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We develop a theory of the dynamical response of a minimal model of quantum spin ice (QSI) by means of
inelastic light scattering. In particular, we are interested in the Raman response of the fractionalized U(1) spin
liquid realized in the XXZ QSI. We show that the low-energy Raman intensity is dominated by spinon and gauge
fluctuations. We find that the Raman response in the QSI state of that model appears only in the T2g polarization
channel. We show that the Raman intensity profile displays a broad continuum from the spinons and coupled
spinon and gauge fluctuations, and a low-energy peak arising entirely from gauge fluctuations. Both features
originate from the exotic interaction between photon and the fractionalized excitations of QSI. Our theoretical
results suggest that inelastic Raman scattering can in principle serve as a promising experimental probe of the
nature of a U(1) spin liquid in QSI.

Quantum spin liquids (QSLs) have proven to be one of
the most fascinating and challenging subjects in modern con-
densed matter physics.1–5 They are known to host a remarkable
set of emergent phenomena, including long-range entangle-
ment, topological ground state degeneracy and a number of
unusual fractionalized excitations such as fermionic or bosonic
spinons as well as emergent gauge excitations. In recent years,
there has been significant progress both in the theoretical un-
derstanding of such phenomena and in identifying realistic
microscopic models that may host QSL phases. Notable exam-
ples include the spin-1/2 Heisenberg antiferromagnet on the
kagome lattice,6–10 the family of exactly solvable Kitaev-type
models,11–13 and quantum spin ice.4,14–24

Direct experimental observation and characterization of
QSLs is challenging. Unlike states with spontaneously bro-
ken symmetries, the topological order characteristic of QSLs5

cannot be captured by a local order parameter and thus cannot
be directly detected by local measurements. Identifying QSLs
thus requires finding experimental probes that provide informa-
tion without relying on the measurement of local order param-
eters. One of the most promising avenues in this direction is
the characterization of the excitations of QSL candidates. The
fractionalized excitations of a QSL can be probed by conven-
tional methods such as inelastic neutron scattering,25 Raman
scattering26–30 or resonant X-ray scattering (RIXS),31–33 all
offering signatures that enable their detection. Due to their
fractionalized nature, these kinds of scattering probes nec-
essarily create multi-particle excitations in the system. The
appearance of such multi-particle continua in their dynamical
response is a hallmark of QSL behavior.34–39 These continua
are in stark contrast with the excitation spectra of convention-
ally ordered phases, where sharp single-particle excitations are
expected. Given the field currently still lacks the experimental
methods to probe the topological order of QSLs, it is there-
fore important to have both a qualitative and a quantitative
understanding of these multi-particle continua and how they
manifest themselves in various experimental scattering probes
and in QSL candidates.

In this paper, we study such a dynamical response in a model
QSL, quantum spin ice (QSI). Defined on the pyrochlore lattice,

a network of corner-sharing tetrahedra (see Fig.1), this QSL
emerges naturally from the classical spin ice limit.3,4,40 In
this limit, there are a macroscopic number of ground states
characterized by the so-called “ice rule”; each tetrahedron
must be in a two-in/two-out state.40 Excitations about this
manifold have three spins up and one down (or vice-versa)
and can be separated at no energy cost.41 As first shown by
Hermele et al. 14 , adding transverse exchange induces quantum
tunneling between different ice states. A sufficiently weak
tunneling stabilizes a QSL ground state with an emergent U(1)
gauge field and bosonic spinon excitations.4,14,19–21 Much effort
has been put forth to understand the nature of the QSI phase as
well as its static and dynamic properties.14,17–21,42–46

These theoretical studies have sparked intense experimental
activity aiming to find a concrete realization of QSI. The wide
range of rare-earth pyrochlore materials4,47 have provided an
ample playground for this search. Potential candidates for
hosting a QSI phase currently include Tb2Ti2O7, Yb2Ti2O7,
the Pr2M2O7 family (M = Zr, Sn, Hf) as well as the canonical
classical spin ices Dy2Ti2O7 and Ho2Ti2O7 (see Ref. [4] for a
survey). However, the physics of these materials is complex;
for many, it is even unclear how close they are to the classical
spin ice limit. Identifying experimental probes that are sensi-
tive to both the gauge and spinon excitations that manifest in
QSI would thus be useful for a better characterization of these
QSI candidates. Perhaps more importantly, it would deepen
our general understanding of the dynamical response of QSLs
and their various excitations.

In this article, we propose that inelastic Raman scattering
may be of particular interest for QSI systems. In a loose sense,
we are inspired by rather recent works on Raman scattering
from Kitaev QSLs.26–30 Using photons as a probe, the Ra-
man response can in principle offer insights in the excitation
spectrum of a QSI that may not be accessible through usual
methods such as inelastic neutron scattering. Below, we derive
the Raman vertex for relevant rare-earth pyrochlore materials
using the traditional framework of an effective Hamiltonian for
the interaction of light with spin degrees of freedom.26,48–50 Ap-
plying these results to an effective theory of QSI, we show how
the gapped and deconfined spinons as well as emergent gapless
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FIG. 1. The pyrochlore lattice relevant for QSI materials. The
centers of blue and yellow tetrahedra, labeled by x, form the 〈A〉 and
〈B〉 sublattices of the diamond lattice, correspondingly. µ = 0, 1, 2, 3
label the bonds of the diamond lattice. The spins, S x,µ, reside on the
pyrochlore sites located on the middle of the bond µ. The dashed lines
illustrate the electron hopping paths involved in the super-exchange
processes that generate the Raman vertex.

gauge modes appear in the Raman spectrum. Intriguingly, we
find that real light can scatter from the emergent “light” of
QSI17 and produce a measurable response. In addition, the
spinon excitations themselves have a direct signature in the
Raman spectrum.

The structure of the paper is as follows: in Sections I, II
and III, we set our notations and review the basic concepts
of QSI and its elementary excitations.14,17–19,21 In Section IV,
we briefly review the Loudon-Fleury theory of Raman scat-
tering in Mott insulators needed for our study. Armed with
this, we then derive the relevant Raman operator involving the
super-exchange processes between pseudo-spins that represent
the magnetic degrees of freedom. By studying the polariza-
tion dependence of the Raman response, we explicitly show
that the response occurs only in the T2g polarization channel.
In Section V, we compute the Raman response for the XXZ
QSI. In particular, we first separate three contributions to the
Raman response – from pure spinon excitations, from gauge
fluctuations and from their hybridization – and then present
the numerical results for the total Raman intensity in the T2g
channel. Some discussion and a conclusion are given in Secs.
VI and VII.

I. SPIN HAMILTONIAN

Before delving into the details of the Raman process, we
first review the relevant anisotropic exchange models for the
pertinent pyrochlore materials. In the current materials of in-
terest which may realize QSI, the magnetic degrees of freedom
originate from rare-earth ions.4 Although we are not per se
confining ourselves to the details of the rare-earth ions that
currently form the majority of the QSI materials, it is useful

to set the stage and make some general observations about
the spin Hamiltonian so far considered in the theoretical and
experimental investigations of QSI systems.4

In rare-earth ions, the atomic interactions dominate; the free-
ion ground state is determined by following Hund’s rules, first
minimizing the Coulomb energy, followed by the spin-orbit
energy. These free-ion states have well defined total angular
momentum, J, and (approximately) well-defined total orbital
and spin angular momenta. In a crystalline environment, due
to the electric fields from the surrounding ions, the remaining
2J +1 degeneracy of this manifold is partially lifted. When J is
a half-odd-integer, only Kramers’ degeneracy remains and one
has a series of doublets for the relevant D3d site symmetry47.
With respect to this symmetry, these can transform either like
spin-1/2 objects, a “pseudo-spin” doublet (as in Yb2Ti2O7 or
Er2Ti2O7),18 or like a more exotic “dipolar-octupolar” dou-
blet51 (as in Dy2Ti2O7 and Nd2Zr2O7). For integer J, Kramers’
theorem does not apply and singlet states are possible. How-
ever, the D3d site symmetry can allow a non-magnetic doublet,
a so-called non-Kramers doublet (as, for example in Ho2Ti2O7
or Tb2Ti2O7).47 If well separated from the other crystal field
levels, each of these kinds of crystal field doublets behaves like
an effective spin-1/2 degree of freedom. For this reason, we
will refer to all of these states as a “spin” regardless of whether
they are pseudo-spin-1/2, dipolar-octupolar or non-Kramers
type.

To describe these doublets, we introduce the spin operators
Si, defined in the local basis at each site.18 For the dipolar-
octupolar and non-Kramers doublets, only S z

i contributes to the
magnetic dipole moment with µi = −gµBS z

i ẑi, where ẑi is the
local [111] direction. For the pseudo-spin-1/2 case, both the ẑi
component and the components perpendicular to ẑi contribute
to the dipole moment. Since these three types of doublets
transform quite differently under lattice symmetries,20,51 the
allowed exchange interactions are generally distinct. The most
general nearest-neighbor anisotropic exchange model on the
pyrochlore lattice can be written as:18,19

Hex =
∑
〈i j〉

[
JzzS z

i S
z
j − J±

(
S +

i S −j + S −i S +
j

)
+ (1)

J±±
(
γi jS +

i S +
j + h.c.

)
+ Jz±

(
ζi j

[
S z

i S
+
j + S +

i S z
j

]
+ h.c.

)]
,

where the matrices ζi j = −γ∗i j and γi j are defined in Appendix
A. For the case of a pseudo-spin-1/2 doublet, all of these
couplings are allowed. For a non-Kramers doublet, one has
Jz± = 0 whereas for a dipolar-octupolar doublet, the phases
are absent, i.e. γi j = 1 and ζi j = 1.51 Microscopically, these
kinds of short-range anisotropic interactions can be generated
by various super-exchange mechanisms.16,22 If Jzz > 0 and
J±± = J± = Jz± = 0, one recovers classical spin ice.52 Introduc-
ing a finite J± or J±± with Jzz � J±, J±± � Jz± induces quan-
tum tunneling between the ice states14,19 and stabilizes17,42–44

a QSI ground state.53 While in Dy2Ti2O7 and Ho2Ti2O7 one
expects J± and J±± to be negligible,22 in other materials such
as Yb2Ti2O7, Er2Ti2O7 or Tb2Ti2O7, experiments strongly sug-
gests that these couplings are significant.18,54–57 Since we are
interested in the spin ice limit, we shall restrict ourselves to
cases where Jzz is dominant and is antiferromagnetic (Jzz > 0).
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In the remainder of the paper, we thus work with the dimen-
sionless ratios

j± = J±/Jzz, jz± = Jz±/Jzz, j±± = J±±/Jzz, (2)

which we assume to be small such that we remain in the QSI
phase.

II. QUANTUM SPIN ICE

We now review the slave-particle description of QSI,19 using
the formulation introduced in Ref. [21]. In the following, we
use the notation of Refs. [19,21] and label the pyrochlore sites
by a combined index (x, µ), in which x denotes a diamond
lattice site (center of a tetrahedron) belonging to sublattice
〈A〉 and µ = 0, 1, 2, 3 are the four nearest neighbors of the
diamond site, as shown in Fig. 1. The spin at the center of the
bond 〈x, x + µ〉 is then labeled as Sx,µ, with µ being the vector
connecting the two neighboring diamond sites shown in Fig. 1.

We study the exchange Hamiltonian, Eq. (1), in an enlarged
Hilbert space containing both the charge and the spin degrees
of freedom separately. We construct this by introducing a new
Hilbert space for the charge operator Qx on the diamond lattice
sites independent of the spins on the pyrochlore sites. In terms
of the spins, the charges are defined as

Qx =

{
+

∑
µ S z

x,µ, x ∈ 〈A〉,
−

∑
µ S z

x−µ̂,µ, x ∈ 〈B〉. (3)

The charge operator Qx characterizes violations of the ice
rules: Qx = 0 being satisfied for a two-in/two-out state, while
tetrahedra with three-in/one-out or three-out/one-in have Qx =

±1 and those with all-in/all-out have Qx = ±2.
Next, we enlarge the range of allowed charges from strictly

0,±1 and ±2 to include all integers. Explicitly, if we define the
physical Hilbert space as Hphys =

⊗
x,µH1/2, where H1/2 is

the spin Hilbert space, then the extended space is

Hext =

⊗
x,µ
H1/2

 ⊗
⊗

x
HO(2)

 ≡ Hs ⊗HQ, (4)

and whereHO(2) is the Hilbert space of an O(2) rotor, defined
at each diamond site and spanned by an infinite set of basis
states that satisfy Qx |qx〉 = qx |qx〉, where qx is an integer.
We define the physical subspace as the one in which the Qx
operators satisfy the constraint of Eq. (3).

In this extended space, one then introduces a phase θx, conju-
gate to the charge operators Qx.19 These two operators satisfy
the canonical commutation relation

[θx,Qx′ ] = iδx,x′ . (5)

The quantization of Qx implies the periodicity of θx. The
operators Qx and θx allow us to introduce a spinon operator,
ψx, which is the basic element in a slave particle description
of spin ice. To be precise, we define the raising and lowering
operators ψ†x = e+iθx and ψx = e−iθx , satisfying

[ψ†x,Qx′ ] = −ψ†xδx,x′ , (6a)
[ψx,Qx′ ] = +ψxδx,x′ , (6b)

which thus increase or decrease the charge quantum number
at diamond lattice site x. We then interpret Qx as the spinon
number operator in the quantum theory, with ψ†x and ψx being
spinon creation and annihilation operators,19 which live in the
Hilbert spaceHQ.

For the Hs part of the extended Hilbert space, we define
new auxiliary spin-1/2 operators, sx,µ. The original physical
spin-1/2 operators Sx,µ can be expressed in terms of the sx,µ,
ψ†x and ψx operators as

S +
x,µ = ψ†xs+

x,µψx+µ̂, (7a)

S −x,µ = ψ†x+µ̂
s−x,µψx, (7b)

S z
x,µ = sz

x,µ. (7c)

These combinations of operators are chosen such that the
canonical commutation relations of the original spin-1/2 oper-
ators, Sx,µ, are preserved, and the physical constraint defined
by Eq. (3) is also respected. If we were able to enforce these
constraints exactly, Eqs. (3-7) would then constitute an exact re-
formulation of the original spin-1/2 problem of Eq. (1). While
such an exact description is not feasible, this set of variables
have nevertheless proven19,21 to be a useful starting point for
describing the QSI phases of the anisotropic exchange model
given in Eq. (1).

The enlargement of the Hilbert space implies a large de-
gree of redundancy in this description. In particular, note that
the mapping defined by Eq. (7) is invariant under the U(1)
transformation

ψx → ψxeiαx , s±x,µ → s±x,µe±i(αx−αx+µ̂), (8)

for an arbitrary local phase αx. This gauge redundancy can
be made explicit by recasting the sx,µ operators in terms of an
emergent gauge field, Ax,µ, and an emergent electric field, Ex,µ,
via

s±x,µ = |s±x,µ|e
±iAx,µ , sz

x,µ = Ex,µ. (9)

To simplify the problem, we replace the transverse components
of the spin operator by their average value, with |s±x,µ| ≈ 〈|s

±
x,µ|〉,

and only keep the phase of s±x,µ as dynamical variable.2 It is
easy to check that the electric field and the gauge field satisfy
the commutation relation

[Ax,µ, Ex′,ν] = iδxx′δµν. (10)

By construction, these fields are compact given the redundancy
built into the definition of Ax,µ and the periodicity of θx. This
kind of mapping of an auxiliary spin-1/2 system to a gauge
theory has been explored in many contexts; we refer the reader
to the literature for further details14,17,46.

Having performed this reformulation of the original spin
degrees of freedom, we now rewrite Hex in terms of these new
variables. One finds



4

Hex =
1
2

∑
x

Q2
x − j±〈s±〉2

∑
x∈〈A〉

∑
µ<ν

[
ψ†xei(Ax,µ−Ax+µ̂−ν̂,ν)ψx+µ̂−ν̂ + ψ†x+µ̂

e−i(Ax,µ−Ax,ν)ψx+ν̂ + h.c.
]

− jz±〈s±〉
∑
x∈〈A〉

∑
µ,ν

[
Ex,µ(ψ†xeiAx,νψx+ν̂ + ψ†x+µ̂−ν̂

eiAx+µ̂−ν̂,νψx+µ̂)ζµν + h.c.
]

− j±±〈s±〉2
∑
x∈〈A〉

∑
µ<ν

[
(ψ†xψx+µ̂ψ

†
xψx+ν̂ + ψ†x+µ̂−ν̂

ψx+µ̂ψ
†
xψx+µ̂)γµν + h.c.

]
. (11)

s

Here we see that the Jzz and J± parts of Hex describe the spinon
degrees of freedom, as well as their interaction with the gauge
field A. Including finite Jz± introduces further spinon-gauge
couplings, while J±± produces direct four-spinon interactions.
In the current work we consider only Jz± = J±± = 0. Focusing
on this limit has several advantages; aside from being theoreti-
cally simpler, this limit is shared among the exchange models
for all three types of microscopic degrees of freedom discussed
in Sec. I.58

As it stands, the reformulated model Hex of Eq. (11) lacks
any dynamics for the gauge fields at leading order. To remedy
this, we follow Ref. [21] and add to the model

Hg ≡
U
2

∑
x∈〈A〉,µ

E2
x,µ − g

∑
7

cos

 ∑
xµ∈7

Ax,µ

 , (12)

to endow the gauge sector with its own dynamics. We denote
the full model59, with this additional gauge part, as

HQSI ≡ Hex + Hg. (13)

This final form is inspired from the one of the effective Hamil-
tonian that arises when considering the effects of transverse
exchange on the ground state spin-ice manifold.14 The “ring”-
exchange term, proportional to g in Eq. (12), appears first at
third order in j± or at sixth order in j±±.14 This effective model
has been analyzed in detail in Refs. [14, 17]. Here we have
added it by hand to make up for some of the deficiencies in
the slave-particle approach. In terms of Axµ, this second term
describes the “lattice curl” of the gauge field, while the first

term penalizes large electric fields, as required for the mapping
of the auxiliary spin-1/2 spins, sxµ, to a gauge theory. For our
purposes, we will assume the compactness of the gauge field
is innocuous; namely the effects of the gauge monopoles14,60

are not considered. Consistent with this assumption, we also
take Ax,µ � 1. Under this condition, Hg can be expanded to
give17,21

Hg =
∑

x∈〈A〉,µ

[U
2

E2
x,µ +

g

2
B2

x,µ

]
, (14)

where the magnetic fluxes Bx,µ derive from the lattice curl of
the gauge field17 Ax,µ. In such a phenomenological description,
the magnitudes of U and g must be set by comparison with
more precise calculations within the full model. For the case
of j±± = jz± = 0 they have been estimated17,21 to be on the
order of ∼ j3±. More specifically, we use the values of Ref. [21],
given as

g ' 24 j3±, U ' 2.16 j3±. (15)

III. SPINON DYNAMICS AND GAUGE FLUCTUATIONS

We now consider the physics of HQSI [Eq. (13)] in the XXZ
limit, where j±± = jz± = 0. To simplify the spinon-gauge
coupling, we first expand in Axµ, considering only the leading
terms in the expansion of eiAx,µ .. Defining j̃± = j±〈s±〉2, we
can write

HQSI ∼

1
2

∑
x

Q2
x − j̃±

∑
x∈〈A〉

∑
µ<ν

(ψ†xψx+µ̂−ν̂ + ψ†x+µ̂
ψx+ν̂ + h.c.)


−

[
j̃±

∑
x∈〈A〉

∑
µ<ν

i(ψ†xψx+µ̂−ν̂ − ψxψ
†

x+µ̂−ν̂
)(Ax,µ − Ax+µ−ν,ν) + i(ψ†x+µ̂

ψx+ν̂ − ψ
†

x+ν̂
ψx+µ̂)(Ax,ν − Ax,µ)

]
+ Hg

≡ Hψ + HψA + Hg.

(16)

We have broken this Hamiltonian into three parts: Hψ, which
describes the kinetic energy of the bosonic spinons ψx and their
“charging” energy ∼ Q2

x, and HψA, which describes a minimal

coupling between the spinons and the emergent U(1) gauge
field.
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The spinon part, Hψ, defines a quantum rotor model and is
thus difficult to solve even on its own. This can be written as

Hψ =
1
2

∑
x

Q2
x − j̃±

∑
x∈〈A〉

∑
µ<ν

(ψ†xψx+µ̂−ν̂ + ψ†x+µ̂
ψx+ν̂ + h.c.),

=
1
2

∑
x

Q2
x − j̃±

∑
µ<ν

∑
kλ

f ψµν(k)ψ†kλψkλ, (17)

where we have introduced the sublattice label λ = 〈A〉, 〈B〉 and
defined the vertex

f ψµν(k) ≡ 2 cos
[
k · (µ − ν)

]
. (18)

To approximately solve this rotor model, we use the “exclusive
boson” representation introduced in Ref. [21]

ψx =
dx + b†x

(1 + d†xdx + b†xbx)1/2
, (19a)

Qx = d†xdx − b†xbx. (19b)

Here bx and dx are bosonic operators constrained to satisfy
bxdx ≡ b†xd†x ≡ 0 for all the basis states. Under the approxi-
mation that the density of bosons is small, and thus dropping
all four-boson terms, the Hamiltonian Hψ is simplifies signif-
icantly into a quadratic form. This can then be diagonalized
with the help of a Bogoliubov transformation, giving

Hψ =
∑
kλ

Ek
(
d̃†kλd̃kλ + b̃†kλb̃kλ

)
+ const. (20)

where b̃kλ, d̃kλ are the Bogoliubov quasi-particles and the dis-
persion relation Ek is given by

Ek =
1
2

1 − 2 j̃±
∑
α,β

cos
(

kα
2

)
cos

(
kβ
2

)1/2

, (21)

where α, β = x, y, z are the three global cubic directions. Ex-
plicit expressions for the relationship between the spinons ψkλ
and the bosons b̃kλ, d̃kλ are given in Ref. [21]. The Green’s
function for the spinon field21 is then given by

Gψ(ω, k) =

∫
dt eiωt

[
−i〈Tψk(t)ψ†k′ (0)〉

]
,

=
1

2Ek

[
1

ω − Ek + iδ
−

1
ω + Ek − iδ

]
, (22)

where T implements time-ordering and δ = 0+.
Next, we discuss the dynamics of the gauge Hamiltonian, Hg.

This can be done using standard methods21 once the condition

Ax,µ � 1 has been imposed. Explicitly, one has

Hg ∼
U
2

∑
x∈〈A〉,µ

E2
x,µ +

g

2

∑
7

 ∑
xµ∈7

Ax,µ


2

. (23)

To diagonalize Hg, a linear transformation is defined as

Ap,µ =
∑
γ=0,1

ηµγ(p)aγ,p, Ep,µ =
∑
γ=0,1

ηµγ(p)eγ,p, (24)

where ηµγ(p) is a matrix satisfying

ηµγ(−p) = η∗µγ(p),∑
γ

ηµγ(p)ηνγ(−p) =
∑
γ

ηµγ(p)η∗νγ(p) = δµν.
(25)

The two operators, aγ,p and eγ′,p, satisfy the canonical com-
mutation relation

[
aγ,p, eγ′,p′

]
= iδp,p′δγ,γ′ . This way, the a-

excitations act like positions and e-excitations act like momenta
in a quantum harmonic oscillator. This unitary transformation
diagonalizes Hg, resulting in

Hg =
∑

pγ

U
2

eγ,peγ,−p +
ε2

p

2U
aγ,paγ,−p

 , (26)

where we see that aγ,p and eγ,p are transverse modes (γ = 0, 1)
describing the gauge fluctuations and dynamics of electric
fluxes, respectively. The photon dispersion is defined as

ε2
p = 4Ug

3 − 1
2

∑
α,β

cos
( pα

2

)
cos

( pβ
2

) (27)

' c2|p|2 + O(|p|4),

where c = (Ug)1/2. This speed of emergent light, c ' 0.3g, has
been estimated in simulations of the effective ring-exchange
model17 and motivated the value of U given in Eq. (15). The
Green’s functions for these a- and e-operators can also be easily
worked out. One arrives at21

GA(ω, p) =

∫
dteiωt

[
−i〈T aγ,p(t)aγ,−p(0)〉

]
,

=
U

ω2 − ε2
p + iδ

, (28a)

GE(ω, p) =

∫
dteiωt

[
−i〈T eγ,p(t)eγ,−p(0)〉

]
,

=
ε2

p

U(ω2 − ε2
p + iδ)

, (28b)

where δ = 0+.
Finally, we have the interaction between the spinons and

gauge field encapsulated in HψA. This interaction can be re-
written in momentum space as
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HψA = − j̃±
∑
µ<ν

∑
x∈〈A〉

i
[
(ψ†xψx+µ̂−ν̂ − ψxψ

†

x+µ̂−ν̂
)(Ax,µ − Ax+µ−ν,ν) + (ψ†x+µ̂

ψx+ν̂ − ψ
†

x+ν̂
ψx+µ̂)(Ax,ν − Ax,µ)

]
,

≡ −
j̃±
√

N

∑
µ<ν

∑
kλ

∑
ρ

f ψA
µνρ,λ(k, p)ψ†k+p,λψkλAp,ρ,

(29)

where N is the number of unit cells and we have defined the vertex

f ψA
µνρ,λ(k, p) = iδλ,〈A〉

[
δρµe+ik·(µ−ν) − δρνe+i(k+p)·(µ−ν) + δρνe−ik·(µ−ν) − δρµe−i(k+p)·(µ−ν)

]
+

iδλ,〈B〉
[
δρµe+i(k·(µ−ν)−p·ν) − δρνe+i(k·(µ−ν)−p·ν) + δρνe−i(k·(µ−ν)+p·µ) − δρµe−i(k·(µ−ν)+p·µ)

]
. (30)

This part, HψA, describes an interaction between the spinons ψ
and the gauge field A, similar to the interaction in regular quan-
tum electrodynamics, coupling A to the “current” of spinons.
At this point, we thus have a theory of spinons interacting with
a U(1) gauge field.

IV. MICROSCOPIC ORIGIN OF THE RAMAN VERTEX

We now investigate the mechanism of light scattering from
the excitations of a QSI phase. Light can interact with mat-
ter in various ways. It is well known that, in general, the
strongest coupling does not come from the direct coupling of
the magnetic field of the light with the magnetic moments,
but rather through the coupling of its electric field to the
electric dipole moments of the scattering medium.48,61 The
basic processes leading to the Raman response in Mott insu-
lators are similar to those leading to exchange interactions,
except that the virtual electron hopping is assisted by pho-
tons. Consequently, in the simplest approximation, the oper-
ator describing Raman processes is generically expected to
be proportional to the spin-exchange couplings, weighted by
polarization-dependent factors that determine the ability of real
photons to control the magnitude of an electron hopping along
certain bonds.26,27,48–50,62–64

To describe the coupling of light to electrons on a lattice, one
can, in a first approximation, perform a Peierls substitution,65

attaching a “Wilson line” operator to the electron hopping term
to preserve gauge invariance26,49,62

c†iσc jσ → c†iσc jσ exp
 ie
~c

∫ ri

r j

dr ·A(r)
 . (31)

Here we useA to denote the vector potential of the radiation
field, not to be confused with the emergent U(1) gauge field in
QSI, which we have denoted as A. Intuitively, the photon cou-
ples to the electric dipole formed by charge transfer between
different lattice sites. Thus, in order to get the correct Ra-
man vertex, we must know the microscopic electron hopping
mechanism at play in the material.

In the case of QSI, the super-exchange interactions between
neighboring spins are expected to be mediated by the oxygen
atoms that surround each rare-earth ion16,22 as illustrated in
Fig. 1. The microscopic derivation of Eq. (1) starts from sepa-
rating the total microscopic Hamiltonian into an on-site part,

H0, and the hopping between rare-earth f electrons and oxygen
p electrons, V0

H = H0 + V0. (32)

All other hoppings are assumed to be small and thus ne-
glected.22 The V0 term is given by

V0 =
∑
x∈〈A〉

∑
µ

∑
αβ

(
t†µ,αβp†x,α fxµ,β + t†µ,αβp†x+µ,α fxµ,β (33)

+ tµ,αβ f †xµ,βpx,α + tµ,αβ f †xµ,βpx+µ,α

)
,

where tµ,αβ denotes the hopping amplitude, fxµ,β and px,α rep-
resent the electron annihilation operators on the rare-earth and
oxygen ions, respectively. Here we only include the high-
symmetry oxygens (Wyckoff site 8b), those which lie in the
centers of the rare-earth tetrahedra, as they are closer to the
rare-earth ions than the low symmetry oxygens47. The on-site
part H0 contains the atomic interactions of the rare-earth ion,
including Coulomb, spin-orbit and crystal field contributions.
Here, we do not need the detailed properties of H0 as long as its
ground state is a doublet, and that the energy to add or remove
an electron, denoted roughly as ∼ U f ,22 is large relative to the
magnitude of the hoppings, t.

We now include the interaction with the electromagnetic
(EM) field. As mentioned in Eq. (31), this coupling brings
about a modification, V0 → V , given by

V =
∑
x∈〈A〉

∑
µ

∑
αβ

(
t†µ,αβp†x,α fxµ,βe

ie
~c

∫ x
x+ 1

2 µ
dr·A(r)

+ t†µ,αβp†x+µ,α fxµ,βe
ie
~c

∫ x+µ

x+ 1
2 µ

dr·A(r)
+ h.c.

)
. (34)

To proceed, we make the assumption that the photon field is
relatively weak, so that interaction with light does not affect
the electronic structure of the material. We also assume that
ie
~cA · µ is reasonably small so that we can expand V using a
Taylor expansion as

V = V0 + V1 + · · · . (35)

Knowing that the wavelength of the incoming and outgoing
EM waves are much larger than the lattice constant of the
material, we can further make the replacement

ie
~c

∫ x

x+ 1
2 µ

dr ·A(r) ∼ −
ie

2~c
(µ ·Ax) . (36)
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Under these approximations, we have

V1 =

( ie
2~c

) ∑
x∈〈A〉

∑
µ,αβ

(Ax · µ)
[
t†µ,αβp†x+µ,α fxµ,β + tµ,αβ f †xµ,βpx,α

−t†µ,αβp†x,α fxµ,β − tµ,αβ f †xµ,βpx+µ,α

]
.

This differs from V0 in that it attaches to each electron hopping
term a factor ±A · µ coming from the EM field. In addition to
this modification of the electron hopping, we also must now
include the energy of the EM field itself, which we denote as
Hγ.26

Our goal is to derive an effective Hamiltonian, treating V
as a perturbation, for the low-energy states of H0 + Hγ. For
our purposes, this low-energy subspace contains all of the
relevant EM states and only the ground states of H0. Now,
from standard degenerate perturbation theory,66 this effective
Hamiltonian can be written

Heff =PH0P + PHγP + PVP + PVRVP
+ PVRVRVP + PVRVRVRVP + · · · ,

(37)

in which P projects into the ground state manifold of H0 and R

is the resolvent

R =
1 − P

E0 − H0 − Hγ + iδ
≈

1 − P
E0 − H0 + iδ

(38)

where E0 is the ground state energy of H0 and δ = 0+. Here,
we assumed that Hγ � H0, that is the energy of the EM photon
is much small than the atomic energy scales. We return to this
effects of this approximation in Sec. VI B. The presence of
the projection operator, P, implies that only even order pertur-
bations have non-zero contribution. To get the non-resonant
Raman vertex, we neglect higher order terms in Eq. (35) and
keep only V1 as perturbation.

We now proceed to compute the effective Hamiltonian in
the low-energy subspace relevant for the rare-earth ion, sim-
ilar to what is done in calculations of super-exchange.16,22

Due to the structure of the super-exchange processes, the
anisotropic exchange Hamiltonian shown in Eq. (1) appears at
fourth order16,22 in V0, with Hex = PV0RV0RV0RV0P. It can be
shown that the Raman interaction also comes in at fourth order
in perturbation theory. To describe the scattering of light, we
keep only the leading O(A2) parts of Heff , that is those having
two factors of V0 and two factors of V1.67 While second-order
processes, H(2)

R , that can contribute single-spin operators to
the Raman operator do exist (see Appendix B), they vanish
when only the high-symmetry oxygens are considered. We
will return to this point this is Sec. VI B. To separate out the
Raman part, we then can write

H(4)
R ≡ PVRVRVRVP − Hex,

= P(V0 + V1)R(V0 + V1)R(V0 + V1)R(V0 + V1)P − Hex,

= PV1RV1RV0RV0P + PV1RV0RV1RV0P + · · · + PV0RV0RV1RV1P.

There are six terms that give a Raman contribution at fourth
order in V , with the two V1 terms corresponding one incoming
photon and one outgoing photon, and the Raman operator can
be obtained by attaching photon factors, ∼ ±A · µ, to two of
the four hoppings in each super-exchange process.

Now we can write down H(4)
R explicitly. We first writeAx

in terms of EM photon operators, splitting it into two parts26,49

Ax ∼ giêiaki,êi
eiki·x + g f ê f a

†

k f ,ê f
eik f ·x ≡Ai +A f . (39)

Here, aki,êi
and a†k f ,ê f

represent the real EM photons, not to
be confused with the emergent excitations that exist in QSI.
The vectors êi and ê f denote the polarization vectors of the
incoming and outgoing photons, respectively. The gi and g f
are constant prefactors depending on the incoming/outgoing
photon frequencies.26,49 We will omit them in what follows.
Further, since the photon wave-vector is small relative to the
inverse lattice spacing, we can safely replace eiki·x ∼ eik f ·x ∼ 1,
keeping only the polarization vectors êi and ê f .

For a hopping process involving bonds µ and ν, the incoming
and outgoing EM operatorAi andA f can couple to ±µ and
±ν. There are 12 possibilities in total for choosing two out of
four bonds to couple withAi andA f (see Fig. 1). The overall
prefactor is then found to be

(Ai · (±µ))(A f · (∓µ)) + (Ai · (±µ))(A f · (±ν))
+ (Ai · (±µ))(A f · (∓ν)) + (µ
 ν),
∼ (Ai · µ)(A f · µ) + (Ai · ν)(A f · ν).

Since the Raman vertex and the effective Hamiltonian have
similar mathematical form, we can easily express the Raman
vertex in terms of spin operators.26,49 At last, the final result
for the Raman part of the effective Hamiltonian is given by

H(4)
R ∼

∑
µ<ν

[(Ai · µ)(A f · µ) + (Ai · ν)(A f · ν)]Rµν, (40)

where the operator Rµν is defined as
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Rµν =
∑
x∈〈A〉

[
Jzz

(
S z

xµS z
xν + S z

xµS z
x+µ−ν,ν

)
− J±

(
S +

xµS −xν + S +
xµS −x+µ−ν,ν + h.c.

)
+J±±

(
γµν

(
S +

xµS +
xν + S +

xµS +
x+µ−ν,ν

)
+ h.c.

)
+ Jz±

(
ζµνS z

xµ(S +
xν + S +

x+µ−ν,ν) + h.c. + (µ
 ν)
)]
.

(41)

This gives the full non-resonant Raman vertex, R, for incoming
light with polarization êi scattered to light with polarization ê f
as

R ≡
∑
µ<ν

[(êi · µ)(ê f · µ) + (êi · ν)(ê f · ν)]Rµν. (42)

Using the definition of the lattice vectors µ (see Appendix A),
the Raman vertex can be re-written as

R =
1
8

êi ·


∑
µ<ν Rµν R03 − R12 R02 − R13

R03 − R12
∑
µ<ν Rµν R01 − R23

R02 − R13 R01 − R23
∑
µ<ν Rµν

 · ê f . (43)

We see that the vertex naturally breaks into two channels corre-
sponding to the irreducible representations A1g and T2g of the
point group Oh of the pyrochlore lattice. The fully symmetric
A1g operator is given by

RA1g ≡
∑
µ<ν

Rµν = R01 + R02 + R03 + R12 + R13 + R23, (44)

while the three components of the T2g channels are given by

RT x
2g
≡ R01 − R23, (45a)

RT y
2g
≡ R02 − R13, (45b)

RT z
2g
≡ R03 − R12. (45c)

At this level of approximation, the Raman vertex in the A1g
channel is proportional to the Hamiltonian (1) and, thus, does
not induce any inelastic transitions. Therefore, in what fol-
lows, we focus on the T2g channel, which is the only active
Raman channel in the QSI within the approach developed here
(see Sec. VI B for a discussion of some limitations). More
compactly, dropping the RA1g operator, the effective Raman
operator R is then

R ∼
∑
αβγ

|εαβγ|
(
êαi êβf + êβi êαf

)
RT γ

2g
. (46)

where εαβγ is the Levi-Cevita symbol. We next outline how to
compute the Raman response in the T2g channel.

V. RAMAN RESPONSE IN QUANTUM SPIN ICE

We now compute the Raman scattering intensity at energy
transfer Ω ≡ ωi − ω f using Fermi’s golden rule, which is
proportional to

I(Ω) ≡
∑

n

| 〈n|R|0〉 |2δ (Ω − En + E0) , (47)

(a

(b

(c

FIG. 2. Three classes of diagrams needed for calculating the Raman
scattering intensity from various QSI excitations: (a) spinon excita-
tions, (b) coupled spinon and gauge field excitations, (c) e-excitations.
Solid, dashed and dotted lines represent Gψ(ω, k), GA(ω, p) and
GE(ω, p) propagators for the spinons, the a- and the e-fields, respec-
tively. The wavy lines correspond to the incoming and outgoing
photons.

where R is the Raman operator given by Eq. (46) and En, |n〉
are the energies and eigenstates of the system. Also, since
we are interested the Raman response at zero-temperature we
only have intensity for positive Ω. It is convenient to compute
the Raman response using the time-ordered Raman response
function

F(Ω) ≡
∫

dt eiΩt [−i〈TR(t)R(0)〉] , (48)

where 〈· · ·〉 is the average is with respect to the ground state.
In the spectral representation F(Ω) can be written as

F(Ω) ≡
∑

n

[
| 〈n|R|0〉 |2

Ω − En + E0 + iδ
−

| 〈n|R|0〉 |2

Ω + En − E0 − iδ

]
, (49)

where δ = 0+. We then simply have that the intensity is given
by

I(Ω) =
1
π

Θ(Ω) ImF(Ω), (50)

where Θ(Ω) is the Heaviside function. It is convenient to define
a generalized response tensor

Dµν,µ′ν′ (t) = −i〈TRµν(t)Rµ′ν′ (0)〉 (51)

from which we can assemble the physical intensity of interest.
Similarly we can define a generalized intensity

Iµν,µ′ν′ (Ω) =
1
π

Θ(Ω)Im
[∫

dt eiΩtDµν,µ′ν′ (t)
]
. (52)
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For example, in terms of this generalized intensity the response
in the T x

2g channel is given by

IT x
2g

(Ω) ≡ I01,01(Ω)−I01,23(Ω)−I23,01(Ω)+I23,23(Ω). (53)

Since the QSI state is fully symmetric, the intensity in each
of the Tα

2g channels will be identical. We thus use a common
notation IT x

2g
= IT y

2g
= IT z

2g
≡ IT2g .

To aid in the interpretation of these results, we divide the
Raman operators and the intensities into several parts that rep-
resent qualitatively distinct physical processes. As for the HQSI
Hamiltonian in Eq. (16) , we can write the Raman operator in
terms of the spinons and gauge fields. We thus write the gener-
alized Raman operator, Rµν, as a sum of several contributions

Rµν ≡ R
ψ
µν + R

ψA
µν + RE

µν. (54)

There are three parts here: the scattering from spinons, Rψ, the
scattering from a combination of spinon and gauge excitations,
RψA, and the scattering from the emergent light itself, RE . In
computing the Raman operator, we consider only the leading
terms of the exponential of the gauge field, as we did in Eq. (16).
The Rψµν and RψA

µν are closely related to the decomposition of
HQSI [Eq. (16)] into Hψ and HψA.

We begin with the terms in the Raman operator of Eq. (41)
proportional to J± which can be written as spinon-only and
spinon-gauge interactions. These terms can be expressed anal-
ogously to Hψ and HψA [see Eqs. (17) and (29)] as

R
ψ
µν = − j̃±

∑
kλ

f ψµν(k)ψ†kλψkλ, (55a)

R
ψA
µν = −

j̃±
√

N

∑
kpλ

∑
ρ

f ψA
µνρ,λ(k, p)ψ†k+p,λψkλAp,ρ, (55b)

where the vertex f ψµν(k) is defined in Eq. (18) and the vertex
f ψA
µνρ,λ(k, p) is defined in Eq. (30).

Next we consider the terms of the Raman operator [Eq. (41)]
that are proportional to Jzz. These terms can be written using
the electric field operators Exµ as

RE
µν ≡

∑
x∈〈A〉

[
ExµExν + ExµEx+µ−ν,ν

]
,

=
∑

k

f µνE (k)Ek,µE−k,ν, (55c)

where we have defined the vertex

f E
µν(k) ≡ 1 + e−ik·(µ−ν). (56)

Note that, in contrast to the Jzz parts of the Hamiltonian, since
the Raman operator contains ∼

∑
x S z

xµS z
xν, not summed over

µ, ν, one cannot easily represent this operator in terms of the
charges Qx.

At leading order, the three parts of Eq. (54) do not mix since
they create distinct sets of excitations. We now calculate the
intensity for each of these different mechanisms.

A. Spinon-only contribution

This process involves the light scattering from a pair of
spinons. Since the incoming light carries (essentially) zero
momentum, this pair of particles must also have zero total
momentum. The spinon-only part of the response tensor is
given by

D
ψ
µν,µ′ν′ (t) ≡ −i〈TRψµν(t)R

ψ
µ′ν′〉, (57)

= −i j̃2±
∑

kλ,k′λ′
f ψµν(k) f ψµ′ν′ (k′),

× 〈Tψ†kλ(t)ψkλ(t)ψ†k′λ′ψk′λ′〉, (58)

where Rψµν is defined in Eq. (17) and f ψµν(k) in Eq. (18). Using
Eq. (22), we can write the response tensor as

D
ψ
µν,µ′ν′ (t) = 2i j̃2±

∑
k

f ψµν(k) f ψµ′ν′ (k)Gψ(k, t)Gψ(k, t), (59)

where Gψ(k, t) is the Green’s function of the spinon in real-
time. The product of vertices f ψµν(k) can be simplified to

f ψµν(k) f ψµ′ν′ (k) = 4 cos
[
k · (µ − ν)

]
cos

[
k · (µ′ − ν′)

]
. (60)

The intensity tensor for the spinon-only contribution is thus
given by

I
ψ
µν,µ′ν′ (Ω) ≡

1
π

Θ(Ω) Im
∫

dt eiΩtDS
µν,µ′ν′ (t),

= 2 j̃2±
∑

k

f ψµν(k) f ψµ′ν′ (k)

4E2
k

δ(Ω − 2Ek), (61)

where the Green’s function integrals are computed using con-
ventional techniques.68 To obtain the response in the T2g chan-
nel, we use Eq. (53) and find

I
ψ
T2g

(Ω) = j̃2±
∑

k

8
E2

k
sin2

(
ky
2

)
sin2

(
kz

2

)
δ(Ω − 2Ek) (62)

= j̃2±
∑

k

8
E2

k

1
3

∑
α<β

sin2
(

kα
2

)
sin2

(
kβ
2

) δ(Ω − 2Ek).

In the last step we have symmetrized the vertex to emphasize
that this intensity is the same for each of the RTα

2g
Raman

operators.

B. Spinon-gauge contribution

Next, we consider the spinon-gauge contribution. Here, in
addition to exciting a spinon-pair, the light also excites an
emergent photon. Due to the accompanying emergent photon,
the spinon-pair can now have arbitrary total momentum. To
evaluate the intensity, we consider the response tensor

D
ψA
µν,µ′ν′ (t) = −i〈TRψA

µν (t)RψA
µ′ν′ (0)〉, (63)
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where RψA
µν is defined in Eq. (29). The next step in computing

D
ψA
µν,µ′ν′ (t) is the evaluation of

−i〈Tψ†k+p,λ(t)ψkλ(t)Ap,ρ(t)ψ
†

k′+p′,λ′ψk′λ′Ap′,ρ′〉.

There is one non-vanishing contraction, which yields

−δp,−p′δk′,k+pδk,k′+p′δλλ′δρρ′Gψ(k, t)Gψ(k+p, t)GA(p, t), (64)

where Gψ(k, t) and GA(p, t) are the Green’s function of the
spinon and gauge-field, respectively, as defined in Eqs. (22)
and (28a). The response tensorDψA

µν,µ′ν′ (t) is then given by

−
j̃2±
N

∑
kp

Φµν,µ′ν′ (k, p)Gψ(k, t)Gψ(k + p, t)GA(p, t),

where we have defined the vertex

Φµν,µ′ν′ (k, p) =
∑
λρ

[
f ψA
µνρ,λ(k, p)

]∗
f ψA
µ′ν′ρ,λ(k, p).

Performing the time integral [see Eq. (52)] using standard
contour methods, we obtain the intensity tensor in the spinon
and gauge-field channel to be

I
ψA
µν,µ′ν′ (Ω) =

j̃2±
N

∑
kp

Φµν,µ′ν′ (k, p)
U

8EkEk+pεp

× δ(Ω − (Ek + Ek+p + εp)). (65)

For the T2g channel, the vertex is given by

ΦT2g (k, p) = 16
(
1 − cos

[
ky +

py
2

]
cos

[
kz +

pz

2

])
. (66)

The final result for the spinon-gauge contribution to the T2g
intensity is then

I
ψA
T2g

(Ω) =
j̃2±
N

∑
kp

2U
EkEk+pεp

δ(Ω − (Ek + Ek+p + εp))

×

(
1 − cos

[
ky +

py
2

]
cos

[
kz +

pz

2

])
.

We see that if the photon energy scale is small, the intensity is
proportional to the density of states of the spinon pairs with
arbitrary total momentum. As for the spinon-only case, we
rewrite the intensity IψA

T2g
(Ω) in a manifestly symmetric form

as

I
ψA
T2g

(Ω) =
j̃2±
N

∑
kp

2U
EkEk+pεp

δ(Ω − (Ek + Ek+p + εp))

×

1 − 1
3

∑
α<β

cos
[
kα +

pα
2

]
cos

[
kβ +

pβ
2

] .

C. Electric field contribution

Finally, we consider the contribution from the electric field
alone. Physically, this process corresponds to the light exciting
a pair of emergent photons. As in the case of spinons alone,
the pair of emergent photons has zero total momentum. The
relevant response tensor is

DE
µν,µ′ν′ (t) ≡ −i〈TRE

µν(t)R
E
µ′ν′〉 (67)

=
∑
pp′

f µνE (p) f µ
′ν′

E (p′)
[
−i〈TEpµ(t)E−pν(t)Ep′µ′E−p′ν′〉

]
,

where RE
µν is defined in Eq. (55c). This correlation function

has two relevant contractions leading to

DE
µν,µ′ν′ (t) = i

∑
p

[
δµν′δµ′ν + δµµ′δνν′

] ∣∣∣ f µνE (p)
∣∣∣2 GE(p, t)2,

where the Green’s function for the electric field, GE(k, t), is
defined in Eq. (28b). Evaluating the time integral [see Eq. (52)],
one finds

1
π

Im
∫

dt eiΩtiGE(p, t)2 =
ε2

p

4U2

[
δ(Ω + 2εp) + δ(Ω − 2εp)

]
.

We thus have the generalized intensity from the electric fields

IE
µν,µ′ν′ (Ω) =

∑
p

ε2
p

4U2

[
δµν′δµ′ν + δµµ′δνν′

] ∣∣∣ f µνE (p)
∣∣∣2 δ(Ω − 2εp).

The intensity can easily be evaluated for the T2g channel, yield-
ing

IE
T2g

(Ω) =
∑

p

ε2
p

U2

[
1 + cos

( py
2

)
cos

( pz

2

)]
δ(Ω − 2εp) (68)

=
∑

p

ε2
p

U2

1 +
1
3

∑
α<β

cos
( pα

2

)
cos

( pβ
2

) δ(Ω − 2εp).

This intensity reflects the density of states of a pair of emergent
photons with total momentum zero. Again, as in the spinon-
only and spinon-gauge cases, we have given the symmetric
form for this intensity.
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D. Total intensity

The total intensity in the T2g channel is thus given by the following sum:

IT2g
(Ω) = I

ψ
T2g

(Ω) + I
ψA
T2g

(Ω) + IE
T2g

(Ω), (69)

where the three different contributions are given by

I
ψ
T2g

(Ω) = j̃2±
∑

k

8
E2

k

1
3

∑
α<β

sin2
(

kα
2

)
sin2

(
kβ
2

) δ(Ω − 2Ek), (70a)

I
ψA
T2g

(Ω) = j̃2±
∑

k

 1
N

∑
p

2U
EkEk+pεp

1 − 1
3

∑
α<β

cos
[
kα +

pα
2

]
cos

[
kβ +

pβ
2

] δ(Ω − (Ek + Ek+p + εp))

 , (70b)

IE
T2g

(Ω) =
∑

p

ε2
p

U2

1 +
1
3

∑
α<β

cos
( pα

2

)
cos

( pβ
2

) δ(Ω − 2εp). (70c)
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FIG. 3. The Raman intensities in the T2g polarization channel com-
puted for QSI. Contributions from the pure spinon contribution (blue
line), from the coupled spinon and gauge fluctuations (red line) and
from the gauge fluctuations coming from the E field (green line) are
shown, as defined in Eq. (70). All intensities are normalized on the
maximum intensity of the spinon-only Raman response, when taken
alone.

A brief comment is in order. We see that when j̃± = 0, i.e.
when the underlying system is simply a classical spin ice,
the contributions from the coupled spinon and gauge fields
and from spinons alone both explicitly vanish, IψA

T2g
= 0 and

I
ψ
T2g

= 0. The intensity IE
T2g

from the electric part of the
gauge field comes from the Jzz term and does not have explicit
proportionality to j̃±. Nevertheless, this contribution also van-
ishes when j̃± = 0; without the quantum tunneling terms, a
spin Hamiltonian containing only Jzz terms commutes with
the Raman operator and, therefore, does not lead to a Raman
response. More explicitly, the photon dispersion collapses as
j̃± → 0, since εp ∝ j̃3±, leading to the zero response at nonzero
frequency shift Ω.

E. Numerical results

With the developed formalism in hand, we now numerically
evaluate the Raman intensities in the T2g polarization channel.
We examine the contribution from each of the different physical
processes: namely the spinon-only, spinon-gauge and gauge-
only contributions. The single sums found of Eqs. (70a) and
(70b) were evaluated on a grid of 3843 k points, with the origin
shifted by a small amount to resolve any singularities in the
vertices at k = 0. For the double sum of Eq. (70c), a similar
procedure was employed, but 483 points for each momentum
proved sufficient to reach convergence. The results for the
Raman intensity profiles are presented in Fig. 3. This figure
contains the main results of this paper. All intensities are
computed assuming j± = 0.05 (taking 〈s±〉 = 1 for simplicity)
and are normalized to the maximum intensity of the spinon-
only Raman response.

First, we consider the Raman intensity from the spinon-
only scattering. As expected, this contribution has intensity
centered around the classical spinon energy cost ∼ Jzz with
a width proportional to the energy of the tunneling term J±.
Since the incoming light can only generate a spinon pair with
zero total momentum, this channel does not probe the full two-
spinon continuum. Some aspects of the spinon-only response
can be better understood by considering the zero-momentum,
two-spinon density of states defined as

ρψ(Ω) ∝
∑

k

δ(Ω − 2Ek), (71)

as shown in Fig. 4(a). Here we see that the onset of the spinon
density of states is ∼

√
Ω −Ω0 with Ω0 =

√
1 − 12 j̃± being

twice the gap in the spinon dispersion of Eq. (21). Further, the
density of states also has a sharp peak (Van Hove singularity)
due to the presence of flat regions in the spinon dispersion.21

These features – a slow onset at low frequencies and a large
intensity near the maximum of the two-spinon band – are
characteristic features of the two-spinon Raman response.
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FIG. 4. Density of states for (a) zero-momentum two-spinon states (see Eq. (71)), (b) two-spinon states and an emergent photon (see Eq. ( 72))
and (c) two emergent photons alone (see Eq. (73)). Each density of states is normalized arbitrarily, such that its own individual maximum value
is equal to one.

The Raman response from coupled spinon and gauge fluc-
tuations also takes the form of a broad continuum in roughly
the same range of energies as the two-spinon case. However,
the excitation of the emergent gauge photon now allows access
to the full two-spinon continuum, as its presence relaxes the
constraint on having zero total momentum for the spinon pair.
While this does not change the maximum or minimum of the
two-spinon energies (compared to the zero-momentum case), it
does affect the intensity profile at intermediate energies. As in
the spinon-only case, the spinon-gauge intensity can be better
understood by considering the corresponding density of states

ρψA(Ω) ∝
∑
kp

δ(Ω − (Ek + Ek+p + εp)), (72)

as shown in Fig. 4(b). One important feature to note is that
the width of this broad continuum is slightly larger than that
of the pure two-spinon scattering; due to the interaction with
the gauge-field, the combined spinon-photon states can reach
higher energies than the spinons alone. This can be seen in
the bottom right inset of Fig. 3, where the upper edge of the
intensity is pushed to higher energies. However, this shift is
quite small, being proportional to the emergent photon band-
width, which scales as ∼ j3±. Given this fact, we can effectively
ignore the energy of gauge particle in the δ-functions in IψA

T2g
.

Physically, the photon is thus acting as a “momentum-sink” for
the spinon-pair: for essentially zero energy cost one can excite
a photon with arbitrary momentum.

Finally, we consider the gauge-field-only response from the
emergent electric field. It appears as a strong, sharp peak at
the energies corresponding to the emergent photon bandwidth.
The energy scale of the emergent photon dispersion relation
goes as ∼ j3± and is thus much smaller than the energy scale
of the aforementioned features that involve the spinons. The
intensity profile of the Raman response in this case follows
very closely the zero-momentum, two-photon density of states

ρE(Ω) ∝
∑

p
δ(Ω − 2εp), (73)

which is shown in Fig. 4(c). At low energies, this intensity
follows a power-law ∼ Ω2 due to the linear photon dispersion.
The flat dispersion in the photon band structure at the edge

of the band (at Ω = 8c) is also apparent high intensity at the
highest energies. The larger intensity relative to the spinon
features seen in Fig. 3 originates from the lack of a ∼ j2±
prefactor in the Raman intensity since this scattering processes
is due to the large Jzz interactions, and the narrow support in
Ω. Even with this narrow support in energy, the overall energy-
integrated scattering is significantly stronger from the photon
sector than from the spinon sector, as can be seen directly from
Eqs. (70a), (70b), (70c).

VI. DISCUSSION

In this section we discuss some of the limitations of the re-
sults derived in this work and how they may affect applications
to real materials. In particular, we discuss the microscopic
origins of the Raman operator, the approximations made in the
slave-particle formulation and speculate on the effects of the so
far ignored anisotropic J±± and Jz± interactions on the Raman
intensity.

A. Slave-particle formulation

In Secs. II and III we introduced a slave-particle formulation
for QSI and a framework to enable calculation of the Raman
response. There are a number of approximations involved in
the slave-particle framework used in this work.

First, in our analysis, we considered only the first order cou-
pling between the spinons and gauge fluctuations, i.e. we kept
only the first order terms in the expansion of the exponential eiA.
This approximation is not necessarily controlled. Indeed this
approximation removes completely the gauge monopoles,14 a
set of excitations of the gauge sector with energy comparable
to that of the emergent photon. These excitations appear only
non-perturbatively in A. A detailed analysis of corrections
from the higher orders in the expansion of eiA gauge sector and
the possibility of including the gauge monopoles are left for
future exploration.

Second, we have computed the response for the XXZ model
where only j± is non-zero. The features seen in the intensities
are likely to be modified if the Raman response was computed
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for the complete and more general anisotropic exchange model,
Eq. (1)18,19. The Jz± terms would bring another spinon-gauge
field interaction vertex, and the J±± terms would bring a four-
spinon interaction vertex. A detailed analysis of these vertices
is, technically, significantly more involved, and we therefore
leave it for future study. However, we believe that the basic
qualitative features of the Raman response, the broad intensity
continuum and its width would not be changed significantly
by the inclusion of these interactions.69 On the other hand,
the detailed features, such as the sharpness of the peak in the
spinon-only response, would likely be modified.

Third, one key deficiency in the mean-field theory presented
in Sec. II is that the effects of the gauge-field on the spinon
are treated in an averaged way. It is unclear whether such an
approximation is valid in QSI, given the energy scale of the
photon is much lower than the kinetic energy of the spinons.70

However, recent more exact treatments of the spinon exci-
tations in related contexts,70–72 have found that treating the
spinon as a (strongly) renormalized free particle,70,71 may not
be too poor of an approximation.

Finally, we note that the emergent photon-only response is
derived entirely from the gauge part of the model, Hg. This is
essentially equivalent to the lattice gauge theory of Ref. [17]
used to describe the physics of QSI when the spinons are not
included. This description has proven to be quite accurate in
computing the static properties of QSI in this limit, faithfully
reproducing the results of direct simulation.17 We thus expect
that our results for the low energy, electric only part of the Ra-
man intensity to be robust, as it is independent of some of these
coarser approximations used in the slave-particle formulation.

B. Microscopic considerations

In Sec. IV, we derived the Raman operator through degener-
ate perturbation theory. In doing so we made several approxi-
mations that simplify both the calculation and the final form of
the Raman operator.

First, we comment on the generated polarization channels.
Within the approximations used, one obtains an inactive A1g
channel and an active T2g channel. The Raman operator, R
[see Eq. (41)] for each of these channels mimics closely the
“parent” exchange model, Hex [see Eq. (1)], with the different
anisotropic interactions appearing in the same ratios as in the
exchange Hamiltonian. The appearance of these exchange
constants in the Raman operator is predicated on the assump-
tion that one can neglect the photon energies in the resolvent
denominators in the perturbation theory. When this condition
is relaxed, the form of the Raman operator becomes decou-
pled from that of the exchange Hamiltonian. Indeed, the rich
structure of the intermediate states involved in rare-earth super-
exchange processes73 will likely affect not only the scale of
the interactions, but also the relative importance of the various
anisotropic terms. Because of this, we would expect additional
polarization channels to be generated and that the inactive A1g
would become active. Roughly, such corrections would be pro-
portional to ωi/U f where ωi is the incoming light frequency
and U f is a typical rare-earth charge-transfer energy scale.

Second, we note here that our treatment of the Raman in-
tensity only includes contributions from two-ion processes,
whereas single-ion processes have not been included in our
calculation. Since the energy cost of single-spin flips and two-
spin-flips can be of the same order in QSI materials, these
processes might also be important. This can be contrasted with
the separation of energy scale in one- and two-magnon pro-
cesses in conventionally ordered magnets.48 For Kramers ions,
any single-ion Raman operator is necessarily time-reversal
odd, and thus must vanish as the frequency of the incoming
light becomes small relative to the atomic energy scales,74

providing some suppression of such contributions. Further,
the Raman response will be non-zero only in the T1g channel,
as time-reversal odd operators only appear in anti-symmetric
channels, which for Oh there is only T1g.74 For non-Kramers
ion, the single-ion transverse S ± operators can appear in the
Raman operator without such suppression. Within the context
of our calculations here, such single-ion terms are most easily
generated via second-order virtual processes that only involve
oxygens atoms which are not in the centers of tetrahedra, so
called axial oxygens. For the two axial oxygens we have in-
cluded (see Fig. 1 and Sec. IV), such a contribution vanishes
(for details see Appendix B). However, there are six additional,
lower symmetry oxygens that we have not considered.47 If
these are included, single-ion terms are generated and they con-
tribute to the Raman response in both the Eg and T2g channels.
However, these may be somewhat suppressed given the larger
distance to these oxygens.47 Even given these complications,
one should note that these single-ion operators probe the same
excitations as the two-ion operators: the S ± type terms excite
spinon-pairs, while the S z type terms excite emergent photons.
We thus do not expect any qualitative change in the results
presented here for the T2g channel when such single-ion terms
are included.

VII. CONCLUSIONS

In this paper, we proposed a theory of the Raman scattering
in the XXZ limit of the general anisotropic exchange model,
which we analyzed using a slave-particle formulation of QSI.21

We derived the Raman vertex using the traditional framework
of an effective Hamiltonian for the interaction of light with
spin degrees of freedom.26,48–50 We showed that, at fourth or-
der in perturbation theory, the Raman vertex of Eq. (42) takes
a Loudon-Fleury form,48 generated by photon-assisted super-
exchange, following the anisotropic exchange model [Eq. (16)]
that leads to the QSI behavior. We also showed that the Raman
vertex naturally decomposes into two channels corresponding
to the irreducible representations A1g and T2g of the lattice
point group. Moreover, since the Raman vertex in the A1g
channel commutes with the QSI Hamiltonian, the Raman in-
tensity is non-zero only in the T2g polarization channel. Within
this framework, we decomposed the Raman intensity into three
contributions, from the pure spinon field, coupled spinon and
gauge fluctuations and the emergent photon. We showed that
the dominant feature of the overall response consists of a broad
continuum from the two-spinon spectrum and a sharp narrow
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peak at low energy originating from the gauge fluctuations
of the emergent photon field taken alone. To conclude, we
comment below on a few general aspects of Raman scattering
as well as discuss relevance of our results to real candidate QSI
materials.

First, a unique feature of Raman scattering is the ability to
probe characteristics of a system that are not directly related
to the magnetic moments. For example, the QSI candidates
to date have mostly been studied with tools such as neutron
scattering.4 While this approach has proven to be very pow-
erful, there are some limitations when the pseudo-spins are
of dipolar-octupolar or non-Kramers character, as they are in
Dy2Ti2O7, Ho2Ti2O7, Tb2Ti2O7 and in the Pr2M2O7 family.
For these compounds, the transverse components of the pseudo-
spin are higher multipoles (quadrupoles or octupoles) and thus
are not easily visible in neutron scattering. So while inelastic
neutron scattering could observe the photon excitation in such
materials (in principle, with sufficient energy resolution),17

observing the spinon excitations is very difficult.75 The possi-
bility of seeing the two-spinon continuum at all, irrespective of
resolving distinct signatures or features, is from a fundamental
perspective a strong asset for Raman scattering as a probe of
QSI candidate materials.

Second, from a broader perspective, we would like to com-
ment on the possibility to use Raman scattering as a tool to
study the phase transitions between different magnetic phases.
In particular, it would be interesting to compare the Raman re-
sponses arising from a QSL phase and nearby ordinary magnet-
ically ordered phase appearing at slightly different set of param-
eters of the same model. For example, aside from exotic phases
such as QSI and the conjectured Coulomb ferromagnet,19 there
are also four magnetically ordered phases found in the phase
diagram of the anisotropic exchange model. These are the anti-
ferromagnetic Γ5 states, a family of splayed ferromagnets, the
Palmer-Chalker state and the all-in/all-out (AIAO) order21,76.
Even in the simple limit considered here with j±± = jz± = 0,
there is the nearby Γ5 state that is stabilized for j± & 0.06.42,44

The transition into the state can be captured with the slave-
particle description used here and it corresponds to the con-
densation of the spinons,19,22 which is similar to the gauge
symmetry breaking in the Higgs’ mechanism. More gener-
ally, near the boundary of a QSL and a magnetically ordered
phase, one may expect both the conventional excitations of
the ordered phases and the unconventional excitations of the
QSL to be generically present. Whether the spinon-gauge-field
formalism can still be productively applied within the ordered
antiferromagnetic phase remains an open question. If it is
possible, one may be able to compute the Raman response
for the antiferromagnetic phase using the same description as
the one used for the QSI and then, the Raman response may
be used as a tool to study the phase transition between these
two phases. In general, in frustrated magnetic systems, both
the response from the QSL and from the magnetically ordered
state will have a broad Raman intensity background with some
peak structure.27–30,63,64 Thus, in order to understand the origin
of the broad continua in the Raman spectrum, one needs to
identify the nature of the excitations, disentangle the contribu-
tions of individual quasi-particles with different energies, and

make a detailed, quantitative comparison between theory and
experiment. In all, this is not a trivial question to answer and
detailed discussion on this issue is still lacking.

One last and yet very important question to address is the
possibility to see the Raman responses in experiments on real
QSI materials. As far as we know, no magnetic Raman ex-
periments have been done on QSI materials so far. One clear
obstacle is the fact that the energy scale of exchange interac-
tions in rare-earth magnets is considerably smaller than one
in many transitional metal magnets. For the rare-earth py-
rochlore quantum spin ice materials, these coupling constants
are typically on the order of 0.1meV. Coupling constants of
this magnitude will produce the gross features (scattering from
spinons) at energies of order 1-2 cm−1, which is, unfortunately,
much smaller than the lower limit accessible by current Raman
spectroscopy, which typically probes excitations ranging 1-100
meV (10-1000 cm−1 ).62 However, one possible way to resolve
this conundrum might be with Brillouin scattering, which does
well for probing energy scales 0.01-1 meV (0.1-10 cm−1)61,77

and which differs from Raman scattering technique only by
the type of spectrometer. However, even with such a setup, the
intensity due to scattering from the emergent photon is likely to
remain challenging to expose. Indeed, even with the improved
energy resolution afforded by a Brillouin scattering setup, the
photon contribution to the intensity is likely to be difficult to
distinguish from any elastic scattering in the T2g channel. One
could potentially infer the presence of the photon contribution
through temperature dependence of the quasi-elastic response.
The results here apply for temperatures much smaller than the
photon energy scale g; as the temperature is raised this will
be enhanced until it crosses over to the purely elastic response
expected for classical spin ice. Further complications can arise
in spin ice systems where the spin ice manifold itself is split by
dipolar interactions, such as in Dy2Ti2O7 or Ho2Ti2O7. This
splitting carries over to the spinon (or classical “monopole”)
excitations41 and thus could mimic the effects of a quantum
dispersion in the Raman intensity.

On the other hand, as material science is a fast develop-
ing field of research, we believe that new QSI materials with
stronger quantum effects may be designed or discovered. One
tantalizing possibility could be the discovery of a transition-
metal quantum spin ice candidate. If such a system were to
exist, a large increase (one or two orders of magnitude) in
energy scale relative to the rare-earth materials considered in
the present work could possibly render many of the features
discussed here at much more experimentally accessible en-
ergies. In such a scenario, not only the spinon continuum,
but the emergent photon itself could even be visible within
experimentally accessible energy ranges.
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Appendix A: The definition of local coordinate space and the ζ
matrix

The definition of the lattice vectors µ is:

0̂ =
+x̂ + ŷ + ẑ

4
, 1̂ =

+x̂ − ŷ − ẑ
4

,

2̂ =
−x̂ + ŷ − ẑ

4
, 3̂ =

−x̂ − ŷ + ẑ
4

, (A1)

where x̂, ŷ, ẑ denote the global cubic axes. The local coordi-
nates (x̂µ, ŷµ, ẑµ) for the four sites (labeled as µ = 0, 1, 2, 3) of
a certain tetrahedron of the pyrochlore lattice are defined as

x̂0 =
−2x̂ + ŷ + ẑ
√

6
, ŷ0 =

−ŷ + ẑ
√

2
, ẑ0 =

+x̂ + ŷ + ẑ
√

3
, (A2a)

x̂1 =
−2x̂ − ŷ − ẑ
√

6
, ŷ1 =

+ŷ − ẑ
√

2
, ẑ1 =

+x̂ − ŷ − ẑ
√

3
, (A2b)

x̂2 =
+2x̂ + ŷ − ẑ
√

6
, ŷ2 =

−ŷ − ẑ
√

2
, ẑ2 =

−x̂ + ŷ − ẑ
√

3
, (A2c)

x̂3 =
+2x̂ − ŷ + ẑ
√

6
, ŷ3 =

+ŷ + ẑ
√

2
, ẑ3 =

−x̂ − ŷ + ẑ
√

3
. (A2d)

In Eq. (1), the phase factors γ and ζ are defined as18,19

γµν =


0 1 ω ω2

1 0 ω2 ω
ω ω2 0 1
ω2 ω 1 0


µν

, (A3)

where ω = e2πi/3 and ζµν = −γ∗µν.

Appendix B: Second order contributions to the Raman vertex

Here we consider the second order terms, ∼ PVRVP, in the
perturbative expansion Eq. (37). These processes can only
result in operators acting on a single rare-earth ion. Evaluating
these terms within the charging approximation16,22, one finds

H(2)
R = PV1RV1P, (B1)

∼ −

( e
~c

)2 ∑
αβµ

(êi · µ)(ê f · µ)
2
[
tµt†µ

]αβ
U f

∑
x∈〈A〉

P fxµ,β f †xµ,αP,

where, loosely, U f is an energy scale associated with the cost
transferring a hole from an oxygen to the rare-earth ion. As
in Sec. IV, we including only hoppings to the high-symmetry
oxygens47 that sit at the centers of the rare-earth tetrahedra
(Wyckoff site 8b). By constructionm H(2)

R is symmetric in the
polarizations êi and ê f . Since coupling to time-reversal odd op-
erators must be in anti-symmetric channels,74 no time-reversal
odd operators can be generated by this process. The absence
of time-reversal odd operators holds even when the charging
approximation22 is lifted and when energy of the light is in-
cluded in the resolvents. For Kramers doublets, this implies
that H(2)

R does not contribute to the Raman response. For non-
Kramers doublets, this implies any operators appearing H(2)

R
must be time-reversal even. We can thus (effectively) consider
the operator

P fxµ,β f †xµ,αP ∼ h0
βα + h+

βαS −xµ + h−βαS +
xµ (B2)

For a given rare-earth site, the two high-symmetry oxygens are
along the local [111] directions, i.e. ± ẑ. Because of this, within
the Slater-Koster (two-center) approximation78, one then has
that tµt†µ is diagonal. The diagonal operators P fxµ,α f †xµ,αP are
then invariant under rotations about the ẑµ. Since the S ±xµ are
not invariant under these rotations, this implies that h±αβ = 0.
Note that this argument precluding the appearance of the S ±xµ
operators holds even when the charging approximation is lifted
and when energy of the light is included, since the resolvents
are invariant under three-fold rotations about ẑµ. We thus see
that, within our approximations, when only these two high
symmetry oxygens47 are included there is no second order, or
single-ion, contributions to the Raman response.

Note that this result, i.e. that lack of single-ion terms in
non-Kramers ions, does not follow when the low-symmetry
oxygens47 (Wyckoff site 48 f ) are included, and thus gener-
ically one has h±αβ , 0. In addition, inclusion of additional
hoppings in tµ, beyond the Slater-Koster approximation, would
render tµt†µ non-diagonal and thus also give h±αβ , 0. We thus
expect that for non-Kramers ions one can have single-ion re-
sponse from such operators.
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