampled frequently (importance sam-
pling). This may in principle provide guidelines, e.g.,
for the construction of computationally cheaper approx-
imations. We note that the choice of updates does not
influence the weight or frequency of a configuration and
hence the topology of the sampled diagrams as long as
it satisfies detailed balance and ergodicity. For the anal-
ysis one needs to bear in mind, however, that, due to
the sign alternation between diagrams, a large sampling
frequency does not necessarily imply a large impact on
the results. A good example we found is diagrams with
local dual propagators which would be sampled over 90%
of the time (if not suppressed, c.f. Sec. III B 4) although
their integral is zero.

In spite of this caveat we examined the topologies
for one specific set of parameters: U = 4, n = 1 and
T = 0.5. We find that the relative frequency of sam-
pling a topology decreases quickly (presumably exponen-
tially) with diagram order. Since the number of topolo-
gies increases factorially with diagram order, the sam-
pling process spends overall more time at the higher or-
ders. Among the higher orders (four or above), the most
frequent topologies are Hartree and Fock diagrams where
the propagator is dressed with complicated self-energy in-
sertions such as particle-hole ladders and bubbles. Their
frequencies are an order of magnitude larger than those
of skeleton diagrams of the same order. If one only con-
siders skeleton diagrams, the most frequent topology at
fourth and fifth order is the particle-particle ladder. How-
ever many other, more complicated, topologies have only
slightly lower frequencies. Due to the large number of
possible topologies, generic topologies are sampled most
of the time and no particular topology stands out. In
particular we do not find that ladder diagrams prevail.

D. Role of one-particle reducible diagrams and
denominator in the self-energy formula

While the dual-fermion expansion in principle pro-
vides an exact expression for the lattice Green’s function,
the validity of its restriction to two-particle interactions
(DF2P approximation) has been questioned.49 This has
motivated the development of the one-particle irreducible
approach (1PI).6 Numerical results indicate that includ-
ing diagrams containing the three-particle vertex has a
small effect over a broad range of interaction values.10

The importance of higher-order interactions in general is
a priori unclear. It has been argued49 that the denom-
inator in Eq. (7) relating the dual- and lattice-fermion
self-energies should be used with care. The reason is
that it generates terms that are reducible with respect
to the impurity Green’s function and that may or may
not be exactly canceled by corresponding contributions
contained in higher-order vertices. Cancellation happens
when the one-particle irreducible (1PI) contributions of
these vertices are negligible. In this case neglecting the
three-particle vertex means the denominator will not be
cancelled even though it should be. If this were to hap-
pen, the denominator should be excluded from a DF2P
calculation. The other possibility is that the sum of di-
agrams containing three-particle or higher-order vertices
may be small as a whole. Then, neglecting them will
have a small effect and the denominator is important.
This raises the important practical question of when the
denominator should be used in DF2P.

To answer this question, we compute the physical self-
energy neglecting the denominator in Eq. (7). The re-
sulting lattice self-energy

Σn.d. = Σimp + Σ̃ (19)

is presented in Fig. 17 for three examples alongside the
original self-energy calculated with the same order cut-
off. At strong coupling the result compares significantly
worse with our exact benchmarks than the original one
obtained from Eq. (7), which supports the conjecture and

previous evidence10 that contributions to Σ̃ containing
higher-order vertices are indeed small in this regime. At
weak coupling the two alternative self-energies can hardly
be distinguished. For U = 4, the denominator is always
very close to 1. The largest deviations from unity at
T = 0.2 are 2% and only 0.3% at T = 0.5. By con-
trast, at U = 8 and U = 12 the deviations reach 30%
and 70%, respectively, already at T = 0.5. Considering
the case of U = 4, T = 0.2, shown in the top panel of
Fig. 17, the drop of the denominator appears to deterio-
rate rather than improve the convergence of Im Σ towards
the benchmark data. The effect is small and neither case
is fully converged with diagram order, so that our results
do not conclusively rule out either possibility. Neverthe-
less, we have not seen a single case so far where dropping
the denominator visibly improves the result. It should
be included in DF2P calculations by default.
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FIG. 17. Modified lattice self-energy (green lines) calculated
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Ref. 6 includes a comparison of results produced by
ladder-approximations to the DF, 1PI, and DΓA ap-
proaches. Some significant differences between the meth-
ods are apparent, but due to the lack of reference data
the different approximations’ respective qualities have re-
mained unclear so far. In this work we have established
a reference by performing numerically exact DDMC cal-
culations. We have found good agreement between con-
verged DF2P results and the DDMC benchmarks for sim-
ilar parameters50 as those used in Ref. 6. One is hence
drawn to the conclusion that, even though additional di-
agrams are included in 1PI, the quality of the approxi-
mation may be worse in some relevant cases. It is clear
that the inclusion of more diagrams in general does not
necessarily improve the quality of a many-body theory
and a more systematic comparison of the performance
of different diagrammatic extensions of DMFT is highly
desirable. DiagMC sampling allows one to perform such
a comparison without biasing the results by a restriction
to specific diagram topologies.

E. Choice of hybridization function

In the DF formalism, the hybridization function
∆(iωn) appears as a free parameter, which can in prin-
ciple be tuned to improve the series convergence behav-
ior. In this case, the expansion is no longer around the
DMFT solution, but around an auxiliary – and possibly
more optimal – reference impurity problem. This is rou-
tinely done in self-consistent ladder DF calculations, for
instance, and one may hope that also for DiagMC@DF
the observed convergence problems at low temperatures
might at least be ameliorated by an optimized choice of
∆. While the input of a different hybridization function
in itself does not require any changes to the sampling
code, there is still a technical complication. Namely if
the hybridization is not the DMFT one, the bare DF
propagator has a local part

∫
dkG̃(0)(k, iωn) 6= 0, so that

diagrams with local propagators cannot be discarded any
more. The corresponding sampling of additional diagram
topologies turns out to considerably increase the compu-
tational effort needed to converge the stochastic errors.
A more fundamental issue, however, is the fact that we
have found no example where the series convergence be-
havior could be significantly improved by tuning the hy-
bridization function. The case at U = 8, T = 0.3 shown
in Fig. 18 exemplifies this: here the DMFT hybridiza-
tion function is metallic whereas the hybridization func-
tion resulting from a self-consistent ladder DF calculation
shows a clear insulating downturn at low frequencies, but
the order-by-order results for the self-energy are very sim-
ilar for the two corresponding expansions. This indicates
that the breakdown of the DF series, at least at half fill-
ing, is not primarily caused by an incorrect metallic or
insulating character of the starting point, but likely due
to the buildup of strong magnetic correlations (see our
discussion in Sec. IV A 1). However, we can not rule out
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sc-ladder hybridization functions that have been used as in-
puts for the two different DiagMC@DF calculations.

that the divergence is of a purely mathematical nature
unrelated to any physics, which is a typical case for the
bare series of the original Hubbard model, as discussed
in Sec. II.

An alternative way of taking advantage of the freedom
of choice in the hybridization function arises in the ab-
sence of particle-hole symmetry, where differences in the
charge density between impurity and dual-fermion results
lead to issues with the high-frequency asymptotics of the
self-energy and the evaluation of scalar observables as
described above in Sec. IV B 1. Here a suitable choice
of hybridization function might alleviate the problem by
reducing, or even eliminating, the density difference.

On a related note, another possibility to improve the
DiagMC@DF scheme similar to the change of hybridiza-
tion function is dressing the dual propagator with a non-
local self-energy and iteration of the sampling process
to self-consistency, similar to, e.g., a fully self-consistent
ladder calculation. Technically, such a change is straight-
forward. One only needs to restrict the sampling process
to skeleton diagrams, which can be achieved by dropping

diagrams with self-energy insertions at the time of mea-
surement; these can be efficiently detected by checking
for propagators with identical momenta, c.f. Ref. 31. In
this work we have restricted ourselves to one-shot cal-
culations and it is not clear whether this type of self-
consistency would improve the convergence behavior of
the expansion. In the standard diagrammatic technique,
self-consistency does not always bring improvement of
convergence properties. Skeleton expansion in terms of
the full Green’s function G often exhibits slower conver-
gence than the expansion in terms of the bare Green’s
function G0 or can even converge to unphysical solu-
tions.16

V. DISCUSSION

We have presented an approach that combines a
diagrammatic extension of DMFT with diagrammatic
Monte Carlo sampling in order to go beyond the leading-
order or ladder approximations that are commonly used
in practical implementations of these extensions. Specif-
ically, we have laid out in detail a DiagMC algorithm
that computes the dual-fermion expansion to high or-
ders, including arbitrary diagram topologies involving
two-particle interaction vertices. Crucially, this allows
one to judge whether and how well the DF series con-
verges in different parameter regimes and provides an
estimate of the systematic error introduced by the trun-
cation of the series to low orders or specific classes of
diagrams. Thus we could systematically investigate the
convergence properties of the DF series for the self-energy
in different parameter regimes.

Our extensive comparisons to numerically exact bench-
marks show that, from high temperatures down to the
vicinity of the DMFT Néel transition, the dual-fermion
series converges very quickly to the exact solution over
the full interaction range. Upon lowering the tempera-
ture further, however, we generically observe slower series
convergence or convergence towards an incorrect (though
often qualitatively reasonable) solution, and ultimately
series divergence. The studied examples in the vicinity
of half filling provide evidence that the buildup of sub-
stantial magnetic correlations, which cannot be captured
by single-site DMFT, leads to a breakdown of the DF
expansion at low temperatures.

In those regimes where the self-energy was observed
to converge quickly with expansion order, a remarkable
agreement with the exact benchmarks shows that higher-
order interaction vertices do not play a significant role.
Here also the popular self-consistent ladder approxima-
tion yields highly accurate results, and in the crossover
regime where the series starts to break down, the self-
consistent ladder often yields at least qualitatively rea-
sonable results for the self-energy. We suggest that,
in cases where DiagMC@DF results are not available,
the difference between one-shot second-order and self-
consistent ladder calculations can give a reasonable esti-
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mate of the quantitative error in the self-energy. In par-
ticular away from half filling we further found that scalar
observables may exhibit significant deviations from our
benchmarks even in regimes where the self-energy is still
quite accurate. Despite the fact that the overall effect of
neglecting higher-order vertices on the self-energy is small
in many regimes, it is desirable to improve the evaluation
of scalar observables when these are neglected.

A. Outlook

For the low-temperature regime where DiagMC@DF
results are not satisfactory, possible extensions may be
considered, namely the inclusion of higher-order vertices,
an improvement of the reference solution, or sampling
of a series in terms of dressed propagators. The first
is straightforward in principle, and the question whether
the convergence problems we found can be linked to trun-
cation of the dual-fermion action certainly deserves fur-
ther studies. However, systematic inclusion of n-particle
vertices with n = 3, 4, . . . would be computationally chal-
lenging due to the exponential growth of the computa-
tional cost of handling higher-order vertices, and the in-
clusion of additional interactions would not cure the ba-
sic problem that a single impurity atom cannot repre-
sent non-local correlations and thence might not be the
best starting point for a perturbative expansion when
such correlations are large. Therefore a more promis-
ing route for practical calculations may be to base the
DF expansion on an improved reference solution, e.g. by
considering cluster impurities, which can capture at least
short-range magnetic correlations already on the impu-
rity level.9 Finally, the sampling in terms of dressed prop-
agators might remove or at least alleviate the breakdown
of the series.

Extension of the DiagMC@DF method to sample
other diagrammatic quantities such as two-particle ver-
tex functions, which give access to susceptibilities and
hence to characteristics of continuous phase transi-
tions, is straightforward along the lines of similar
implementations for the standard diagrammatic tech-
nique.26,28,31 Last but not least, the application of Di-
agMC sampling to other diagrammatic extensions, such
as DiagMC@DΓA and DiagMC@1PI, would allow for a
systematic comparison of the convergence properties of
the different diagrammatic schemes. Work in this direc-
tion is underway. The analysis of the sampled diagram
topologies in DiagMC@DF did not identify any particu-
larly important class of diagrams. Nevertheless, for more
complicated diagrammatic extensions like the dual boson
(DB) approach,4 which contain two types of propagators
and vertices, DiagMC@DB may provide guidelines of how
to construct diagrammatic approximations.
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B. Related work

While our benchmark calculations were running, an
independent work on the new method appeared.51 Our
present work additionally includes a systematic compar-
ison to numerically exact benchmarks for different inter-
actions and temperatures and thus allowed us to map
out the method’s range of applicability and draw conclu-
sions on the relevance of higher-order vertices, the choice
of hybridization function, and the issue of the self-energy
denominator. We cannot directly compare results for the
dual self-energy between the two works because they de-
pend on the exact choice of the hybridization function.
However, we can compare data for the lattice self-energy
at the parameters U = 4, T = 0.5, and half filling as
shown in Fig. 19 for one momentum k = (π, π). We see
that, while the overall results are very similar, there are
some quantitative differences. The second- and third-
order results agree within the symbol size of Ref. 51,
whereas fourth-order results differ noticeably: In Ref. 51
the N∗ = 3- and N∗ = 4-data are indistinguishable in
the neighborhood of the Γ- and M-points, but our re-
sults show a correction of the order of 5% to Re Σ − µ
when going from third to fourth order. In Fig. 19 we
also indicate the effect of reducing the momentum ba-
sis cutoff from nmax = 8 to nmax = 3 (corresponding to
45 and 10 momentum basis functions, respectively, c.f.
Sec. III B 4 c). We can safely rule out that the finite mo-
mentum basis has a large effect on our results. Whether
the discrepancy is due to statistical errors or a more fun-
damental difference is unclear because statistical error
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bars are not specified in Ref. 51. Different choices of
hybridization function will in general also lead to dif-
ferences in order-by-order results and in the effects of
higher-order vertices. We note that even the benchmark
data exhibit a very similar difference: Iskakov et al. com-
pare to a DCA self-energy obtained on a 64-site cluster,
which agrees to the third-order DF result within sym-
bol size at all plotted cluster momenta. At the M-point
both their third- and fourth-order results coincide with
the DCA one Re Σ(k = (π, π), ω0)− µ = 0.175 (and cor-
respondingly for the Γ-point, which is related by particle-
hole symmetry). In our DDMC simulations, on the other
hand, this value is converged to 0.190(5) for linear system
sizes L = 8, 12, 16 and our DF results quickly approach
this value with increasing order N∗ = 4, 5, 6. One likely
reason for the difference between DCA and DDMC is
the averaging over k-space patches implicit in DCA that
leads to a smoothening of extrema in Σ(k).

VI. CONCLUSIONS

We have laid out a computational method for corre-
lated lattice systems that combines the diagrammatic
Monte Carlo technique with the dual-fermion approach.
Extensive benchmarks against numerically exact calcula-
tions allowed us to map out the method’s range of appli-
cability for the case of the Hubbard model on the square
lattice. In contrast to the conventional DiagMC method,
which is based on the standard weak-coupling expansion
for the Hubbard model, the method is applicable over the
full range of interactions from weak to strong coupling.
In comparison to the popular second-order and ladder
approximations to the dual-fermion approach, DiagMC
sampling removes the bias inherent in the restriction to
specific diagram topologies and allows one to judge the
relevance of neglected higher-order terms. Comparison of
the result to benchmarks obtained from numerically ex-
act diagrammatic determinant Monte Carlo shows that
at temperatures where magnetic correlations are weak,
the dual-fermion series converges very quickly to the ex-
act solution and contributions from higher-order vertices
are small. Upon lowering the temperature, however,
we generically observe slower series convergence, conver-
gence to incorrect solutions, and ultimately divergence.
This happens in a regime where significant magnetic cor-
relations develop, which are not contained in the DMFT
starting point. The convergence properties are summa-
rized in Fig. 10. Our comparisons to numerically ex-
act results also show that the self-consistent ladder dual
fermion approximation typically yields reasonable – and
often even highly accurate – results. Last but not least,
our DDMC data for the momentum-resolved self-energy
establish a reference for benchmarking other approximate
schemes for the Hubbard model.

In the future, the application of DiagMC sampling to
other diagrammatic extensions of DMFT should allow
for a direct comparison of the different approaches’ con-

vergence properties. The range of parameters where the
DiagMC@DF technique produces accurate converged re-
sults may be improved by considering more elaborate im-
purities, such as clusters, or a self-consistency scheme.
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Appendix A: Symmetrized vs. unsymmetrized
diagrams

Dual-fermion perturbation theory is usually described
in a symmetrized formalism similar to Hugenholtz dia-
grams,55,56 whereas our algorithm does not make use of
symmetrization. It therefore sums more diagram topolo-
gies explicitly, but does not need to keep track of com-
binatorial prefactors associated with symmetrization. A
consequence of this difference is that the value of the in-
teraction vertex in our algorithm differs by a constant
factor from the one used in other (symmetrized) DF cal-
culations, as detailed in the following.

In the symmetrized formalism, all possibilities of con-
necting two interaction vertices A and B with a prop-
agator going from A to B are considered equivalent (in
other words, all corners of a vertex with an incoming line
are equivalent and correspondingly for outgoing ones, c.f.
Fig. 20). Such an approach is natural because the im-
purity vertex by definition is fully antisymmetric and a
smaller number of distinct diagrams needs to be evalu-
ated explicitly. For example, the single first-order dia-
gram of the symmetrized theory accounts for both the
Hartree and the Fock diagram, and the particle-hole lad-
der approximation does not only contain the usual ladder
diagrams but also RPA-like bubble series and mixtures
of these topologies.

The downside of the symmetrized theory is that each
distinct topology comes with a combinatorial prefactor
that needs to be determined by counting the number of
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FIG. 20. Diagram topologies of first- and second-order con-
tributions to the dual self-energy. In- and outgoing corners of
interaction vertices are marked with open and filled circles,
respectively. In the symmetrized theory (c.f. Appendix A)
primed and non-primed diagrams are considered equivalent
and only one variant is treated explicitly, whereas the unsym-
metrized theory sums all shown diagrams.

equivalent lines and vertices. When arbitrary diagrams
are generated by stochastic updates, this is not practi-

cal because the cost for identifying a graph’s topology
grows quickly with the size of the graph, in contrast to
the constant cost of a local update. For DiagMC@DF
sampling we therefore employ the unsymmetrized theory
where the different corners of a vertex are not consid-
ered equivalent, but the “upper” corners are paired with
each other and correspondingly the “lower” ones, like in
an unsymmetrized theory with some two-particle interac-
tion U(q). Then, e.g., connecting the two upper corners
of a single vertex results in a Hartree diagram with a
closed fermion loop, whereas the Fock diagram is a dif-
ferent topology obtained from connecting an upper with
a lower corner. In order to avoid double counting, the in-
teraction of the unsymmetrized theory must differ from
the reducible impurity vertex by a factor 1/2, such that
the interaction of the usual DF perturbation theory is
recovered by symmetrization:

γsymm(1, 2; 3, 4) = γunsymm(1, 2; 3, 4)− γunsymm(1, 2; 4, 3)

=
1

2
γimp(1, 2; 3, 4)− 1

2
γimp(1, 2; 4, 3)

= γimp(1, 2; 3, 4). (A1)

Here we use the shorthand index notation 1 = (x1, τ1, σ1)
etc.

Furthermore, since the DiagMC updates described in
Sec. III B 2 effectively distinguish between the upper and
lower corners of the interaction vertex, whereas no such
distinction is made in the diagrammatic theory (neither
symmetrized nor unsymmetrized), an additional factor of
1/2 is required to avoid double counting.57 The effective
interaction used in our algorithm is therefore γ = 1

4γ
imp.
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