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We discuss the potential advantages of calculating the effective mass of quasiparticles in the
interacting electron liquid from the low-temperature free energy vis-a-vis the conventional approach,
in which the effective mass is obtained from approximate calculations of the self-energy, or from a
Quantum Monte Carlo evaluation of the energy of a variational “quasiparticle wave function”. While
raw Quantum Monte Carlo data are presently too sparse to allow for an accurate determination of
the effective mass, the values estimated by this method are numerically close to the ones obtained in
previous calculations using diagrammatic many-body theory. In contrast to this, a recently published
parametrization of Quantum Monte Carlo data for the free energy of the homogeneous electron liquid
yields effective masses that considerably deviate from previous calculations and even change sign
for low densities, reflecting an unphysical negative entropy. We suggest that this anomaly is related
to the treatment of the exchange energy at finite temperature.

PACS numbers: 71.10.-w,71.10.Ay,71.10.Ca

INTRODUCTION

According to Landau’s theory of Fermi liquids [1] the
low-energy excitations of a homogeneous electron liquid
are fermionic quasiparticles characterized by an effective
mass m∗, a charge −e, and a spin ~/2. Of these three
parameters only the effective mass, m∗, is non-universal,
being directly affected by the electron-electron interac-
tion. Performing an accurate microscopic calculation of
m∗, even in the simplest case of a homogeneous electron
liquid (HEL), is a challenge for many-body theory [2].
The conventional approach is to perform an approximate
calculation of the electronic self-energy, from which the
poles of the one-electron Green’s function G(k, ω) for
complex frequency ω can be found. These poles, occur-
ring at ωk = εk − iγk, yield the energy (εk) and the de-
cay rate (γk) of quasiparticles – the second being much
smaller than the first for quasiparticles in the vicinity of
the Fermi surface k = kF. The effective mass is then
computed as

1

m∗ =
1

kF

dεk
dk

∣∣∣∣
k=kF

. (1)

The most popular approach to the calculation of m∗

is probably the G0W0 approximation [4], in which the
self-energy is obtained as the convolution of the noninter-
acting Green’s function (G0) with the screened electron-
electron interaction (W0) calculated in the random phase
approximation (RPA)[2]. Refinements of this idea in-
clude local field corrections to both the effective interac-
tion and the screening [3]. Figure 1 shows recent results
that have been obtained for m∗ in the three-dimensional
electron liquid as a function of standard parameter rs –
the average distance between electrons expressed in units
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FIG. 1. Effective mass enhancements for the three-
dimensional electron liquid. [3] Effective masses calculated
without local field factors (G0W0 approximation, also known
as RPA), with local field factors G+ and G− (G+&G−), and
including only the spin-symmetric local field factor G+. The
solid lines represent the effective mass enhancement accord-
ing to Eq. (1), while the dashed lines correspond to the so-
called “on-shell” approximation [cf. Ref. 3 for details]. Figure
adapted from Ref. 2.

of the Bohr radius a0. The slight dip of m∗ below the
bare mass m at small rs (high density) is a vestige of the
dramatic suppression of the effective mass (m∗ → 0) that
would occur if only exchange were taken into account.
This happens because the Hartree-Fock self-energy has
a logarithmically diverging slope at the Fermi wave vec-
tor in the zero-temperature limit. By virtue of Eq. (1)
this results in a vanishing effective mass if only exchange
effects are considered.

An important message from Fig. 1 is that the plain in-
clusion of physical effects beyond the G0W0 approxima-
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tion, is no guarantee of improvement. For example, the
inclusion of short-range correlation effects via the spin-
symmetric local field factor G+, which heuristically cor-
responds to the inclusion of vertex corrections to the self-
energy, produces the curves labeled by G+ in which the
ratio m∗/m is less than 1 throughout the metallic density
range and beyond. However, the additional inclusion of
short-range correlations via the spin-antisymmetric local
field factor G−, which heuristically describes the coupling
of the electron quasiparticle to spin fluctuations, yields
the curve labeled “G+&G−”, which is actually close to
the original G0W0 (RPA) result. Recently, fully self-
consistent GW calculations for the HEL have been per-
formed [5, 6], yielding effective mass enhancements less
than one for a wide range of densities (1 ≤ rs ≤ 30). The
results including only the spin-symmetric local field fac-
tor G+, shown in Fig. 1, exhibit a similar behavior, i.e.,
m∗/m . 1, even though they do not decrease monotoni-
cally as the self-consistent GW results. By construction,
GW only screens the direct (Coulomb) interaction be-
tween electrons. Due to the lack of vertex corrections the
effective interaction mediated by spin fluctuations (para-
magnons) is missing in GW . Taking into account these
spin fluctuations by means of the spin-antisymmetric lo-
cal field factor G− enhances the effective mass, as can be
seen in Fig. 1.

Attempts to calculate the effective mass from quantum
Monte Carlo (QMC) calculations date back to the early
work of Kwon et al. [7, 8] on the two-dimensional elec-
tron liquid. Although QMC provides the most accurate
values for the ground-state energy of the HEL [9], calcu-
lations of excited state properties suffer from difficulties
that are not present in the calculation of the ground state
energy. One problematic point is the extrapolation to the
thermodynamic limit, since the excitations form a con-
tinuum so that energy differences at the Fermi surface are
strongly affected by finite size effects [10, 11]. Further-
more, it is not clear if the QMC methodology of [12, 13]
addressing excitation energies of small finite sized sys-
tems away from the Fermi surface can really be related to
quasiparticle energies or the bandwidth. More pointedly,
QMC calculations so far attempted to calculate exact
energy eigenstates of the Hamiltonian for small systems,
but quasiparticles are in general not exact eigenstates of
the Hamiltonian – rather they are defined as poles of
the Green’s function in the lower half of the complex en-
ergy plane. In particular, the finite lifetime of excitations
away from the Fermi surface introduces a broadening of
the quasiparticle resonance in the thermodynamic limit.
Therefore, a one-to-one mapping of quasiparticle exicta-
tions, defined as the energies of the resonance peaks, to
exact eigenstates of the Hamiltonian, is not guaranteed
for excitations away from the Fermi surface. Calculations
of the bandwith [12, 13] based on Landau’s Fermi liquid
theory may thus be problematic.

Indeed, although some QMC calculations have pre-
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FIG. 2. Plot depicts the effective mass enhancement com-
puted from the raw QMC data (black dots), the KSDT
parametrization of the QMC data, and the parametrization
of STLS calculations at finite temperature. From the KSDT
and the STLS parametrization the effective mass enhance-
ment is obtained in two ways: 1) From the ratio of the inter-
acting and noninteracting entropies (KSDT: red, solid line;
STLS: orange, solid line). 2) From the ratio of the interacting
and noninteracting heat capacity (KSDT: blue, dashed line;
STLS: green, dashed line). The inset shows a zoom off the
high density region (0 ≤ rs ≤ 0.5). All result are obtained at
θ = 10−3.

dicted values of the effective mass in good agreement
with pre-existing GW-like theories [10], no clear consen-
sus has emerged on these values [13]. The interpretation
of experiments on simple metals such as Na – the clos-
est realization of the three dimensional HEL in nature
[14] – is not straightforward either due to so-called final
state effects [15]. Electron-phonon interaction introduces
further difficulties in quantitative comparisons between
theory and experiment [16]. The measured values of the
bandwidth of sodium [17] are not in good agreement with
QMC predictions [12].

In this paper we propose an alternative approach,
which treats ground state and excited state wave func-
tions on equal footing and thus has the potential of being
more accurate. The method is based on the well-known
property of a Fermi liquid that its low-temperature en-
tropy and heat capacity coincide with those of an ideal
gas of Fermions of mass m∗. A proof of this fact from
microscopic many-body theory can be found in Ref. 18
(see also Ref. 19). The formal statement of this prop-
erty is that the temperature dependence of the thermo-
dynamic functions is controlled, at low temperature, by
the pole of the single-particle Green’s function, i.e., the
quasiparticle energy. By “low” temperature, we mean
θ ≡ kBT/EF � 1 where EF = ~k2F/2m is the Fermi en-
ergy determined by the Fermi wave vector, kF, which,
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in turn is given via the density, n, of the electron gas,
kF = (3π2n)1/3 = (αrsa0)−1. The numerical factor
α = (4/9π)1/3 connects the Fermi wave vector, kF, with
the Wigner-Seitz radius, rs, in the three-dimensional elec-
tron gas. It follows that the entropy per particle of the
interacting electron liquid, at low temperature, is given
by

s =
S

N
=
m∗kF
3~2n

k2BT . (2)

m∗ is, strictly speaking, the zero-temperature quasipar-
ticle effective mass: however, we will continue to refer
to it as the effective mass, since its temperature depen-
dence is negligible in the temperature window in which
Fermi liquid theory applies. Furthermore we can use the
thermodynamic identities

T
∂s

∂T
=

∂ε

∂T
= cV , (3)

where the derivative with respect to the temperature is
taken at fixed number of particles and volume (ε is the
internal energy per particle), to show that the entropy
coincides with the heat capacity, cV, in the low temper-
ature limit. Eq. (3) shows that an accurate QMC cal-
culation of the low-temperature internal energy yields
the effective mass, provided that finite-size corrections
can be uniformly implemented at low temperature. The
exchange-correlation entropy sxc, defined as the differ-
ence between the full entropy and the noninteracting en-
tropy s0 = mkF

3~2nk
2
BT , is given by

sxc =

(
m∗

m
− 1

)
s0 . (4)

Since m∗/m can be slightly less than 1 at high density
(see Fig. 1), we can immediately conclude that sxc (in
contrast to s) is not necessarily positive.

The question at hand is whether more accurate calcu-
lations of m∗ using the method proposed above will con-
firm previous G0W0 calculations, or will lead to signifi-
cant deviations, which would indicate the onset of strong
correlation effects. It must be borne in mind in this re-
gard that the physical basis of the G0W0 approach and its
extensions is the Landau theory of Fermi liquids. Start-
ing from the assumption that well-defined quasiparticles
exist one arrives at G0W0 by postulating an electrostatic
interaction between these quasiparticles and the collec-
tive charge density fluctuations of the liquid, and then
using a standard unitary transformation to decouple the
electrons from the collective degrees of freedom, generat-
ing the self-energy in the process [20, 21]. Different fla-
vors of GW differ in the form of the effective interaction
between the quasiparticles and the collective degrees of
freedom, and yield quantitatively different results (some
shown in Fig. 1), but all rely on the Fermi liquid as-
sumption that one can draw a clear distinction between

single-particle and collective degrees of freedom. While
the paradigm seems to be valid in the traditional metallic
density range (rs < 6) it may break down at lower den-
sity. Hence the importance of a calculation that does not
rely on Fermi liquid assumptions. A convincing demon-
stration of large qualitative deviations from the G0W0

results for the effective mass (such as an effective mass
going to infinity) would probably indicate a failure of the
Fermi liquid paradigm, and the need to introduce new
analytical methods.

ANALYSIS AND DISCUSSION

QMC calculations of the free energy of the HEL as a
function of temperature and density have been performed
by Brown et al. [22, 23] and improved recently [24–26].
The first comprehensive parametrization of the QMC free
energy, based on the results of Brown et al., has been
published by Karasiev et al. [27], hereafter referred to as
KSDT. Very recently its was shown [28] that Ichimaru’s
parametrization [29] of finite temperature STLS calcu-
lations for the uniform electron gas – in the following
simply referred to as STLS – is a very good representa-
tion of the more recent QMC calculations presented in
Refs [24–26]. The basic idea behind the STLS procedure
is a self-consistent determination of the spin-symmetric
local field factor G+ and the static structure factor [30].
It has been known for some time that correlation ener-
gies obtained from the STLS structure factor are close to
QMC results at zero temperature [2]. In the following we
obtain m∗/m in three different ways:

1. from the raw QMC data of Brown et al.,

2. using the aforementioned KSDT parametrization,

3. employing Ichimaru’s finite-temperature STLS
parametrization.

In order to estimate the effective mass enhancement
directly from the QMC data we fit–for each available
density–the two data points at the lowest temperature
(θ = 0.0625, 0.125) for the total energy to a parabola
εQMC(θ) = C0 + C2θ

2. Note that the lowest two tem-
peratures presented in Ref. 26 are θ = 0.5, 1.0, which
are clearly too high to extrapolate low temperature be-
havior. From this simple fit we obtain the heat capacity
cV = ∂T ε(T ) and the ratio of the QMC heat capacity
and the heat capacity for the noninteracting electron gas
leads to a rough estimate for the effective mass enhance-
ment. The black dots in Fig. 2 correspond to the esti-
mates for the effective mass enhancement from the raw
QMC data and the error bar is estimated from the error
of the QMC total energies reported in Ref. 22. Clearly
these estimates are too “noisy” for a conclusive state-
ment but otherwise close to 1, consistent with the G0W0
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FIG. 3. Similar to Fig. 2 we plot the effective mass enhance-
ment obtained from the KSDT and the STLS parametriza-
tion. Note the log-scale on the rs-axis. The plot shows that
both parametrizations yield an unphysical negative effective
mass for low densities rs & 10 (KSDT) and very low densities
rs & 300 (STLS), respectively.

theory. More accurate and closely spaced data for low
temperatures (θ < 10−2) with carefully controlled finite
size corrections will be needed before m∗/m can be reli-
ably extracted using this approach.

Turning to the two parametrizations for the free en-
ergy, i.e., KSDT and STLS, we can extract the effective
mass enhancement from the thermodynamic relation

s = − ∂f
∂T

, (5)

where s is the entropy, and f the free energy per par-
ticle. Provided the temperature is low enough – such
that Eq. (2) holds – the mass ratio m∗/m is given by the
ratio of the interacting and noninteracting entropy, i.e.,
m∗/m = s/s0. In order to assess whether the tempera-
ture is low enough we can alternatively compute the heat
capacity (cf. Eq. (3)) and extract the effective mass en-
hancement, m∗/m from the ratio of the interacting and
noninteracting heat capacities. If the entropy is linear in
the temperature, the ratio of the heat capacities of the
interacting and the noninteracting electron gas is iden-
tical to the ratio of the interacting and noninteracting
entropies.

The results, presented in FIGs. 2 and 3, are very sur-
prising. The KSDT parametrization exhibits a small dip
in m∗ at very high densities (rs . 1, cf. inset of Fig. 2)
and a large mass enhancement at somewhat lower densi-
ties (1 . rs . 4). The mass enhancement is significantly
larger than in previous calculations (compare with Fig.
1). At even lower density we observe an odd inversion
of the tendency, with the effective mass rapidly drop-
ping below 1 and even becoming negative for rs & 9.5,

which signals an unphysical negative entropy. Turning
to the STLS parametrization we find mass enhancements
closer to the MBPT results shown in Fig. 1. The dip be-
low one, due to exchange effects, extends to rs ∼ 2.5,
which is in between the G0W0 (RPA) and the G−&G+

results. The mass enhancement for metallic densities
rs . 10 predicted by the STLS parametrization seems
to be quite close to the “on-shell” G0W0 (RPA) results
(cf. Fig. 1). However, for even lower densities, shown in
Fig. 3, we see that also the STLS predicts a negative mass
enhancement, indicating an unphysical negative entropy,
for rs & 300.

The odd behavior of the KSDT and STLS parametriza-
tions at low temperature and low density has two poten-
tial sources: 1) Inaccuracies in the underlying reference
data, 2) The fitting form chosen to inter- and extrap-
olate the QMC (or STLS) data. Concerning the first
point, we note that the QMC data has indeed an in-
trinsic systematic bias due to finite-size effects and the
fixed-node approximation. The KSDT parametrization
is based on finite temperature QMC calculations using
free particle nodes [22], and ground state energies [31],
which include additional backflow effects in the nodes.
Backflow nodes significantly lower energies compared to
free particle nodes [32]: thus, we cannot expect that the
systematic bias due to the nodal approximation cancels
out. Having said this, the fact remains that the esti-
mate for m∗/m from the QMC data does not show the
troubling sign reversal: thus, we believe that the fitting
forms chosen for the KSDT and STLS parametrizations
are responsible for producing negative entropies. In the
following we discuss the probable cause of this pathology.

Both KSDT and STLS incorporate as an essential com-
ponent the parametrization of the first-order exchange
approximation for the HEL at finite temperature pro-
posed by Perrot and Dharma-wardana (PDW) [33]. In
Fig. 4, we have plotted the mass enhancement obtained
by including only the first-order exchange (computed nu-
merically and using the PDW parametrization). It is
immediately evident that the approximation fails badly,
producing negative effective mass and thus an unphysical
negative entropy at relatively small values of rs. This un-
physical behavior of the first-order exchange approxima-
tion may be the culprit for unphysical negative entropy
exhibited by the KSDT parametrization and also by the
STLS approximation–albeit at considerably lower den-
sity. Surely, the coefficients in the fitting forms used in
KSDT and STLS are optimized for the total exchange–
correlation (free) energy, and one could argue that the
unphysical first-order behavior is balanced by other terms
in the functional form. However, it has to be kept in
mind that the free coefficients are determined by QMC
(or STLS) reference data on a restricted parameter re-
gion, which only pushes the odd behavior outside the
parameter region covered by the data used in the fit.
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It is surprising, at first, that a standard approximation
such as first-order exchange would result in an unphys-
ical behavior of the entropy. However, a little thought
shows that this is necessarily so. While the self-consistent
Hartree-Fock (HF) approximation always produces posi-
tive entropy, the first-order exchange approximation nec-
essarily produces negative entropy at sufficiently low den-
sity, as explained below. The difference between the two
approximations is that in the HF approximation one cal-
culates the expectation value of the interaction energy
in an ensemble of single Slater determinants whose ener-
gies are self-consistently determined by the approxima-
tion itself [34, 35], whereas in the first-order exchange one
calculates the expectation value of the interaction in an
ensemble of Slater determinants whose energies do not
include the interaction. In a uniform electron liquid, the
two approximations coincide at zero temperature, because
the ground-state, with or without interactions, is given,
at the mean field level, by a single Slater determinant of
plane waves with wave vectors k ≤ kF. But the situation
changes as soon as a non-vanishing temperature is con-
sidered, for different Slater determinants have different
probabilities of occurring in the ensemble depending on
whether the exchange energy is treated self-consistently
(as in HF) or merely to first order. Within self-consistent
HF theory the heat capacity at low temperature is ap-
proximately given by [36, 37]

cHF
V ≈ c(0)V

[
1− αrs

π log
(

πθ
4αrs

)]−1

, (6)

where c
(0)
V = kB

π2

2 θ is the noninteracting heat capacity
and the correction factor is the effective mass enhance-
ment of the HF approximation at low temperatures. It
is evident that this expression, contains all powers of
x ∝ rs log(θ/rs). This is because HF is a self-consistent
approximation, not a perturbative expansion in rs. No-
tice that the HF heat capacity from this formula is pos-
itive for all rs, as can be seen in Fig. 4, and so is the
entropy. This should be contrasted to the first-order ex-
change approximation, which for low temperatures is

c
(1)
V ≈ c(0)V

[
1 + αrs

π log (θ)
]
. (7)

This apparently reasonable expression becomes in-
evitably negative for sufficiently large rs when θ < 1.
Thus we suggest that the negative entropy of the KSDT
and STLS parametrizations arises from the inclusion of
the first-order approximation to the exchange, which is
necessarily unphysical at large rs and low θ. In Fig. 4 we
show the numerical results for m∗/m for, both, the first-
order exchange and the HF approximation. Note that
the different values obtained for m∗/m from the entropy
ratio and the heat capacity ratio is due to the logarith-
mic dependence on the relative temperature θ. In addi-
tion we depict the PDW result, which is a parametriza-
tion of first-order exchange. The difference between
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FIG. 4. Comparison of the effective mass enhancement
m∗/m compute in HF and first-order exchange. The curve la-
beled “1st order” corresponds to a numerical evaluation of the
first order exchange approximation, whereas the curve labeled
“PDW” is obtained from the fit due to Perrot and Dharma-
wardana. Similar to Figs. 2 and 3 we obtained m∗/m in two
ways: 1) From the ratio of the interacting and noninteracting
entropies (red, solid lines). 2) From the ratio of the inter-
acting and noninteracting heat capacity (blue, dashed lines).
The notable differences between the two methods in the nu-
merical 1st order and (barely visible) in the HF results are
due to the non-analyticity discussed in the main text. The
results are obtained at a relative temperature of θ = 10−3.

the numerical results and the PDW parametrization is
due to the fact that PDW is supposed to be an accu-
rate parametrization at moderate temperatures, i.e., for
0.1 < θ < 10 [33], whereas we show results at θ = 10−3.
We have verified that PDW is much closer to the numer-
ical first-order results for 0.1 < θ < 10. Furthermore
there are recent parametrizations of first-order exchange,
which are closer to the numerical values [38]. The generic
feature of the first-order results for the effective mass en-
hancement – independent of whether they are obtained
from the PDW parametrization or numerically, and ir-
respective of whether the entropy or the heat capacity
ratio is used – is that it is given by a straight line (as
function of rs) starting at m?/m = 1 with a negative
slope (cf. Eq. (7)). Accordingly, m?/m is bound to be-
come negative at low densities. We stress that the HF
approximation always produces a physical m?/m > 0,
which can be clearly seen in Fig. 4. First-order exchange
and HF only become similar at high densities (rs . 1).

SUMMARY AND CONCLUSIONS

We proposed to extract the effective mass for the quasi-
particles in the HEL from QMC calculations at finite
temperature using thermodynamic relations. However,
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we find that the currently available QMC data [22, 26] are
too sparse in the low temperature region for a quantita-
tive evaluation of the effective mass. In order to circum-
vent this issue we employed a recent parametrization [27],
which extrapolates the QMC data to arbitrary tempera-
ture and densities, to obtain the effective mass enhance-
ment. We observe that the parametrization yields un-
physical negative mass enhancements for low densities, a
problem related to the fact that the current parametriza-
tion produces negative entropies, which has been pointed
out earlier [39]. Using a different parametrization of the
free energy for the HEL – based on STLS calculations at
finite temperature – we find much improved results for
metallic densities. However, also the STLS parametriza-
tion exhibits unphysical, negative entropies at low den-
sities. We trace back this oddity to the fact that both
parametrizations incorporate first-order exchange as high
density limit, which unfortunately spoils the low density
behavior. We argue that replacing first-order exchange
by fully self-consistent HF will be the cure for this patho-
logical behavior, while still preserving the correct high
density limit [40].

We hope that our analysis stimulates further QMC cal-
culations for the HEL at low, but finite temperatures,
for it holds the potential of quantifying the density re-
gion in which Landau’s theory for the Fermi liquid re-
mains valid. In closing, we point out that an accurate
parametrization of the free energy of the HEL, does not
only provide the local density approximation for finite
temperature DFT, but is also a crucial input for the adia-
batic local density approximation within nonequilibrium
Thermal DFT, a generalization of time-dependent DFT,
which allows for the ab-initio calculation of thermoelec-
tric transport properties [41, 42]. We emphasize that
in the context of nonequilibrium thermal DFT a phys-
ically sensible low temperature behavior of the entropy
is of utmost importance. This is in contrast to finite-
temperature DFT, nowadays sometimes also referred to
as equilibrium Thermal DFT, which focuses on the warm-
dense matter regime, i.e., a regime where an unphysical
low temperature behavior might be less problematic.
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A. Issolah, A. Titov, J. McMinis, J. Kim, K. Esler, D. M.
Ceperley, M. Holzmann, and V. Olevano, Phys. Rev.
Lett. 105, 086403 (2010).

[15] H. Yasuhara, S. Yoshinaga, and M. Higuchi, Phys. Rev.
Lett. 83, 3250 (1999); W. Ku, A. G. Eguiluz, and
E. W. Plummer, Phys. Rev. Lett. 85, 2410 (2000); H. Ya-
suhara, S. Yoshinaga, and M. Higuchi, Phys. Rev. Lett.
85, 2411 (2000).

[16] G. Mahan, Many-Particle Physics, Physics of Solids and
Liquids (Springer US, 1990).

[17] I.-W. Lyo and E. W. Plummer, Phys. Rev. Lett. 60, 1558
(1988).

[18] A. Abrikosov, L. Gorkov, I. Dzyaloshinski, and R. Sil-
verman, Methods of Quantum Field Theory in Statistical
Physics, Dover Books on Physics (Dover Publications,
2012).

[19] J. M. Luttinger, Phys. Rev. 119, 1153 (1960).
[20] D. R. Hamann and A. W. Overhauser, Phys. Rev. 143,

183 (1966).
[21] G. F. Giuliani and G. Vignale, “The normal Fermi liq-

uid,” Chap. 8, pp. 405–500, in [2] (2005).
[22] E. W. Brown, B. K. Clark, J. L. DuBois, and D. M.

Ceperley, Phys. Rev. Lett. 110, 146405 (2013).
[23] E. W. Brown, J. L. DuBois, M. Holzmann, and D. M.

Ceperley, Phys. Rev. B 88, 081102 (2013); Phys. Rev. B
88, 199901 (2013).

[24] T. Schoof, S. Groth, J. Vorberger, and M. Bonitz, Phys.
Rev. Lett. 115, 130402 (2015).

[25] F. D. Malone, N. S. Blunt, E. W. Brown, D. K. K. Lee,
J. S. Spencer, W. M. C. Foulkes, and J. J. Shepherd,
Phys. Rev. Lett. 117, 115701 (2016).

[26] T. Dornheim, S. Groth, T. Sjostrom, F. D. Malone,
W. M. C. Foulkes, and M. Bonitz, Phys. Rev. Lett. 117,
156403 (2016).

[27] V. V. Karasiev, T. Sjostrom, J. Dufty, and S. B. Trickey,
Phys. Rev. Lett. 112, 076403 (2014).

[28] S. Groth, T. Dornheim, and M. Bonitz, Contributions
to Plasma Physics 57, 137 (2017).

mailto:florian.eich@mpsd.mpg.de
http://dx.doi.org/10.1103/PhysRevB.77.035131
http://dx.doi.org/10.1103/PhysRevB.77.035131
http://www.sciencedirect.com/science/article/pii/S0081194708606153
http://www.sciencedirect.com/science/article/pii/S0081194708606153
http://dx.doi.org/10.1103/PhysRevE.84.016706
http://dx.doi.org/10.1103/PhysRevB.95.195131
http://dx.doi.org/10.1103/PhysRevB.50.1684
http://dx.doi.org/10.1103/PhysRevB.50.1684
http://dx.doi.org/10.1103/PhysRevB.53.7376
http://dx.doi.org/10.1103/PhysRevB.53.7376
http://dx.doi.org/ 10.1103/PhysRevB.79.041308
http://stacks.iop.org/1742-6596/321/i=1/a=012020
http://stacks.iop.org/1742-6596/321/i=1/a=012020
http://dx.doi.org/ 10.1103/PhysRevB.68.165103
http://dx.doi.org/10.1103/PhysRevB.87.045131
http://dx.doi.org/10.1103/PhysRevB.87.045131
http://dx.doi.org/10.1103/PhysRevB.88.035133
http://dx.doi.org/ 10.1103/PhysRevLett.105.086403
http://dx.doi.org/ 10.1103/PhysRevLett.105.086403
http://dx.doi.org/10.1103/PhysRevLett.83.3250
http://dx.doi.org/10.1103/PhysRevLett.83.3250
http://dx.doi.org/10.1103/PhysRevLett.85.2410
http://dx.doi.org/10.1103/PhysRevLett.85.2411
http://dx.doi.org/10.1103/PhysRevLett.85.2411
http://dx.doi.org/10.1103/PhysRevLett.60.1558
http://dx.doi.org/10.1103/PhysRevLett.60.1558
http://dx.doi.org/10.1103/PhysRev.119.1153
http://dx.doi.org/10.1103/PhysRev.143.183
http://dx.doi.org/10.1103/PhysRev.143.183
http://dx.doi.org/10.1103/PhysRevLett.110.146405
http://dx.doi.org/10.1103/PhysRevB.88.081102
http://dx.doi.org/10.1103/PhysRevB.88.199901
http://dx.doi.org/10.1103/PhysRevB.88.199901
http://dx.doi.org/10.1103/PhysRevLett.115.130402
http://dx.doi.org/10.1103/PhysRevLett.115.130402
http://dx.doi.org/ 10.1103/PhysRevLett.117.115701
http://dx.doi.org/ 10.1103/PhysRevLett.117.156403
http://dx.doi.org/ 10.1103/PhysRevLett.117.156403
http://dx.doi.org/ 10.1103/PhysRevLett.112.076403
http://dx.doi.org/10.1002/ctpp.201600082
http://dx.doi.org/10.1002/ctpp.201600082


7

[29] S. Tanaka and S. Ichimaru, Journal of the Physical Soci-
ety of Japan 55, 2278 (1986).

[30] K. S. Singwi, M. P. Tosi, R. H. Land, and A. Sjölander,
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