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An analytical theory, based on the perturbative treatment of the disorder and extended into a self-consistent set
of equations for the dynamical density correlations, is developed and applied to the prototype one-dimensional
model of many-body localization. Results show a qualitative agreement with numerically obtained dynamical
structure factor in the whole range of frequencies and wavevectors, as well as across the transition to the noner-
godic behavior. The theory reveals the singular nature of the one-dimensional problem, whereby on the ergodic
side the dynamics is subdiffusive with dynamical conductivity σ(ω) ∝ |ω|α, i.e., with vanishing d.c. limit
σ0 = 0 and α < 1 varying with disorder, while we get α > 1 in the localized phase.

PACS numbers: 71.23.-k,71.27.+a, 71.30.+h, 71.10.Fd

I. INTRODUCTION

Many-body localization (MBL) is a challenging phe-
nomenon involving the interplay of disorder and particle
interaction (correlations). In the fermionic systems it has
been proposed as an extension of the single-particle An-
derson localization1,2, remaining qualitatively valid at finite
interactions3,4 and at large enough disorder even at high tem-
perature T 5. In contrast to normal (ergodic) systems, the
MBL state should reveal vanishing d.c. transport6–12 as well
as a nonergodic time evolution of correlation functions and of
quenched initial states13–20. The vanishing of d.c. mobility21

and the nonergodic decay of the initial density profile22–24

have been the main experimental signatures of the MBL in
fermionic cold-atom systems.

The dynamical structure factor S(q, ω) is the obvious ob-
servable to characterize the one-dimensional (1D) system un-
dergoing the ergodic-nonergodic (MBL) transition. Theo-
retical studies so far concentrated mostly on the uniform
(wavevector q → 0) response as, e.g., contained in the optical
conductivity σ(ω) and its d.c. limit σ06–12. In this connec-
tion, a challenging question is the possibility of subdiffusive
dynamics,8,9,24–28 which implies vanishing d.c. transport, e.g.,
σ0 = 0 but anomalous low-ω dependence of the optical con-
ductivity σ ∝ |ω|α with α < 1. On the other hand, in the cold-
atom experiments so far more accessible are density correla-
tions with q = π22,29,30, as measured via the time-dependent
imbalance22–24.

In this paper we first present results for S(q, ω) within
the prototype disordered 1D model of interacting spinless
fermions, displaying the whole range of wavectors q = [0, π],
as obtained with a numerical calculation at T → ∞ on small
finite-size systems with up to L = 24 sites. We show that it
is convenient and informative to analyse the S(q, ω) spectra
in terms of memory functions, representing the correspond-
ing dynamical conductivity σ(q, ω) and even further the cur-
rent decay-rate function Γ(q, ω). Such quantities reveal more
clearly the transition to the MBL regime, as well as the behav-
ior in the case of subdiffusion.

We further introduce for the same model an analytical the-

ory, based on the perturbative treatment of the current-decay
function Γ(q, ω) and extended to a self-consistent (SC) eval-
uation of density-correlation function φ(q, ω). The theory
reveals the specific nature of the 1D problem, leading to a
singular coupling between q → 0 density and energy diffu-
sion modes. Still, the solution of the SC equations with an
additional cut-off simulating a finite system size L∗ shows
qualitative (and at weaker disorder even quantitative) agree-
ment with numerically obtained results for S(q, ω) and related
σ(q, ω). Moreover, the finite-size scaling of SC results re-
veals in the ergodic phase the subdiffusive dynamics, consis-
tent with σ(ω → 0) ∼ |ω|α with α < 1. The MBL transition
at critical disorder W = Wc is thus determined by a dynami-
cal exponent α = 1, while the MBL phase is characterized by
α > 1 and a finite dielectric polarizability χd of the insulating
system.

The paper is organized as follows: In Sec. II we present
the model and the general formalism for density dynamical
susceptibility χ(q, ω), which is related to generalized dynam-
ical conductivity σ(q, ω) and further to the current decay-rate
function Γ(q, ω). In Sec. III we present results for S(q, ω),
obtained via numerical exact-diagonalization technique for
T →∞ on finite chains for all available q . Results of σ(q, ω)
and Γ(q, ω), obtained with help of formalism introduced in
Sec. II, are also presented. This allow for connection with
previous studies of, e.g., optical conductivity σ(ω) and also a
motivation as well as a stringent test for the proposed analyti-
cal theory. In Sec. IV we introduce analytical approximations,
based on the perturbative treatment of Γ(q, ω). Furthermore,
with some additional simplifications, solution for Γ(q, ω) is
extended into a SC set of equations. Numerical results of these
equations are presented and commented in Sec. V. Besides the
qualitative agreement with finite-size results, we put the em-
phasis on the low-ω regime where the SC equations appear
to be singular in 1D. Scaling an effective chain length L∗ we
show that in the ergodic regime the solutions are consistent
with an interpretation in terms of a subdiffusion phenomenon.
Conclusions, critical reflections on the method and results are
given in Sec. VI.
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II. DYNAMICAL DENSITY CORRELATIONS

We consider the prototype (standard) model of MBL, the
1D system of interacting spinless fermions with random local
potentials,

H = −t
∑
i

(
c†i+1ci + H.c.

)
+ V

∑
i

ni+1ni +
∑
i

εini .

(1)
As usual, we assume quenched disorder with the uniform dis-
tribution −W < εi < W and in the numerical analysis
the system at half-filling, i.e., n̄ = 1/2. We further-on use
t = 1 as the unit of energy. While most numerical results
so far are for V = 2 (corresponding to isotropic Heisenberg
model6,8–12), we use for the demonstration V = 1 enabling
closer comparison with the analytical theory. Since T should
not play an essential role in the MBL problem, studies are
adapted to the limit β = 1/T → 0, which simplifies the ana-
lytical as well as the numerical approach.

Our analysis deals with dynamics of the density operator

nq =
1√
L

∑
i

eıqini , (2)

at arbitrary wavevector q, as defined by the dynamical suscep-
tibility χ(q, ω), and related relaxation function φ(q, ω),

χ(q, ω) = ı

∫ ∞
0

dτ eıωτ 〈[nq(τ), n−q]〉 ,

φ(q, ω) =
1

ω
[χ(q, ω)− χ0(q)] , (3)

with its static (thermodynamic) value χ0(q) (see formal back-
ground and definitions in Appendix A), which in normal er-
godic systems satisfies χ0(q) = χ(q, ω → 0).

In a homogeneous system 〈..〉 denotes the canonical ther-
modynamical average. In a disordered system we perform in
addition the averaging over all random configurations of εi.
We have to stress that nq is a macroscopic operator (not a lo-
cal one), and in the following analysis we study only such
quantities. This implies that dynamical correlations func-
tions, as defined by Eq. (3), are expected to be self-averaging,
i.e., the configuration averaging is in principle not required
in the macroscopic limit of L → ∞. Here, we rely on a
similarity with the treatment of Anderson localization of NI
electrons31,32 as well on recent analysis of sample-to-sample
fluctuations of σ(ω) in the same MBL model12. Neverthe-
less, this aspect has still to be critically examined when taking
the limit ω → 0 since the fluctuations at larger disorder can
be singular (referred in 1D as the Griffiths effect of rare but
large random deviations8,9,33). In particular, this is the rele-
vant question within the nonergodic (MBL) phase.

The advantage of above formulations is that it remains
meaningful even in nonergodic cases where χ0(q) >
χ(q, ω → 0)31,32,34,35, as expected within the MBL regime.
It is helpful to represent and analyse φ(q, ω) in terms of com-
plex memory functions36 (see formal derivation and relations

in Appendix B),

φ(q, ω) =
−χ0(q)

ω +M(q, ω)
,

M(q, ω) = ı
g2q

χ0(q)
σ(q, ω) , (4)

related to the q-dependent conductivity σ(q, ω) via the con-
tinuity equation [H,nq] = gqjq , where gq = 2 sin(q/2) and
jq is the current operator for given q. It should be noted that
σ(q, ω) has the usual meaning only in the limit q → 0, where
σ(ω) = Reσ(q → 0, ω) is the optical conductivity. We make
a further step and define the current relaxation-rate function
Γ(q, ω) as

σ(q, ω) =
ıχ0
j (q)

ω + Γ(q, ω)
, (5)

where χ0
j (q) is the static current susceptibility. We note that

γ(q, ω) = Im Γ(q, ω) is (at β → 0) independent of β and has
the meaning of the effective current relaxation rate at ω → 0.

The limit β → 0 allows also for analytical evaluation of
static quantities, in particular,

χ0(q) = βn̄(1− n̄) = χ0 ,

χ0
j (q) = β2t2n̄(1− n̄) = χ0

j . (6)

With known static quantities, Eq. (6), the relation between
φ(q, ω) and, e.g., Γ(q, ω) is thus unique and exact (not de-
pending on approximations introduced later-on), and can be
used in any direction provided that one of both quantities is
evaluated. It is worth mentioning that Eq. (4) together with
Eq. (5) resemble continued fraction expansion of frequency
moments of complex correlation functions. Such a approach
was recently used in Ref. 37 to numerically evaluate optical
conductivity σ(ω) in strong disorder limit. Here, we develop
analytical theory for first three moments of such a series (see
Section IV).

III. NUMERICAL FINITE-SIZE RESULTS

We note the relation of above quantities to standard dynam-
ical structure factor S(q, ω), which is at β → 0 given by

Imφ(q, ω) = πβS(q, ω) . (7)

Before introducing the analytical method, we comment on
numerical finite-size results, which serve later-on as a test
for the proposed analytical theory. The dynamical quantity
calculated directly is S(q, ω), whereby we employ the mi-
crocanonical Lanczos method (MCLM) on finite systems at
β → 038,39. In Fig. 1 we present characteristic results for
S(q, ω) for L = 24, V = 1, W = 0, 2, 4 in the whole range
of wavevectors q = [0, π]. They already allow for some rough
distinction of dynamical density correlations in three regimes:
(a) At W = 0 S(q, ω) is the response of the homogeneous 1D
chain of interacting spinless fermions. Due to integrability of
such a model, even at β → 0 the response has close analogy to
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non-interacting (NI) fermions (i.e., at V = 0)40. In particular,
the S(q, ω) has no diffusion pole and is quite featureless (at
β → 0) in the interval ω < 4 sin(q/2). (b) At weak disorder
0 < W = 2 < Wc ∼ 3.5 10 an additional feature is a diffusion
(or diffusion-like, as discussed later-on in relation to subdiffu-
sion) pole which has a finite width δω ∝ q2 and is well visible
at small q � π/2. (c) For large disorder W = 4 > Wc the
response becomes singular at all q and S(q, ω ∼ 0) = Sqδ(ω)
shows a finite stiffness Sq > 0, being a hallmark of MBL
regime.
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Figure 1. (Color online) High-temperature β → 0 dynamical struc-
ture factor S(q, ω), as calculated with MCLM for L = 24, V = 1,
(a) W = 0, (b) W = 2, and (c) W = 4 for all q = [0, π].

Since S(q, ω) is quite singular function (at least for q → 0),
it is helpful to extract the corresponding σ(q, ω) and Γ(q, ω)
via Eqs. (4), (5). To this purpose we first calculate com-
plex φ(q, ω) from S(q, ω). Next, with known χ0, χ0

j using
Eqs. (4),(5) we evaluate σ(q, ω) and Γ(q, ω). In the numerical
procedure it is crucial to have high frequency ω resolution of
MCLM results, which are obtained by employing NL ∼ 104

Lanczos steps in order to get δω . 0.003 of S(q, ω) spectra.
Characteristic results obtained for L = 24 and averaged

over Ns ∼ 100 random configurations are presented in Fig. 2.
Some generic features be inferred: (a) Consistent with previ-
ous calculations of σ(ω)7,9,11,12 our results indicate (for all dis-
orders W ) the maximum at ω = ω∗ > 0, and more important
a nonanalytical low-ω behavior, i.e., σ(ω) ∼ σ0+ζ|ω|α. Here
our numerical results in the ergodic regime, W < Wc imply
an interpretation with σ0 > 0 and α ∼ 17,11,12, while we com-
ment later-on the possibility of the subdiffusion with σ0 = 0
and α < 18,9,24,26. (b) Within our resolution σ0, but also gen-
eral σ(q, ω → 0), vanishes for W ≥ Wc consistent with the
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Figure 2. (Color online) (a1,b1,c1) Dynamical conductivity
Reσ(q, ω) and (a2,b2,c2) current relaxation-rate function γ(q, ω),
obtained via MCLM on L = 24 sites for fixed parameters V = 1,
as compared to the solution of SC equations (with effective length
L∗ = 24), for different q and two disorders: (a) W = 1, and (b)
W = 2.

onset of the MBL phase and nonergodicity at all q. This im-
plies necessarily via Eq. (5) a divergent γ(q, ω → 0) → ∞,
as also evident on approaching the MBL transition.

For comparison we present in Fig. 3 also corresponding nu-
merical results for V = 2, which corresponds to the isotropic
Heisenberg model with random magnetic fields and has been
in this connection studied more frequently. One can notice
that larger V does not change qualitatively results for both
σ(q, ω) as well as γ(q, ω), but rather additionally broadens
spectra, except the MBL singularity at ω ∼ 0 for W = 2.

IV. ANALYTICAL APPROACH TO CURRENT
DECAY-RATE FUNCTION

A. Effective force

The motivation for following analytical approach and ap-
proximations comes form the perturbation theory, which can
be performed for weak disorder W → 0 (and somewhat more
delicate for V → 0 ) on the level of the current decay-rate
function Γ(q, ω), in analogy to the theory of current scattering
mechanisms in simple metals41. Such a theory has been ex-
tended to the nontrivial problem of Anderson localization by
taking it beyond the perturbative approximation31,32,35 and we
will partly follow an analogous treatment for the MBL prob-
lem.

The expression for Γ(q, ω) (see the formal derivation and
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Figure 3. (Color online) (a1,b1) Reσ(q, ω) and (a2,b2) γ(q, ω)
(MCLM, L = 24) for fixed V = 2, few different q, and two dis-
orders: (a) W = 1 and (b) W = 2.

Eq. (30) in the Appendix B) is the starting point for the ana-
lytical approximations. The current scattering mechanism is
determined by the operator for the effective force Fq = QLjq ,
with the Liouville operator Ljq = [H, jq] and Q representing
the operator36,42 which projects into space perpendicular to nq
(see Appendix B for details). Ljq can be evaluated explicitly
from the model (1),

Ljq = tgqh
d
q −

1√
L

∑
k

gkεkh
k
q−k

− V√
L

∑
k

wknkh
k
q−k + 2t2gqnq , (8)

where wk = 2 sin(3k/2) and we define also (Fourier trans-
forms of) kinetic-energy, potential and next–nearest hopping
terms, respectively,

hkq = − t√
L

∑
i

eıq(i+1/2)[c†i+1ci + H.c.] ,

hdq = − t√
L

∑
i

eıqi[c†i+1ci−1 + H.c.] ,

εk =
1√
L

∑
i

eıqiεi . (9)

In the evaluation of Fq the last term in Eq. (8) vanishes
due to Qnq = 0. Other three terms remain unaffected by the
action of Q within β → 0 limit. With such a force operator

Fq we can write

Γ(q, ω) =
1

χ0
j

Λ(q, ω) ,

Λ(q, ω) ∼ χF (q, ω)− χ0
F (q)

ω
, (10)

where χF (q, ω) are the generalized (force) susceptibilities,
defined for the operator Fq [compare with Eq. (3)]. In the
above expression, in analogy to weak scattering theory36,41,
we have introduced the (straightforward with an perturbative
approach) approximation neglecting the projections onto nq
and jq space, LQQ′ → L, in the resolvent of Eq. (10) [com-
pare Eq. (30)].

B. Perturbative approximation

Following Eq. (31) in the Appendix B, we are dealing with
force Fq = Fq1 + Fq2 + Fq3, representing different current
scattering mechanisms. Similarly as in the derivation of the
dynamical conductivity in metals41, we represent Γ(q, ω) as
the sum of three contributions, neglecting possible mixed cor-
relations.

Λ1(q, ω) ∝ g2q vanishes in the hydrodynamic regime q → 0
and can be approximated by the NI limit, i.e.,

Γ1(q, ω) =
g2q
2

1

L

∑
k

−f2k
ω+ + ek+q/2 − ek−q/2

, (11)

where fk = e2k and ek = −2t cos k is the NI fermion
dispersion. It should be, however, recognized that even at
W = V = 0 the Γ1(q, ω) does not fully reproduce the NI
result for φ(q, ω) [due to simplification in Liouville operator
in Eqs. (30),(10)]. This deficiency is easily remedied by notic-
ing that the correct NI result is obtained by replacing fk = ek
in Eq. (11). Still, for W > 0 single-particle eigenstates do not
have a well defined wavevector k, so more reasonable approx-
imation in this case is to assume an additional broadening,
i.e., δ = W/

√
3, corresponding to the width of the random-

potential distribution. This details hardly influence any quali-
tative results further-on, since Γ1(q, ω) does not contribute in
the hydrodynamic regime q → 0.

By decoupling the static disorder and dynamical density
fluctuations in Γ2(q, ω), we get

Λ2(q, ω) =
1

L

∑
k

g2q−k〈ε2q−k〉φk(k, ω) , (12)

where φk(q) is the relaxation function of the kinetic-energy
hkq , Eq. (9), defined in analogy to φ(q, ω), Eq. (3). In the NI
limit (but with disorder W > 0) Eq.(12) reduces to

Γ2(q, ω) =
W 2

6t2L2

∑
k,k′

−g2q−ke2k′
ω+ + ek′+k/2 − ek′−k/2

, (13)

which is the lowest-order scattering (Boltzmann-type)
result41, in particular it gives a finite relaxation rate γ(q, ω) =
Im Γ(q, ω), also in the hydrodynamic (q, ω)→ 0 limit.
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The perturbative treatment of the interaction term is more
problematic. One can assume that the dynamical fluctuations
of density nk and kinetic energy hkq−k are independent, which
leads to

Im Λ3(q, ω) =
V 2

L

∑
k

w2
k

πβ

∫ ∞
−∞

dω′ ×

Imφ(k, ω′)Imφk(q − k, ω − ω′) . (14)

When we insert the NI input for φ(q, ω) and φk(q, ω), the
interaction V > 0 leads to additional current decay chan-
nel, even at (q, ω) → 0. While this is an effect generally
expected from the inter-particle interaction, in our particular
case it is not fully justified since the pure (W = 0) model is
integrable and exhibits a dissipationless current and singular
σ(ω ∼ 0) = βDδ(ω) with D > 0 even at β → 0. Since we
are interested more in the role of disorder and of a generic in-
teraction term, where current dissipation should emerges from
a term like Eq. (14), we would here stay at this level of approx-
imation.

C. Self-consistent closure

At this stage we are not aiming to develop more de-
tailed theory for kinetic-energy fluctuations φk(q, ω) entering
Eqs. (13),(14). It is, however, crucial to take into account the
fact that the kinetic-energy function has an overlap with the
energy-density relaxation function. In a disordered system,
the energy is, besides the number of particles, the only con-
served quantity. It is therefore essential to take properly the
q → 0 energy fluctuations, and we treat these correlations in
analogy to Eqs. (4),(5) with the role of σ(q, ω) replaced by the
thermal conductivity κ(q, ω). The latter has been found43,44

to have similar behavior close to the MBL transition, in par-
ticular the vanishing of d.c. value κ0 and anomalous low-ω
behavior. Taking into account sum rules η = χ0

k/χ
0 = 2t2

we further-on work with a simplification φk(q, ω) = ηφ(q, ω)
representing an effective Wiedemann-Franz relation, i.e., as-
suming the same relaxation rates for density and energy cur-
rents.

Since Λ ∝ φ ∝ β, we further-on work with renormalized
relaxation functions, i.e., φ̃ = φ/χ0, φ̃k = φk/χ

0. So the
final SC equations, besides Γ1(q, ω), where we do not correct
Eq. (11), are

Γ2(q, ω) =
ηW 2

6t2L

∑
k

g2q−kφ̃(k, ω) , (15)

Im Γ3(q, ω) =
ηñV 2

2πL

∑
k

w2
k

∫
dω′ Im φ̃(k, ω′)×

Im φ̃(q − k, ω − ω′) , (16)

where ñ = n̄(1 − n̄). The MBL physics, in particular the
transition, is predominantly governed by Γ2(q, ω), while for
W > 0 the interaction-driven term Γ3(q, ω), due to convolu-
tions in (q, ω), yields rather a featureless function, leading to
the current decay at all q.

Due to the coupling to the q → 0 diffusion mode in
Eq. (11), it is evident that Γ(q, ω → 0) as well as the whole
SC set might be singular in 1D. In order to simulate finite-size
systems (as studied numerically) and explore the finite-size
scaling we introduce a finite cutoff km = π/L∗, in partic-
ular in Eq. (15). It should be pointed out that after taking
mentioned simplifications there are (at given model constants
V,W ) no free parameters in the SC theory apart from the cut-
off km (effective length L∗).

We note that presented SC equations have an analogy to
simplified theories of Anderson localization35. It has been,
however, established that proper SC localization theory for NI
fermions31,32 should take into account the time-reversal sym-
metry of correlation functions on a single-particle level. The
latter is, however, lost by including finite interaction V > 0.
As a consequence, Eq. (15) emerges as a nontrivial coupling
of only remaining low-ω collective modes in the system, i.e.,
the density and the energy diffusion mode.

V. NUMERICAL SOLUTIONS OF SC EQUATIONS

A. General features

Having SC set of equations, Eqs. (4),(5),(11),(15),(16), it
is straightforward to find solutions by numerical iteration of
coupled equations until convergence, whereby we use at the
initial step the NI input for φ(q, ω). In Fig. 2 we present typ-
ical SC-theory results for Reσ(q, ω) and γ(q, ω) along with
the MCLM numerical ones, whereby we use L∗ = 24 cor-
responding to the size used in MCLM calculation. Qualita-
tive agreement is quite satisfactory for modest value of disor-
der strength W , in particular the analytical theory reproduces
some essential features: (a) Maxima of σ(q, ω) with ω∗ > 0
emerge also in SC solutions due to a nontrivial maxima in
γ(q, ω → 0). The maximum moves towards ω∗ ∼ 0 for
weaker disorder W < 0.8, which would be the signature of a
normal diffusion. (b) In the ergodic regime atW < W ∗c ∼ 1.6
low-ω SC results for small L∗ < 100 can be roughly fitted to
σ(ω) = σ0 + b|ω|α with σ0 > 0 and α ∼ 1 close to the MBL
transition. (c) Due to a large increase of γ(q, ω → 0) the con-
ductivity σ(q, ω → 0) is strongly reduced for larger W > 1.
(d) Eventually, for W > W ∗c the SC equations yield a singu-
lar solution γ(q, ω ∼ 0) = γsδ(ω) which is the hallmark of
the nonergodicity and leads also to vanishing d.c. transport
σ(q, ω → 0) = 0.

The behavior with W varying across the MBL transition
is presented in Fig. 4, where we compare results for disorder
strength up to W = 4 � W ∗c . We observe that the quanti-
tative agreement between SC and numerical result is steadily
decreasing with increasing W > W ∗c . This coincides with the
fact that SC threshold W ∗c ∼ 1.6 is significantly below nu-
merical (at V = 1) estimate Wc ∼ 3 10. The origin of this
discrepancy in critical W ∗c can traced back to overestimated
coupling between density and energy diffusion mode enhanc-
ing the feedback (localization) mechanism in SC equations
via the γ(q, ω → 0) behaviour. Still, the overall qualitative
change across the MBL transition follows the same pattern as
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the numerical one.
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Figure 4. (Color online) Comparison between SC and numerical
(MCLM) results of (a) Re σ(q, ω) and (b) γ(q, ω) for q = π/12,
L = L∗ = 24, and various disorder strengths W = 1, 2, 3, 4.

When we are comparing SC results for optical conductivity
σ(ω) = σ(q → 0, ω) with previous numerical studies (as well
as this study for q > 0) on finite systems11,12,43, we should
use appropriate L∗ as well as corresponding δω. In Fig. 5
we present a characteristic result for modest L∗ = 40 (and
δω ∼ 10−3) for σ(ω) across the transition to the MBL, i.e.
1.2 ≤ W ≤ 2.0, together with the low-ω fit to σ̃(ω) = a +
b|ω|c. We note that such a fit should be evidently restricted
to the range well below the maximum ω � ω∗ which is for
W > W ∗c at ω∗ ∼ 1, but for lowest W = 1.2 moves down
to ω∗ ∼ 0.211. Nevertheless, the overall behavior around the
transition W ∼ W ∗c is is characterized by α ∼ 1 and a clear
drop of σ0.
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10−1

100

10−3 10−2 10−1 100 101

σ
(ω

)

ω

SC
Fit
W = 1.2
W = 1.6
W = 2.0

Figure 5. (Color online) Comparison of SC solution (solid line,L∗ =
40, δω = 10−3) with the fit σ̃(ω) = a + b|ω|c (dashed line). with
c = 0.8, 1.0, 1.5 for W = 1.2, 1.6, 2.0, respectively.

B. Subdiffusion and transition to MBL

While SC results in Fig. 2 (as well as Fig. 5) show an overall
behavior forW < W ∗c andW ∼W ∗c , consistent with numeri-

cal results at finiteL∗, we further investigate in more detail the
consequences of the singular aspects due to 1D. In order to ex-
plore the low-ω behavior, we concentrate on most interesting
q → 0 results and present in Fig. 6 σ(ω) as obtained with large
frequency ω resolution (δω ∼ 10−4) at several characteristic
W and varying effective length L∗ = 20 − 320. It should be
realized that the choice of δω in the numerical SC procedure
is intimately related to L∗ and we cannot get strictly σ0 = 0
at δω > 0. Nevertheless the scaling δω → 0, as shown in the
inset of Fig. 6, is consistent with vanishing σ0 = 0, at least for
W > 1.2. This is also presented in Fig. 7, which depicts de-
pendence of dynamical conductivity Reσ(q, ω) on frequency
resolution, δω, for fixed cutoff L∗ = 20 and L∗ = 640 and
various disorder strength.
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σ
0
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Figure 6. (Color online) Optical conductivity σ(ω) (in a log-log
scale) as evaluated from the SC theory at V = 1 for different
W = 0.8, 1.4, 2.0, and various effective lengths L∗ = 20 − 320
with frequency resolution δω = 10−4. Insets of (b,c): scaling of
L∗ = 20 and L∗ = 320 with δω used in SC equations.

Taking this into account, we can distinguish three regimes
as already noted in numerical studies8,9,26: (a) At small disor-
der W < 1 σ(ω → 0) is only weakly dependent on L∗ and it
is hard to detect signatures of a subdiffusion even at extreme
L∗ � 100. (b) At the intermediate 1 < W < W ∗c we confirm
the steady decrease of σ0 with increasing L∗ and the behav-
ior can be well captured with subdiffusion form σ(ω) ∝ |ω|α
with α < 1. (c) For W > W ∗c results become again only
weakly L∗ dependent, while the d.c. value σ0 is vanishing.

To make the analysis of subdiffusion more objective, we
define the exponent via the maximum slope

α =
d log σ(ω)

d logω
, (17)

in the range ω < 0.1. Results are shown in Fig. 8(a). It is
indicative that the subdiffusion with α � 1 can be hardly
established for W < 1 since it requires L∗ � 10026. On
the other hand, results with α > 0.3 are better resolved. The
crossing α = 1 marks the MBL transition to the nonergodic
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Figure 7. (Color online) (a-c) Frequency resolution δω dependence
of σ(ω) for fixed effective length L∗ = 640 (left column) and L∗ =
20 (right column), and various disorder strength W = 0.5, 1.0, 2.0.

phase, where for large W � W ∗c we get α ∼ 2, as expected
deep inside the localized regime2.

As an uniform (q → 0) order parameter within the MBL
(nonergodic) phase one can consider the current-relaxation
stiffness γs(q) > 0. More physical is the dielectric polariz-
ability

χd =
2

π

∫ ∞
0

σ(ω)

ω2
dω , (18)

whereby χd < ∞ implies that the system is dielectric, i.e.,
an external field along the chain induces only a finite polar-
ization. It is evident, that α > 1 is required for χd < ∞.
In Fig. 8(b) we present results for the inverse 1/χd vs. W
as evaluated for different L∗, revealing indeed its vanishing
below the MBL transition.

VI. CONCLUSIONS

Presented analytical theory is a SC extension of the pertur-
bative evaluation of the current decay-rate function Γ(q, ω).
The disorder effect is reproduced within the lowest order
(Boltzmann-type) scattering, while the interaction is treated
only within a decoupling approximation. In analogy to the
SC theory of the single-particle Anderson localization31,32,35,
the theory is closed beyond the weak scattering approxima-
tion, where the crucial assumption (at the present level of the
theory) is that density and energy dynamical correlations are
related, in particular at small (q, ω), and both simultaneously
undergo a MBL transition.

Although the theory starts from the lowest-order calculation
of the current-relaxation function Γ(q, ω) its extention into a
SC scheme goes well beyond the perturbative approach. A

0
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1.5
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Mott law
Nonergodic

Subdiffusive

0

0.04

0.08

0.8 1.2 1.6 2 2.4
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1
/
χ

d

W

L∗ = 20
L∗ = 40
L∗ = 80
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L∗ = 320

Figure 8. (Color online) (a) Dynamical exponent α and (b) the in-
verse dielectric polarizability 1/χd vs. W as evaluated at V = 1
and different L∗ = 20 − 320 and δω = 10−4. Note that the MBL
transition is determined by α = 1.

SC determination of Γ(q, ω) leads, on approaching the MBL
transition, to enhanced low-ω density and energy-density fluc-
tuations, which finally leads to the freezing of the low-ω dy-
namics at the W = W ∗c . Beyond this disorder correlation
functions are nonergodic and characterized by singular contri-
bution in S(q, ω) ∼ Sqδ(ω) with Sq > 0. One might question
the particular validity and the form of the SC loop, however
the freezing of low-ω dynamics is well visible in numerical re-
sults and consistent with analogous phenomenon in the theory
of Anderson localization31,32,35.

In the presented theory there are no free parameters except
the cutoff km = π/L∗ which simulates the finite-size sys-
tem and allows for the finite-size scaling. The importance of
cutoff and corresponding sensitivity of SC solutions on the
frequency resolution δω appears to be a singular property of
1D and makes the proper convergence of solutions of cou-
pled analytical equations nontrivial. In spite of simplifications
the presented SC theory yields several nontrivial conclusions,
consistent with numerical results obtained in this paper via
the MCLM method, but also with previous numerical investi-
gations on finite systems:
(a) When simulating numerically reachable finite-size systems
by taking cutoff L∗ ∼ 20 − 40 (as well corresponding finite-
frequency resolution δω ∼ 10−3) our SC results appear to be
consistent with the dynamical conductivity σ(ω) ∼ σ0+b|ω|α
with α ∼ 1 and vanishing σ0 near the MBL transition11,12,43.
(b) However, careful scaling beyond L∗ > 100 and δω � 103

of SC solution indicates on vanishing σ0 = 0 in the ergodic
regime W < W ∗c (at least for W > 1.2 at V = 1). Within the
present SC theory this emerges due to the disorder-induced
coupling between the density and the energy diffusion mode.
As a consequence of 1D, in the ergodic regime the transport is
subdiffusive8,9,24,25,27, i.e., for large enough systems d.c. trans-
port coefficients are expected to vanish, e.g., σ0 → 0. Still,
for modest disorder W effective sizes to detect such anoma-
lies could be huge, e.g. L∗ � 10026,27, and therefore hard to
detect in numerical and even experimental studies.
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(c) The transition to the nonergodic MBL regime W > Wc

appears in the theory via the onset of the current-decay stiff-
ness γs > 0, which coincides with the condition for the
dynamical exponent α > 1 and the dielectric polarizability
χd <∞.
(e) Theoretical results for dynamical correlations show an
overall qualitative agreement with numerical ones (at corre-
sponding effective length L∗) in the whole (q, ω) range.

When we discuss the validity and restrictions within the
presented theory, there are several aspects in which should be
considered:
(a) Since the theory is an extension of the perturbative treat-
ment of disorder starting at modest W , it is plausible that we
cannot claim a quantitative agreement for larger disorder with
W ∼ W ∗c or even more within the MBL regime W > W ∗c .
The reason is mainly twofold: AtW > 3 single-particle states
are already well localized. Still, more problematic seems to be
the overestimated coupling between density and energy dif-
fusion modes, which leads to overestimated feedback in SC
equation and consequently to the transition at critical W ∗c ,
substantially smaller than emerging from numerical studies
(e.g. at V = 1 W ∗c ∼ 1.6 instead of numerical estimate
Wc = 3). This can be improved by taking both relevant
hydrodynamic modes, i.e., density and energy diffusion, on
equal footing into the analysis. In this work we skip this as-
pect in order to make our SC theory as transparent as possible.
(b) The current decay-rate due to interaction V > 0 is taken
very crudely, in particular since the actual model without dis-
order (at W = 0) is integrable and V > 0 itself does lead to
d.c. conductivity σ0 < ∞. Nevertheless, generic interaction
term is expected to lead to the scattering of d.c. current (at
T � 0). Moreover Γ3(q, ω) seems to be less critical depen-
dent on dimensionality of the system, as appears the case for
Γ2(q, ω) emerging from disorder.
(c) The assumption that the dynamical quantities are self-
averaging is inherent in the SC approach, although this aspect
should be further critically examined due to possible role of
rare large disorder fluctuations8,9.

The presented SC scheme is more generic and can be gener-
alized into different directions. Analogous treatment of higher
dimension in rather straightforward, especially since some
anomalies as, e.g., the subdiffusion are not expected there, at
least not to such extent. One could treat also separately the
density and energy dynamical correlations, whereby the latter
one are much less investigated so far. On the other hand, for
experiments on MBL in cold-atom systems22–24 the relevant
model is the disordered Hubbard model which does reveal a
disorder-induced spin-charge separation45, which might also
be approached in a similar way.
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APPENDIX A: CORRELATION FUNCTIONS

Since the system under consideration can be nonergodic,
one should be careful with the definitions of correlation and
response functions. In our analysis we define the dynamical
susceptibility (response functions) χA(ω) and corresponding
static (thermodynamic) response χ0

A, for arbitrary operators
A in the standard way,

χA(ω) = −ı
∫ ∞
0

dt eiω
+t〈[A†(t), A]〉 , (19)

χ0
A =

∫ β

0

dτ 〈A†A(iτ)〉 = (A|A) , (20)

where ω+ = ω + iδ with δ → 0 and β = 1/T . Eq. (20)
introduces the scalar product36,42, convenient for formal rep-
resentation and derivation of memory functions, even for non-
ergodic systems. Above 〈..〉 denotes the canonical thermody-
namical average and in a disordered system additional averag-
ing over all random configurations of εi (see the comment in
the main text after Eq. (3)).

In the analysis, instead of susceptibilities χA(ω), we mostly
use related relaxation functions,

φA(ω) =
χA(ω)− χ0

A

ω
= (A| 1

L − ω
|A) , (21)

where the second representation in Eq. (21) in terms of the
resolvent with Liouville operator LA = [H,A] is a standard
one allowing formal steps further-on. The nonergodic behav-
ior is in this framework characterized by the behavior χ0

A >
χA(ω → 0) leading to a singular low-ω contribution31,32,34,35,

ImφA(ω ∼ 0) = πDAδ(ω) , DA = χ0
A − χA(ω → 0) ,

(22)
where DA is the corresponding stiffness.

Finally, since we are dealing only with the case of high-T ,
i.e. β → 0, there are convenient simplification following from
Eq. (20) and Eq. (21)

χ0
A = β〈A†A〉, φA(ω) = −ıβ

∫ ∞
0

dt eıω
+t〈A†(t)A〉 ,

(23)
and in particular simplified relation to the general dynamical
structure factor Imφ(ω) = πβSA(ω).

APPENDIX B: MEMORY-FUNCTION REPRESENTATION

We use definitions above for several operators A of inter-
est. The starting point are density relaxation function with
A = nq , The memory function (MF) representation of φ(q, ω)
follows from the continuity equation,

Lnq = gqjq , jq =
t√
L

∑
i

eıq(i+1/2)(ıc†i+1ci + H.c.) ,

(24)
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where gq = 2 sin(q/2). By defining the projection projector
P and its complement Q,

P = |nq)
1

χ0(q)
(nq| , Q = 1− P , (25)

where χ0(q) = (nq|nq), we can express relaxation function,
Eq. (21), in the from of MF representation

φ(q, ω) =
−χ0(q)

ω + ıg2qσ(q, ω)/χ0(q)
, (26)

with

σ(q, ω) = (Qjq|
−ı

LQ − ω
|Qjq) = (jq|

−ı
LQ − ω

|jq) , (27)

where LQ = QLQ is projected Liouville operator and Qjq =
jq by symmetry. It should be noted that σ(q, ω) is in general
not equal to standard conductivity σ̃(q, ω), evaluated directly
replacing in Eq. (27) the reduced dynamics with the full one,
LQ → L. Still, both quantities merge in the hydrodynamic
limit q → 036,41.

In the next step we express σ(q, ω) in terms of the current
relaxation-rate function Γ(q, ω),

σ(q, ω) = ı
χ0
j (q)

ω + Γ(q, ω)
, (28)

where χ0
j (q) = (jq|jq). While such a possibility follows di-

rectly from the analytical properties of φ(q, ω) and σ(q, ω),
the formal expression (used further-on as the starting point
for analytical approximations in Sec. IV ) can be given, intro-
ducing additional projector

P ′ = |jq)
1

χ0(q)
(jq|, Q′ = 1− P ′ , (29)

so that

Γ(q, ω) =
1

χ0
j (q)

(Fq|
1

LQQ′ − ω
|Fq) =

1

χ0
j (q)

Λ(q, ω) ,

(30)
where (formally) LQQ′ = Q′LQQ′ and

Fq = QQ′Ljq = QLjq . (31)
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