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It has recently been shown that there exists a class of stable gapless spin liquids in 3+1 dimensions
described by higher rank tensor U(1) gauge fields, giving rise to an emergent tensor electromag-
netism. The tensor gauge field of these theories couples naturally to subdimensional particles (such
as fractons), which are restricted by gauge invariance to move only along lower-dimensional sub-
spaces of the system. We here work out some of the basic generalized electromagnetic properties
of subdimensional particles coupled to tensor electromagnetism, such as generalized electrostatic
fields, potential formulations, Lorentz forces, Maxwell equations, and Biot-Savart laws. Some con-
cepts from conventional electromagnetism will carry over directly, while others require significant
modification.

I. INTRODUCTION

Spin liquids are fascinating states of matter which ex-
hibit long-range entanglement in the ground state and an
exotic spectrum of emergent excitations.1 As a simple ex-
ample, a conventional three-dimensional U(1) quantum
spin liquid is described by the familiar U(1) gauge the-
ory of Maxwell electromagnetism. Such a system has
an emergent gapless photon (with the effective “speed of
light” determined by microscopic parameters), as well as
emergent charged particles, coming in both electric and
magnetic varieties. The gaplessness of the emergent pho-
ton is protected by gauge invariance, which makes these
phases stable against perturbations to the Hamiltonian,
without the need for symmetry protection.

This gauge structure of the theory gives rise to an
emergent electromagnetism in U(1) spin liquids. This
quantum electromagnetic theory can be conveniently de-

scribed in terms of a vector potential ~A, where the mag-

netic field is given by ~B = ∇ × ~A. The electric field
~E plays the role of the canonical conjugate to ~A, since
~E = ∂LMax/∂ ~̇A. Microscopically, this gauge structure
can be obtained by rewriting the fundamental degrees of
freedom, such as spins on a lattice, into a language which
maps a geometrically frustrating spin interaction (e.g.
“spin ice rules”) into a gauge constraint. The reader is
referred to Reference 2 for a more thorough discussion
of the U(1) quantum spin liquid and its Hilbert space.

While the vector potential theory is most familiar, it
has recently been realized that there is a wide class of
other spin liquids described by emergent tensor gauge
fields. In particular, it has been shown that systems de-
scribed by symmetric tensor U(1) gauge fields exhibit
a stable deconfined phase, making these a new class of
stable gapless spin liquids.3 As in the conventional U(1)
spin liquid, these systems have robust gaplessness with-
out needing to rely on symmetry protection. Further-
more, it has been shown that the particles carrying the
gauge charge in these theories obey extra conservation
laws which restrict their motion to lie on certain lower-
dimensional subspaces.4 For example, certain theories

have particles carrying a vector charge, which can move
only along one-dimensional subspaces, in the direction
of their charge vector. In other models, the fundamen-
tal charges are restricted to a zero-dimensional subspace,
i.e. they cannot move at all without the creation of addi-
tional particles. Other types of subdimensional particles
are also possible. This subdimensional behavior makes
these theories the natural U(1) analogue of the discrete
“fracton” models constructed by Vijay, Haah, and Fu.5,6

The same sort of restricted mobility was also seen in ear-
lier work by Chamon and others.7–12 Such fracton phases
have seen a flurry of recent activity.13–18

Phases described by symmetric tensor U(1) gauge
fields also exhibit an emergent electromagnetism, but of
a more exotic form. The electric and magnetic fields are
now tensor-valued objects instead of vectors. We will see
that even currents in these theories must be promoted to
tensor objects. Furthermore, in each distinct higher rank
U(1) spin liquid phase, there is a different set of general-
ized Maxwell equations. This gives us many new types of
generalized electromagnetism to play with. As discussed
in previous work, there are actually an infinite number
of such higher rank U(1) theories, by considering tensors
of arbitrary rank. For the sake of finiteness, we shall
here work with the rank 2 symmetric tensor theories, of
which there are four known distinct spin liquid phases.
Any other higher rank theory ought to be amenable to
the same sort of analysis. We will focus on generalizing
some of the basic concepts of undergraduate electromag-
netism to these higher rank U(1) theories, such as elec-
trostatic fields, potential formulations, Lorentz forces,
and Biot-Savart laws. Our analysis will mainly focus on
the macroscopic picture, abstracting from any specific
microscopic models. For completeness, however, we will
review the concrete lattice models in Appendix D.

Before proceeding to the main analysis, we first
quickly recap the properties of the four types of rank
2 symmetric tensor U(1) spin liquids, developed in Ref-
erences 3 and 4. In all cases, the degrees of freedom
are those of a symmetric rank 2 compact U(1) tensor
Aij , with a conjugate variable Eij representing a gen-
eralized electric field. As discussed in these references,
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each phase can be fully specified by the structure of its
Gauss’s law constraint, and the four types of rank 2 the-
ories are distinguished by the different choices of Gauss’s
laws available. The different theories are as follows:

A: Vector Charge Theory

In this theory, the Gauss’s law takes the form ∂iE
ij =

ρj , for vector-valued charge ρj . The charges of this the-
ory obey two constraints:∫

~ρ = constant

∫
~x× ~ρ = constant (1)

reflecting the conservation of both the charge and its an-
gular moment. In order to obey these conservation laws,
the vector charges are forced to become 1-dimensional
particles, hopping only along the direction of their charge
vector. The gapless gauge mode for this theory has three
independent polarizations. This theory has a magnetic
field tensor Bij which is also symmetric and obeys a
corresponding magnetic Gauss’s law, ∂iB

ij = ρ̃j , for
magnetic charge ρ̃j . The magnetic field tensor has two
spatial derivatives, leading to a quadratic dispersion for
the gauge mode. This theory possesses a self-duality be-
tween the electric and magnetic tensors. We shall there-
fore focus mainly on the case where only electric charges
and currents are present in the theory. Results for mag-
netic charges and currents can be obtained straightfor-
wardly by duality.

B: Traceless Vector Charge Theory

We here have the same Gauss’s law from the previous
theory, ∂iE

ij = ρj , but also add in a tracelessness con-
straint, Eii = 0. We are free to impose this constraint
exactly on the entire Hilbert space. Alternatively, one
could consider allowing the constraint to break by adding
trace charges, Eii = ρtr. This could be treated by simi-
lar methods, but would make the analysis more cumber-
some and does not change the results qualitatively, so
we focus on the case where tracelessness is exact. This
theory has both of the conservation laws of the previous
theory, plus two new conservation laws related to the
tracelessness:∫

(~ρ ·~x) = constant

∫
[(~x ·~ρ)~x− 1

2
x2~ρ] = constant

(2)
These conservation laws restrict the fundamental charges
from moving at all, turning them into fractons (0-
dimensional particles). The only mobile particles in this
theory are bound states, which will be discussed later.
The gapless gauge mode of this theory has two indepen-
dent polarizations. The theory has a symmetric traceless
magnetic field tensor Bij , now with three spatial deriva-
tives, leading to a cubic dispersion for the gauge mode.

Once again, the theory exhibits self-duality, swapping
the role of the electric and magnetic field tensors.

C: Traceless Scalar Charge Theory

We now consider a theory with a two-derivative
Gauss’s law, ∂i∂jE

ij = ρ, for scalar charge ρ. Let’s
also first suppose the electric field tensor is traceless,
Eii = 0, saving the traceful analogue for last. The the-
ory has three constraints on the charge:∫

ρ = constant

∫
~xρ =constant∫

x2ρ = constant

(3)

reflecting the conservation of charge, dipole moment,
and one specific component of the quadrupole moment.
The fundamental charges are fractons, unable to hop in
any direction without the creation of additional charges.
The mobile excitations are dipolar bound states, which
behave as two-dimensional particles, only able to hop
transversely to the dipole moment. The gapless gauge
mode has four independent polarizations. The magnetic
field tensor Bij is a symmetric traceless tensor, just like
Eij , leading once again to self-duality. There is only one
spatial derivative in Bij , leading to a linear dispersion
for the gauge mode.

D: Scalar Charge Theory

Lastly, we take the Gauss’s law to be the same as the
previous theory, ∂i∂jE

ij = ρ, but without imposing any
tracelessness constraint. In some sense, this is actually
the simplest of the theories. However, a few extra com-
ments are necessary, since this theory does not have the
self-duality property of the previous theories. (Thanks
are due to Sagar Vijay, who first noticed the issue with
duality in this model.) The electric charges of the theory
have two constraints:∫

ρ = constant

∫
~xρ = constant (4)

corresponding to the conservation of charge and dipole
moment. Once again, the fundamental charges are frac-
tons. The dipolar bound states of this theory are fully
mobile, possessing both longitudinal and transverse mo-
tion. The gapless gauge mode has five independent po-
larizations.

Unlike the previous theories, the appropriate magnetic
field tensor for this theory is actually a non-symmetric
(and traceless) tensor Bij , with one spatial derivative,
leading to linear gauge mode dispersion. It can read-
ily be checked that the non-symmetric traceless tensor
Bij = εiab∂

aAbj represents the stable fixed point of the
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Gauss’s Law(s) Magnetic Tensor, Bij Gauge Dispersion Polarizations Self-Dual?

∂i∂jE
ij = ρ εiab∂

aAb
j ω ∝ k 5 No

∂i∂jE
ij = ρ, Ei

i = 0 1
2
(εiab∂

aAb
j + εjab∂

aAb
i) ω ∝ k 4 Yes

∂iE
ij = ρj εiabεjcd∂

a∂cAbd ω ∝ k2 3 Yes

∂iE
ij = ρj , Ei

i = 0 (See Equation 88) ω ∝ k3 2 Yes

TABLE I. Summary of the rank 2 U(1) spin liquids.

theory where all five polarizations have the same dis-
persion. This non-symmetric tensor obeys a different
Gauss’s law, ∂iB

ij = ρ̃j , with vector magnetic charge.
The magnetic charges obey two constraints:∫

~̃ρ = constant

∫
~̃ρ · ~x = constant (5)

which makes the magnetic vector charges 2-dimensional
particles, only hopping transversely to their charge vec-
tor.

This theory lacks any sense of self-duality between the
electric and magnetic sectors. Nevertheless, it remains
stable against confinement. It is interesting to note that
there is a duality between a traceful symmetric tensor
description (with one particle and five gauge mode de-
grees of freedom) and a traceless non-symmetric tensor
description (with three particle and five gauge mode de-
grees of freedom).

Some basic properties of the four phases are summa-
rized in Table I. In the following sections, we will go
through each of the four theories one by one. We will
start with the scalar charge theory, since it turns out to
be the simplest. The analysis of this theory in Section
2 will lay the groundwork for discussing the other rank
2 theories. Most of the important concepts will be de-
veloped in this section and will be extended in natural
fashion in the following sections. The casual reader may
therefore wish to focus primarily on section 2.

We note that one might also consider theories with
“curl” constraints, such as εijk∂jE

`
k = ρi`. These theo-

ries are slightly different, as they do not host point parti-
cles, and they may have issues with stability. We there-
fore relegate a discussion of such constraints to Appendix
C.

II. SCALAR CHARGE THEORY

A. Electrostatic Fields

The generalized Gauss’s law of this theory is given by:

∂i∂jE
ij = ρ (6)

for scalar charge ρ. The fundamental charges in this the-
ory are fractons, unable to hop in any direction without
the creation of additional particles. When such a charge
is isolated (a situation which is possible to create), it will
provide a delta function source for Gauss’s law:

∂i∂jE
ij = qδ(3)(r) (7)

where charges are quantized as multiples of q. We now
wish to know the expectation value of the electric field
due to this point source, 〈Eij〉. To avoid clutter, we will
omit brackets throughout, simply writing Eij . Equiva-
lently, the following analysis can be taken to be applied
to the classical limit of the theory. Since, in the Coulomb
phase, the particles can be regarded as independent ex-
citations, and since the low-energy effective theory for
the gauge field is rotationally invariant, the generalized
electric field may only depend on rotationally invariant
quantities. Furthermore, by dimensional analysis, we
know that Eij must scale as q/r. The only such sym-
metric rank 2 quantities are as follows:

Eij = q

(
α
δij

r
+ β

rirj

r3

)
(8)

As a first condition, we must satisfy the Gauss’s law. We
have:

∂iE
ij = q(β − α)

rj

r3

∂i∂jE
ij = 4πq(β − α)δ(3)(r)

(9)

so we require β − α = 1/4π to satisfy Gauss’s law. The
electric field then becomes:

Eij = q

(
α
δij

r
+

(
α+

1

4π

)
rirj

r3

)
(10)

Note that, unlike the case of conventional electromag-
netism, the Coulomb field of a static point charge has
not been uniquely specified by Gauss’s law and rota-
tional symmetry. In order to further constrain the elec-
tric field, we must resort to another of the generalized
Maxwell equations. For the traceful scalar charge theory,
the correct magnetic field tensor is the (non-symmetric)
tensor:

Bij = εiab∂aA
j
b (11)

The equation governing the evolution of the magnetic
field is then:

∂tB
ij = εiab∂a∂tA

j
b = εiab∂aE

j
b (12)

where we have used the fact that Eij is the canonical mo-
mentum to Aij to derive a generalized Faraday’s equa-
tion. For a magnetostatic solution, we will then require
our Coulomb field to satisfy:

εiab∂aE
j
b = q(α+ β)

εijara
r3

= 0 (13)
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which means we need β = −α. When combined with
our earlier condition, β = α+ 1/4π, we obtain α = − 1

8π

and β = 1
8π , so the final result for the static Coulomb

field of a point charge (electric monopole) of strength q
is:

Eijmono =
q

8π

(
rirj

r3
− δij

r

)
(14)

Since the differential equations involved have been linear,
we can then find the electric field of a general charge
distribution by taking superpositions. In particular, for
a dipole of strength and direction pi, the appropriate
electric field is −pk∂kEijq=1, which is given by:

Eijdip = − 1

8π

(
δij(p · r)

r3
+

(pirj + ripj)

r3
− 3

rirj(p · r)
r5

)
(15)

B. Potential Formulation

There is actually a conceptually cleaner and simpler
way to derive these electric field solutions. In the spirit of
normal electromagnetism, we will seek a potential formu-
lation, to mitigate the proliferation of indices. From our
magnetostatic constraint, εiab∂aE

j
b = 0, we can immedi-

ately conclude that Eij = ∂iλj for some vector λj . How-
ever, by the symmetry of Eij , we must have ∂iλj = ∂jλi.
This implies that the curl of λ vanishes, εijk∂jλk = 0, so
λ will in turn be a derivative, λj = ∂jφ, for some scalar
potential φ. We then have:

Eij = ∂i∂jφ (16)

(Note that we have not introduced a negative sign, as one
would have done in conventional electromagnetism. The
naturalness of this sign convention will be seen shortly.)
This scalar potential significantly reduces the complexity
of the problem. In order to satisfy Gauss’s law for a point
charge, we must have:

∂i∂jE
ij = (∂2)2φ = qδ(3)(r) (17)

By dimensional analysis, φ must scale as r. The only
possibility is φ = Cr for constant C (it can readily be
checked that possible logarithmic terms cannot solve the
Gauss’s law and can be ruled out). Differentiating yields
(∂2)2(Cr) = −8πCδ(3)(r), so we require C = −q/8π.
Then, taking the appropriate derivatives, we immedi-
ately obtain Equation 14 for the Coulomb field, as ex-
pected. Again, due to the linearity of the differential
equations, we can then apply the superposition principle
to the potential, instead of to the field directly, which is
much simpler. For example, the potential due to a dipole
pi is given by φdip = −pi∂iCq=1r. The scalar potentials
for the electric monopoles and dipoles are:

φmono = − qr
8π

φdip =
(p · r)
8πr

(18)

This potential is not simply a convenient mathematical
tool. Just like in conventional electromagnetism, the po-
tential plays a direct physical role. Consider the energy
stored in the electric field of a static charge configura-
tion:

ε =
1

2

∫
EijEij =

1

2

∫
Eij∂i∂jφ =

1

2

∫
∂i∂jE

ijφ =
1

2

∫
ρφ

(19)

This equation is exactly the same as is obtained in nor-
mal electrostatics. (Note the importance of the sign con-
vention for the potential.) This tells us that the potential
represents the energy associated with a particle at a par-
ticular location. Even though fractons do not possess a
conventional sense of forces or equations of motion, we
see that fractons nevertheless have a potential energy.
Note that the factor of 1/2 prevents overcounting be-
tween charge pairs. Interestingly, φ for a point charge
vanishes at the charge’s location, so there is no “self-
energy” contribution to the energy integral. All energy
can be viewed as arising from each particle interacting
with the potential of the other particles, but not its own.
Since φ for a point charge grows linearly, we see that
separating a group of fractons requires an energy linear
in the separation, as has been found in previous work.
This large energy cost naively would suggest that the
particles are confined. However, the immobile nature of
fractons, coupled with the fact that the energy density
of the electric field is bounded, stabilizes them against
collapsing back into the vacuum once the energy cost
has been paid to create them. Thus, the fractons are
in fact well-defined excitations, albeit very energetically
costly, in a situation reminiscent of vortices in a super-
fluid. (See Reference 4 for a more detailed discussion of
this “electrostatic confinement” issue.)

C. Lorentz Force

While the results of the previous sections are good to
have in hand, the knowledge of these electric fields and
potentials will not mean much unless we know how the
charges of the theory will respond to them. For isolated
fundamental charges of the theory, we already know the
answer to this question: they don’t respond at all. The
isolated electric monopoles in this theory are fractons,
so they cannot hop without a huge input of energy to
create extra particles. They therefore have no equations
of motion and do not respond at all to the electromag-
netic fields. However, the dipolar bound state of a pos-
itive and negative charge will be freely propagating in
this theory, since dipole motion will preserve the global
dipole moment, as long as the dipole does not change
orientation. A dipole can therefore respond to the elec-
tromagnetic fields, but it cannot change its orientation,
except through interaction with other particles. We can
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therefore effectively treat an isolated dipole like a freely
hopping point particle.

But what is the effect of the fields on this effective
particle? We can draw our intuition from the lattice
models for the higher rank spin liquids3,19,20, discussed
in Appendix D. In these models, Aij represents the phase
picked up by hopping a −i oriented dipole in the j di-
rection, and also the phase for hopping a −j oriented
dipole in the i direction. Effectively, a dipole pj re-
sponds to the magnetic field tensor just like a conven-
tional charged particle would respond to an ordinary
electromagnetic field, with an effective vector potential
given by Ajeff = −p̂iAij and effective magnetic field

Bieff = −εijk∂j p̂`A`k = −Bij p̂j . (As a reminder, while
A and E are symmetric tensors, B is not symmetric, so
the index of contraction is quite important here.) The

corresponding effective electric field is Ejeff = −p̂iEij .
The generalized Lorentz force on a dipole pi moving with
velocity vi is then given by:

F j = −pi(Eij + εj`kv`B
i
k ) (20)

Let us now suppose that a dipole has been placed in
an electric field created by some static electric charge
distribution, so that Bij = 0. The corresponding electric
force is given by:

F j = −pi∂i∂jφ (21)

where φ is the scalar potential. Let us now calculate the
work necessary to move the dipole from point 1 to point
2 against the field:

W = −
∫ 2

1

F jdxj =

∫ 2

1

dxj∂j(p
i∂iφ) = (pi∂iφ)2−(pi∂iφ)1

(22)
We therefore see that the potential energy associated
with dipole pi is given by V = pi∂iφ, which we could
have predicted based on our previous discussion of the
potential, but it is nice to see this conclusion arise inde-
pendently.

Note that the Lorentz force which we have found in
this section has a negative sign in front, which looks
peculiar at first. As a sanity check, let us calculate the
electric force between two identical dipoles pi. Making
use of the electric field found in Equation 15, we have
that the electric force on a dipole at location ri due to
an identical dipole at the origin is given by:

F j =
1

8π

(
2pj(p · r)

r3
+
p2rj

r3
− 3

(p · r)2rj

r5

)
(23)

The radial component of this force is:

F j r̂j =
1

8π

(
−2(p · r)2

r4
+
p2

r2

)
=

p2

8πr2
(1− cos2 θ) =

p2 sin2 θ

8πr2

(24)

where θ is the angle between pi and ri. Note that the
radial force is always non-negative, indicating a repul-
sive force between like charges. Flipping the direction
of one of the dipoles would result in an overall negative
sign, so two oppositely oriented dipoles will always at-
tract, a state of affairs which makes intuitive sense, since
they can recombine into the vacuum. Interestingly, the
Lorentz force between two dipoles vanishes when they
line up along a line, such that (p · r) = pr. This corre-
sponds to a minimum of the potential for like dipoles and
a maximum of the potential for opposite dipoles. There-
fore, like dipoles energetically prefer to arrange them-
selves end to end, whereas opposite dipoles prefer to be
side by side.

One last comment is in order regarding our Lorentz
force on dipoles. The force increases linearly with the
dipole moment pi. This seems to indicate that there is
a larger force on two charges separated by a large dis-
tance than two charges right next to each other. This
seems puzzling, since we expect that two well-separated
charges should approach the behavior of isolated frac-
tons, which should not move at all. The resolution comes
from the fact that we have identified the force based on
the phases associated with hopping matrix elements, but
we have not yet accounted for the magnitude of the hop-
ping elements. In other words, we have not accounted
for the effective mass of the dipoles. The magnitude of
hopping matrix elements will be much smaller (and the
effective mass correspondingly much larger) for dipoles
of large separation. The effective mass of a dipole grows
exponentially in the particle separation, m(p) ∝ eαp,
where α is determined by microscopic parameters (via
perturbation theory). Thus, while well-separated dipoles
experience an algebraically large force, they have an ex-
ponentially large effective mass, resulting in exponential
suppression of typical velocities. In this manner, well-
separated dipoles will smoothly approach the limit of
fractonic behavior.

D. Currents and the Biot-Savart Law

In addition to static charge distributions, we should
also think about how to handle steady current flows. The
fundamental charges are fractons, which cannot freely
hop and therefore have no sense of current. The natu-
ral mobile objects of the theory are the dipolar bound
states. In order to keep track of such dipole motion,
one’s first instinct might be to define a (non-symmetric)
current tensor Jij representing the current of the i di-
rected dipoles in the j direction. However, there is a
fundamental ambiguity in this definition. For example,
consider the close-packed charge configuration in Fig-
ure 1. There is not a unique way of defining either the
dipole density or Jij in such a case. Microscopically, an
operator hopping an i dipole in the j direction is the
same operator hopping a j dipole in the i direction, so
the true microscopic current operator is actually a sym-
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FIG. 1. When the dipoles are densely packed, the notion of separate species of dipoles breaks down. As seen in the top row,
this configuration of charges could be regarded as closely packed y-oriented dipoles. But, as seen in the bottom row, the same
configuration of charge could be regarded as closely packed x-oriented dipoles. If this charge configuration were set in motion,
there would be a fundamental ambiguity in defining a “dipole current.” This ambiguity is connected with the fact that the
current tensor of this theory must be a symmetric tensor.

metric tensor Jij . This can further be seen by noting
that a source term for the gauge field in the Hamilto-
nian, AijJij , would not be sensitive to any antisymmetric
components. We shall comment further on the meaning
and fundamental definition of the microscopic current
Jij shortly.

In terms of the microscopic current, the Hamiltonian
takes the form:∫ (

1

2
EijEij +

1

2
BijBij +AijJij

)
=∫ (

1

2
EijEij +

1

2
Aijε abi ∂aBbj +AijJij

) (25)

Noting that Aij is a symmetric tensor, we evaluate the
equation of motion for Eij to find the following general-
ized Ampere’s equation relating the current to the fields:

1

2
(εiab∂aB

j
b + εjab∂aB

i
b ) = −J ij − ∂tEij (26)

We note that this generalized Ampere’s equation can
actually be used as the fundamental definition of the
microscopic current Jij . Just as the charge ρ can be
defined as the violations of ∂i∂jE

ij = 0 from the “pure”
gauge theory, Jij essentially represents the deviations
of Ampere’s equation from the pure gauge theory. In
order to make connection between this definition and
the concept of rates of charge hopping processes, we can
use this equation to derive a continuity equation relating
the charge and current. Applying ∂i∂j to each side of
Ampere’s equation, we obtain:

∂tρ+ ∂i∂jJ
ij = 0 (27)

as the generalized continuity equation. The intuition of
this equation is that J ij inherently represents the rate of
multi-body hopping processes, instead of the single-body
motion captured by a more conventional current vec-
tor. For example, dipole motion is one sort of process
contributing to J ij , as expected. But other multi-body

processes, such as a fracton hopping while emitting an
extra dipole, also contribute. This intuition can be di-
rectly confirmed in the lattice models3,19,20, where all
such multi-body processes act as sources for Ampere’s
equation.

To have a steady current, our continuity equation de-
mands ∂i∂jJ

ij = 0. Assuming this to be the case, so
that there are steady currents and electric fields, we can
drop the ∂tE

ij term. We can then rearrange Ampere’s
equation as:

∂a(εabiB j
b + εabjB i

b ) = −2J ij (28)

We can obtain a general solution for the quantity in
parentheses as:

εabiB j
b + εabjB i

b =(
− 1

2π

∫
dr′J ij(r′)

(r − r′)a

|r − r′|3

)
+ εa`k∂`λ

ij
k

(29)

for arbitrary tensor λkij . Applying εadi to this equation
yields:

3B j
d −B

i
iδ

j
d =(

− 1

2π

∫
dr′J ij(r′)εadi

(r − r′)a

|r − r′|3

)
+ ∂dλ

ij
i − ∂iλ

ij
d

(30)

By its definition, we note that B is traceless, Bii = 0,
so we are left with:

Bij =

(
− 1

6π

∫
dr′Jjk(r′)εik`

(r − r′)`
|r − r′|3

)
+

1

3
(∂iλ kj

k − ∂kλikj)
(31)

This is the generic solution to our generalized Ampere’s
equation. However, we must now pick the solution that
also obeys the absence of magnetic charges, ∂iB

ij = 0.
By good fortune, we note that the choice λkij = 0 is the
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solution which obeys this property. The final result for
the magnetic field generated by a steady current is:

Bij = − 1

6π

∫
dr′Jjk(r′)εik`

(r − r′)`
|r − r′|3

(32)

This equation serves as the generalized Biot-Savart law
for this theory. For an arbitrary steady current config-
uration, we can use this equation to calculate the re-
sulting magnetic field tensor. Note that the Biot-Savart
law obeys the same scaling as in conventional electro-
magnetism. Thus, for example, the magnetic field of a
current-carrying wire will fall off as 1/r with distance
r away from the wire, just like a conventional current.
Whereas electric fields of static charges were abnormally
energetically costly in this theory, magnetic fields of
steady currents are much more in line with standard
electromagnetism.

E. Magnetic Particles

The theory considered in this section, alone of the rank
2 theories, is not self-dual. The electric particles of this
theory are scalars, but the magnetic charges are vectors,
∂iB

ij = ρ̃j , which behave as 2-dimensional particles.
Whereas the fields associated with the magnetic parti-
cles could be easily obtained for a self-dual theory, for
this theory the magnetic results are not automatic. The
calculation of these fields is similar to other calculations
in this paper and would distract from the main line of de-
velopment, so we relegate the calculations to Appendix
A. We here simply state the results. The magnetic field
corresponding to a magnetic charge ∂iB

ij = pjδ(3)(r) is:

Bij = − 1

16π

(
−5

pjri

r3
− p

irj

r3
+

(p · r)δij

r3
+3

(p · r)rirj

r5

)
(33)

The Lorentz force on a magnetic particle is:

F i = pj(P ikBkj − εik`vkp̂`p̂nEjn) (34)

where P ik is the projector into the plane transverse to
pj . The current of magnetic particles takes the form of a
traceless non-symmetric tensor J̃ij , obeying a continuity
equation:

∂tρ̃
j + ∂iJ̃

ij = 0 (35)

The generalized Faraday’s equation is:

εiab∂aE
j
b = ∂tB

ij + J̃ ij (36)

For a steady magnetic current configuration, the dual
Biot-Savart law is:

Eij =
1

8π

∫
dr′(J̃ j

k (r′)εk`i + J̃ i
k (r′)εk`j)

(r − r′)`
|r − r′|3

(37)

F. Summary of Maxwell Equations

Our task complete, we now take a moment to collect
the generalized Maxwell equations, from which all of the
other results follow. For the scalar charge theory, these
equations take the form:

∂i∂jE
ij = ρ

∂iB
ij = ρ̃j

εiab∂aE
j
b = ∂tB

ij + J̃ ij

1

2
(εiab∂aB

j
b + εjab∂aB

i
b ) = −∂tEij − J ij

(38)

where ρ and J ij are the charge and current of electric
particles, and ρ̃j and J̃ ij are the charge and current of
magnetic particles.

III. TRACELESS SCALAR CHARGE THEORY

A. Electrostatic Fields

Let us now consider a different rank 2 theory, where
we will take the same Gauss’s law, ∂i∂jE

ij = ρ, but
will also impose the condition that the electric field ten-
sor is traceless, Eii = 0. As discussed in Reference 4,
we are free to impose this constraint identically on the
entire Hilbert space, without charges. One could take
trace charges into account, but the analysis would be-
come more tedious, without qualitatively affecting the
results, so we shall avoid such a discussion here. As be-
fore, the fundamental charges in this theory are frac-
tonic, totally unable to move. However, the dipolar
bound states, which were formerly fully mobile, are now
2-dimensional particles in this theory, since they can only
hop transversely while obeying the conservation laws.

Once again, we wish to first calculate the electric
field of an isolated point charge. Particle independence
and rotational symmetry dictate that the electric field
tensor must take the form of Equation 8. In order
to satisfy Gauss’s law, we must have β = α + 1/4π,
as before. However, the magnetostatic constraint is
different in this case. For this theory, the appropri-
ate magnetic tensor is the symmetric tensor Bij =
1
2 (εiab∂aA

j
b + εjab∂aA

i
b ). The magnetostatic condition

is then ∂tB
ij = 1

2 (εiab∂aE
j
b + εjab∂aE

i
b ) = 0. However,

in this case, we find that this constraint is no constraint
at all. The electric field tensor of Equation 8 will satisfy
this constraint for any values of α and β, so this con-
straint is of no use to us. In order to fully determine the
electric field, we must then resort to the tracelessness
condition, Eii = 0, which gives the following:

Eii = q

(
α
δii
r

+ β
riri
r3

)
= q

3α+ β

r
= 0 (39)

Our two conditions are then 3α+β = 0 and β = α+1/4π,
which has the solution α = − 1

16π and β = 3
16π . The
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electric field of an electric monopole for this theory is
then:

Eijmono =
q

16π

(
3rirj

r3
− δij

r

)
(40)

The corresponding dipole field is −pk∂kEijq=1, which
yields:

Eijdipole = − 1

16π

(
δij(r · p)

r3
+3

(pirj + ripj)

r3
−9

rirj(r · p)
r5

)
(41)

B. Potential Formulation

Once again, it is desirable to obtain a potential for-
mulation for this theory. However, the magnetostatic
constraint, 1

2 (εiab∂aE
j
b + εjab∂aE

i
b ) = 0, is a bit more

complicated in this case, and it is not obvious at first
glance what potential formulation to construct. How-
ever, we can take our inspiration from the previous case
and start with ∂i∂jφ. In general, this is not a trace-
less tensor, so we remove the trace component and try a
potential ansatz of the form:

Eij = ∂i∂jφ−
1

3
δij∂

2φ (42)

If this potential formulation is to work, then by the
same rotational symmetry arguments as before, the form
φ = Cr for some constant C must yield the correct
field upon solving Gauss’s law. This equation gives
∂i∂jE

ij = 2
3 (∂2)2φ = − 2

38πCδ(3)(r) = qδ(3)(r), so we
require C = −3q/16π. Upon taking the appropriate
derivatives, we find that this potential yields the correct
electric field of a point charge. While we have not derived
the form of the potential directly from the magnetostatic
condition, this is actually not necessary to demonstrate
its correctness. This potential formulation (obtained via
educated guess) works for the point charge. Then, by
linearity of all equations involved, we can superpose po-
tentials to get the correct electric field for an arbitrary
electrostatic configuration of charges. Thus, the poten-
tial formulation of Equation 42 is rigorously correct for
all electrostatic problems. The potentials for the electric
monopole and dipole are given as follows:

φmono = − 3qr

16π
φdip =

3(p · r)
16πr

(43)

As before, the potential is of direct physical significance.
The energy stored in the electric field of an arbitrary
electrostatic configuration is given by:

ε =
1

2

∫
EijEij =

1

2

∫
Eij(∂i∂jφ−

1

3
δij∂

2φ) =

1

2

∫
∂i∂jE

ijφ =
1

2

∫
ρφ

(44)

where we have made use of the tracelessness condition.
As in the previous case, we see that the potential is a
direct measure of the energy associated with a particle
being at a particular location. Once again, there are no
“self-energy” contributions, and the factor of 1/2 serves
to eliminate double counting of particle pairs. Note that
the coefficient of the monopole potential in this case,
3/16π, is larger than that in the previous traceful case,
1/8π. Therefore, the traceless theory has stronger inter-
actions between particles than its traceful cousin.

C. Lorentz Force

As in the traceful theory, the fundamental particles are
fractons and cannot respond directly to the electromag-
netic fields. However, we still have mobile dipolar bound
states, which in this theory are 2-dimensional particles,
hopping only in the transverse direction. The phases
picked up upon hopping will still be of the form −pjAji,
but the longitudinal component will not be felt, so we
should project into the transverse plane, obtaining the
effective vector potential as:

Aieff = −P ikp̂jAjk (45)

where we have defined the projection operator P ik =
(δik − p̂ip̂k), which projects onto the transverse plane.
The effective magnetic field is then the out-of-plane com-
ponent of the curl of this vector potential:

Bieff = p̂ip̂jεjk`∂kA
eff
` = −p̂ip̂j p̂mε k`j ∂kA`m =

− p̂ip̂j p̂kBjk
(46)

The corresponding effective electric field is Eieff =

∂tA
i
eff = −P ikp̂jEjk, which lies in the plane, as ap-

propriate. The generalized Lorentz force on a dipole p
in this theory is then:

F i = −pj(P ikEjk + εik`vkp̂`p̂
nBjn) (47)

Note that, since the velocity and the effective E lie in the
plane, and the effective B is perpendicular to the plane,
the Lorentz force always lies in the plane, consistent with
the 2-dimensional nature of the dipoles.

Let us now take the electromagnetic fields to be gen-
erated by some electrostatic configuration of charges, so
that B vanishes and we may use our earlier potential
formulation. The force law then simplifies to:

F i = −pjP ik(∂j∂kφ−
1

3
δjk∂

2φ) (48)

The work done to move a dipole against the field from
point 1 to point 2 in the plane of its motion is then the
line integral of the force against the field. Since the path
lies in the plane, we may drop the projection operator
in the above equation, as the transverse component will
be picked out anyway:

W = −
∫ 2

1

dxiF
i =

∫ 2

1

dxipj(∂j∂iφ−
1

3
δji∂

2φ) (49)
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The second term will not contribute, since pidxi = 0 for
motion in the plane, leaving us with:

W =

∫ 2

1

dxi∂i(p
j∂jφ) = (pj∂jφ)2 − (pj∂jφ)1 (50)

We see that, once again, the potential energy of a dipole
p is given by V = pj∂jφ, as it should be, based on the
earlier discussion of the potential.

In order to get a fully mobile charge in this theory,
one must consider a bound state which is not only neu-
tral, but also has no net dipole. Such quadrupolar bound
states would couple only weakly to the gauge field, via
derivatives of A instead of A itself. Furthermore, not
all such quadrupolar bound states are stable. Certain
quadrupoles can decay directly to the vacuum, releasing
their energy into the gapless gauge mode. The only sta-
ble quadrupoles are those with a nonzero value of

∫
ρx2,

which prevents decay by the quadrupolar conservation
law. We shall not further investigate the properties of
such quadrupolar bound states.

D. Currents and the Biot-Savart Law

We also wish to characterize steady current distribu-
tions in this theory. As in the traceful theory, the funda-
mental microscopic current tensor is a symmetric tensor
Jij . However, in this case Jij must be a traceless tensor,
J ii = 0, since the trace component represents the rate of
processes which violate the trace constraint on the elec-
tric field. In terms of this current, the Hamiltonian takes
the form:∫ (

1

2
EijEij +

1

4
(εiab∂aA

j
b + εjab∂aA

i
b )Bij +AijJij

)
=∫ (

1

2
EijEij +

1

2
Aijε abi ∂aBbj +AijJij

)
(51)

The corresponding Ampere’s equation for the time evo-
lution of Eij is:

1

2
(ε abi ∂aBbj + ε abj ∂aBbi) = −Jij − ∂tEij (52)

Once again, this current tensor will obey a continuity
equation:

∂tρ+ ∂i∂jJ
ij = 0 (53)

so a steady current requires ∂i∂jJ
ij = 0. For steady

currents, we drop the electric field term in the Ampere’s
equation. Ampere’s equation is actually formally the
same as that obtained in the traceful theory, so we ex-
pect the Biot-Savart laws to be almost identical. The
only differences are that Bij is now constrained to be
symmetric, and the condition for the absence of mag-
netic charge is different (∂i∂jB

ij = 0 in the present case,

versus ∂iB
ij = 0 in the previous case). Nevertheless, the

generic form of Equation 31, in terms of arbitrary tensor
λkij , is still valid. Noting that the final result must be
symmetric, we guess the form:

λkij = − 1

2π

∫
dr′Jk`(r

′)εj`i
1

|r − r′|
(54)

This is automatically a solution of the generalized Am-
pere’s equation. The resulting magnetic field tensor is:

Bij = − 1

6π

∫
dr′(Jjk(r′)εik` + J ik(r′)εjk`)

(r − r′)`
|r − r′|3

(55)
which is manifestly symmetric. It also satisfies the equa-
tion ∂i∂jB

ij = 0. This is therefore the correct general-
ized Biot-Savart law for this theory. From this equation,
we can construct the magnetic field tensor for an arbi-
trary steady current configuration.

E. Summary of Maxwell Equations

The generalized Maxwell equations for the traceless
scalar charge theory take the form:

∂i∂jE
ij = ρ

∂i∂jB
ij = ρ̃

1

2
(εiab∂

aEbj+εjab∂
aEbi) = ∂tBij + J̃ij

1

2
(ε abi ∂aBbj+ε

ab
j ∂aBbi) = −∂tEij − Jij

Eii = 0

Bii = 0

(56)

We have included the tracelessness constraint alongside
the other Maxwell equations. But note that the time
evolution equation for E ensures that, as long as the ini-
tial condition for E is traceless, it will automatically re-
main traceless under time evolution. We have also writ-
ten out the tracelessness of B for symmetry purposes.
Note that, unlike the previous theory, the Maxwell equa-
tions here have a nice symmetry between electric and
magnetic quantities, reflecting the self-duality of the the-
ory.

IV. VECTOR CHARGE THEORY

A. Electrostatic Fields

We will now switch gears and move to a theory with a
different Gauss’s law altogether. Our degrees of freedom
will still be that of a rank 2 symmetric U(1) tensor Aij ,
but we will now take our Gauss’s law to be ∂iE

ij = ρj ,
with vector charge ρj . An isolated charge will provide a
delta function source for this Gauss’s law:

∂iE
ij = pjδ(3)(r) (57)
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for some charge vector pj . The solution to this equation
must be a symmetric rank 2 tensor, must depend only
on rj and pj , must be linear in pj , and by dimensional
analysis must scale as 1/r2. The possible terms are then:

Eij = α
(pirj + ripj)

r3
+ β

(p · r)δij

r3
+ γ

(p · r)rirj

r5
+

µ
(εik`rkp`r

j + εjk`rkp`r
i)

r4
(58)

We can then take a derivative, being careful about delta
functions at the origin (making use of some useful for-
mulas from Appendix B). The result is:

∂iE
ij = (α+ β)

(
pj

r3
− 3(p · r)rj

r5

)
+ µ

(
εjk`rkp`
r4

)
+

4π

3
(4α+ β + γ)pjδ(3)(r)

(59)

In order to solve Gauss’s law, we therefore need β = −α,
µ = 0, and γ = 3

4π − 3α. This takes us from four un-
known coefficients down to one, α. We must then re-
sort to the magnetostatic condition. For this theory, the
magnetic field tensor is given by Bij = εiabεjcd∂

a∂cAbd.
The magnetostatic condition on the electric field is then
εiabεjcd∂

a∂cEbd = 0. To start, let us simply look at the
trace component of this constraint:

εiabεicd∂
a∂cEbd = ∂2Eii − ∂i∂jEij =

∂2Eii − ∂iρi = 0
(60)

where we have made use of the Gauss’s law. Taking
the trace of our general formula, Equation 58, yields
Eii = (2α + 3β + γ)(p · r)/r3, which (up to a constant)
is formally equivalent to the potential energy of an or-
dinary electromagnetic dipole. We can then take ∂2 of
this quantity by appealing to the ordinary Poisson equa-
tion and the charge distribution of an ordinary dipole.
(Directly differentiating this potential is actually quite
subtle, for distributional reasons, but a direct calcula-
tion yields the same results21.) The result is:

∂2Eii = 4π(2α+ 3β + γ)pj∂jδ
(3)(r) (61)

In order to satisfy Equation 60, we must therefore have
(2α+ 3β + γ) = 1/4π. When combined with our earlier
results, β = −α and γ = 3

4π − 3α, we obtain α = 1
8π ,

β = − 1
8π , γ = 3

8π . We have now checked that this form
satisfies the trace magnetostatic condition, but it can
also be verified that the full magnetostatic condition is
satisfied. The electrostatic field for a point charge pj

then takes the final form:

Eij =
1

8π

(
(pirj + ripj)

r3
− (p · r)δij

r3
+ 3

(p · r)rirj

r5

)
(62)

B. Potential Formulation

Once again, it will be advantageous to seek a potential
formulation for the theory. From our magnetostatic con-
dition, εiabεjcd∂

a∂cEbd, we can see that either the first
or second index of Eij should have a derivative in it, so
Eij should have the form Eij = ∂iφj + ∂jψi for vectors
φi and ψi. In order to satisfy index symmetry, we set
these vectors to be equal. We also add in a factor of
−1/2 for later convenience, writing the electric field as:

Eij = −1

2
(∂iφj + ∂jφi) (63)

The most general form for φi is:

φj = α′ (p · r)rj

r3
+ β′ p

j

r
+ γ′

εjk`pkr`
r2

(64)

Taking derivatives yields:

Eij =
(β′ − α′)

2

(pirj + ripj)

r3
− α′ (p · r)δij

r3
+

3α′ (p · r)rirj

r5
+ γ′

(εjk`pkr`r
i + εik`pkr`r

j)

r4

(65)

The magnetostatic condition is automatic, but we must
check the Gauss’s law. Following the logic of Equation
59, we obtain that γ′ = 0, α′ = 1/8π, and β′ = 3/8π,
which correctly reproduces the desired electric field for a
point charge. The final result for the potential of a point
charge is:

φj =
1

8π

(
(p · r)rj

r3
+ 3

pj

r

)
(66)

Note that, unlike the previous two cases, there is no
scalar potential formulation, but rather a vector poten-
tial. (It can be explicitly checked that no derivatives of
any scalar potential can solve the Gauss’s law.) This
makes some intuitive sense, since now the Gauss’s law
is a three-component equation, corresponding to three
particle degrees of freedom. Any potential formulation
must at least capture these three degrees of freedom,
so a vector potential is the best we can do. But this
is still a significant simplification over the original ten-
sor formulation, and the potential of an arbitrary charge
distribution can be built up by superposing the point
charge potential given above.

In order to give a physical interpretation to the poten-
tial, let us look at the energy stored in the electric field
of a static charge configuration:

ε =
1

2

∫
EijEij = −1

4

∫
Eij(∂iφj + ∂jφi) =

1

2

∫
∂iE

ijφj =
1

2

∫
ρjφj

(67)

which is very similar in fashion to the previous sec-
tions. The potential φj represents the potential energy of
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charge species pj . One key difference from the previous
theories is that the potential φj of a point charge blows
up at the charge’s location, like in conventional electro-
magnetism, so there are “self-energy” contributions to
the integral which should be handled with care.

C. Lorentz Force

A vector point charge pj can only hop along the p̂j

direction. The phases picked up upon completing such
hops are p̂ip̂jA

ij . Therefore, these 1-dimensional par-
ticles only feel a one-dimensional effective electric field,
given by Eieff = (p̂j p̂kE

jk)p̂i. These particles do not
feel any effects from the magnetic field, since their one-
dimensional trajectories cannot enclose any flux. The
Lorentz force law takes the particularly simple form:

F i = (p̂j p̂kE
jk)pi (68)

For an electrostatic configuration, Eij = − 1
2 (∂iφj +

∂jφi), we have F i = −(p̂j p̂k∂
jφk)pi. The effective force

is just the projection of −pk∂iφk along the p̂i direction.
We now wish to calculate the work done in moving a
particle along the line of its motion against the force of
a field. For this purpose, we are free to use the unpro-
jected force, since the other components will not con-
tribute anyway:

W = −
∫ 2

1

dxiF
i =

∫ 2

1

dxi∂
i(pkφ

k) = (pkφ
k)2−(pkφ

k)1

(69)
We therefore have that the potential energy for charge
pj is given by V = pjφ

j , as we already found.
In addition to the 1-dimensional particles, one can

construct a fully mobile, yet still topologically non-
trivial excitation by looking at a bound state with
zero net charge pj but a nonzero charge angular mo-
ment. This bound state is fully mobile, yet cannot
be created locally (due to its charge angular moment)
and is therefore stable against decay into the vacuum.
We refer to such a nontrivial excitation, carrying zero
charge but nonzero charge angular moment, as a “ch-
iron,” because all the good names were taken. In
the lattice models3,19,20, one can verify that the phase
picked up by a chiron carrying angular moment Lj

hopping in the i direction is εjk`Lj∂kA`i. This quan-
tity then serves as the effective chiron vector potential,

Aeffi = εjk`Lj∂kA`i. The effective chiron magnetic field
is Bieff = εijkε`mnL`∂j∂mAnk = LjB

ij . The Lorentz
force on a chiron is therefore:

F i = Lj(εjk`∂
kE`i + εik`vkB`j) (70)

Note that the chirons will respond to a uniform mag-
netic field, but only to derivatives of the electric field. In
a sense, the 1-dimensional particles represent the funda-
mental unit of response to a uniform electric field, while
the chirons represent the fundamental unit of response
to a uniform magnetic field.

D. Currents and the Biot-Savart Law

As in the previous theories, the microscopic current
operator in this theory will be a symmetric tensor Jij
representing the rate of allowed hopping processes, in-
cluding free longitudinal motion and also multi-body
transverse motion. In terms of the current operator, the
Hamiltonian of the theory is given by:∫ (

1

2
EijEij +

1

2
εiabεjcd∂a∂cAbdBij +AijJij

)
=∫ (

1

2
EijEij +

1

2
Aijε

iabεjcd∂a∂cBbd +AijJij

) (71)

The time evolution equation for the electric field is then:

εiabεjcd∂a∂cBbd = −J ij − ∂tEij (72)

Taking a derivative, we find that the charge and current
are related by the continuity equation:

∂tρ
j + ∂iJ

ij = 0 (73)

so a steady current configuration requires ∂iJ
ij = 0.

Taking such a steady current configuration, we can
rewrite our Ampere’s equation as:

∂a∂c(ε
iabεjcdBbd) = −J ij (74)

From our earlier work on the electric field corresponding
to ∂i∂jE

ij = δ(3)(r), we can write a generic solution as:

εiabεjcdBbd =

−
∫
dr′J ij(r′)

(
α

δac

|r − r′|
+ β

(r − r′)a(r − r′)c

|r − r′|3

)
(75)

subject to the constraint 4π(β − α) = 1. (We could also
have added in a solution to the homogeneous equation,
but it will turn out that we do not need it in this case.)
Applying 1

4ε
iakεjc` to both sides of the equation above

and relabeling some indices yields:

Bij =

−
∫
dr′Jk`(r′)εikaεj`c

(
α

δac

|r − r′|
+ β

(r − r′)a(r − r′)c

|r − r′|3

)
(76)

We also need the constraint that ∂iB
ij = 0 (and equiv-

alently, ∂jB
ij = 0). This can be easily taken care of if

the quantity in parentheses has the form ∂a∂cφ for some
scalar φ. This means that the appropriate choice of α
and β are exactly those appropriate to the electric field
of a point charge in the traceful scalar charge theory.
The resulting magnetic field tensor is:

Bij =

1

8π

∫
dr′Jk`(r′)εikaεj`c

(
δac

|r − r′|
− (r − r′)a(r − r′)c

|r − r′|3

)
(77)
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The above equation serves as the generalized Biot-Savart
law for this theory and allows us to construct the mag-
netic field for an arbitrary steady current distribution.
Note that this Biot-Savart law is stronger by one power
than the conventional electromagnetic one. The inte-
grand falls off as 1/r instead of 1/r2. This will cause cur-
rents in this theory to be extremely energetically costly.
For example, whereas the field of a current-carrying wire
falls off as 1/r in normal electromagnetism, here we ex-
pect the field of such a wire to asymptote to a constant
(or perhaps grow logarithmically). Thus, even though
the particles in this theory are free to move along their
appropriate one-dimensional subspace, it will be much
harder to set these particles into motion than conven-
tional charges, leading to large inductance associated
with currents.

E. Summary of Maxwell Equations

The generalized Maxwell equations for the vector
charge theory take the form:

∂iE
ij = ρj

∂iB
ij = ρ̃j

εiabεjcd∂
a∂cEbd = ∂tBij + J̃ij

εiabεjcd∂
a∂cBbd = −∂tEij − Jij

(78)

Once again, note the nice symmetry between electric and
magnetic quantities, reflecting the self-duality of the the-
ory.

V. TRACELESS VECTOR CHARGE THEORY

A. Electrostatic Field

Let us now move to the last of the rank 2 theories,
which has the same Gauss’s law as the previous case,
∂iE

ij = ρj , but now with an extra trace condition,
Eii = 0. We start with a point source, ∂iE

ij = ρjδ(3)(r).
The corresponding electric field must once again take the
form of Equation 58. The Gauss’s law will lead to the
same constraints as before, simplifying our electric field
down to:

Eij = α
(pirj + ripj)

r3
−α (p · r)δij

r3
+

(
3

4π
−3α

)
(p · r)rirj

r5

(79)
We must also impose the tracelessness condition, Eii =
(−4α+ 3

4π )(p · r)/r3 = 0, which tells us that α = 3/16π,
so the electric field of a point charge has the form:

Eij =
3

16π

(
(pirj + ripj)

r3
− (p · r)δij

r3
+

(p · r)rirj

r5

)
(80)

Even before proceeding to the magnetostatic constraint,
the electrostatic field of a point charge is already
uniquely constrained in this theory (though one can
check that the magnetostatic constraint is obeyed as
well).

B. Potential Formulation

As always, we now seek some potential formulation
for our electrostatic field. Just as in the scalar charge
traceless case, we shall not derive the potential directly
from the magnetostatic condition, but rather will make
an ansatz for the potential and then verify that it is the
correct one. We start with the potential formulation for
the previous case, Eij = − 1

2 (∂iφj + ∂jφi) and add in an
appropriate term to make the electric field traceless:

Eij = −1

2
(∂iφj + ∂jφi) +

1

3
δij(∂kφ

k) (81)

Assuming the same general form for the potential as in
Equation 64, we find that Gauss’s law is only satisfied if
γ′ = 0, α′ = 1

16π , and β = 7
16π , giving a potential:

φj =
1

16π

(
(p · r)rj

r3
+ 7

pj

r

)
(82)

The resulting electric field exactly matches what we
found in Equation 80. Since the potential formulation
works for the point charge, by linearity it will work for
an arbitrary charge distribution. Thus, this is the cor-
rect potential formulation, even though it has not been
derived directly from the magnetostatic constraint.

The energy stored in the electric field of a static charge
configuration is given by:

ε =
1

2

∫
EijEij =

1

2

∫
Eij(−1

2
(∂iφj + ∂jφi) +

1

3
δij(∂kφ

k)) =
1

2

∫
ρjφj

(83)

where we have integrated by parts and made use of
Gauss’s law and tracelessness. Just as in the traceful the-
ory, we find that φj can quite legitimately be regarded
as the potential energy for charges ρj .

C. Lorentz Force

The fundamental vector charges in this theory are
all fractonic and will have no sense of Lorentz forces.
Like the traceful vector charge theory, this theory will
also have chiron bound states, carrying zero charge but
nonzero charge angular moment Lj . However, whereas
the chirons in the traceful theory were fully mobile, in the
present case the extra conservation laws restrict the chi-
rons to be 1-dimensional particles, constrained to move
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only along the direction of their charge angular moment
vector. Projecting from the previous theory onto the
appropriate one-dimensional subspace, the Lorentz force
on a chiron becomes:

F i = LiL̂nL̂jεjk`∂
kE`n (84)

D. Currents and the Biot-Savart Law

As in the traceless scalar charge theory, the micro-
scopic current operator will take the form of a trace-
less symmetric tensor Jij , representing the rate of hop-
ping processes. For this theory, the magnetic field tensor
takes the following form:

Bij = ε k`i ∂k(B̃j` −
1

2
δj`B̃

n
n) (85)

where B̃ij = ε abi ε cdj ∂a∂cAbd is the magnetic tensor from
the traceful theory. It is readily verified that this mag-
netic tensor is traceless, Bii = 0. Also, this tensor does
not look symmetric at first glance. Nevertheless, we find:

εijaBij = (δkjδa` − δkaδj`)∂k(B̃j` −
1

2
δj`B̃

n
n) =

∂jB̃j` −
1

2
∂aB̃

i
i +

1

2
∂aB̃

i
i = 0

(86)

where we have made use of ∂jB̃j` = 0. This tells us that
the antisymmetric component of Bij actually vanishes,
so it is a symmetric traceless tensor, thereby allowing
this theory to have a self-duality. We can then write the
magnetic tensor in manifestly symmetric form as:

Bij =
1

2
(ε k`i ∂kB̃j` + ε k`j ∂kB̃i`) (87)

In terms of the microscopic variable Aij , we have the
following unspeakable horror:

Bij =
1

2

(
εjab(∂a∂k∂iAbk − ∂a∂2Abi)+

εiab(∂a∂k∂jAbk − ∂a∂2Abj)
) (88)

The Hamiltonian has the standard form:∫ (
1

2
EijEij +

1

2
BijBij + J ijAij

)
(89)

Plugging in the form for B and making use of index
symmetry, we obtain:∫ (

1

2
EijEij +

1

2
εjab(∂a∂k∂iAbk − ∂a∂2Abi)Bij+

J ijAij

)
=∫ (

1

2
EijEij −

1

2
Aijεkai∂a(∂j∂bB

bk − ∂2Bjk)+

J ijAij

)
(90)

Noting that Aij is symmetric, the time evolution equa-
tion for E is given by:

1

2

(
εkai∂

a(∂j∂bB
bk − ∂2B k

j )+εkaj∂
a(∂i∂bB

bk − ∂2B k
i )

)
= Jij + ∂tEij

(91)

This Ampere’s equation has an unusual feature, in that
some of the terms on the left contain direct contractions
between derivatives and the magnetic tensor, which can
then be written in terms of the magnetic charge, ∂iB

ij =
ρ̃j , as follows:

1

2

(
εkai∂

a(∂j ρ̃
k − ∂2B k

j )+εkaj∂
a(∂iρ̃

k − ∂2B k
i )

)
= Jij + ∂tEij

(92)

It seems rather unusual at first to have magnetic charge
appear in Ampere’s equation, but there is nothing log-
ically inconsistent about it. (Actually, if we carefully
examined Ampere’s equation from the traceful vector
charge theory, we would see magnetic charge appearing
there as well.) In particular, after taking a derivative,
the magnetic charge terms are killed, and we still obtain
the expected continuity equation for the electric charges:

∂tρ
j + ∂iJ

ij = 0 (93)

In the absence of magnetic charge, and assuming a
steady current configuration, we can drop some terms
from Ampere’s equation, which then simplifies to:

∂a∂
2

(
εkaiBjk + εkajBik

)
= −2J ij (94)

We can write a solution as:

εkaiBjk + εkajBik =(
1

4π

∫
dr′J ij(r′)

(r − r′)a

|r − r′|

)
+ εabc∂bλ

ij
c

(95)

Inverting for Bij gives:

Bij =(
1

12π

∫
dr′J ik(r′)εj`k

(r − r′)`

|r − r′|

)
+

1

3
(∂`λ

i`j − ∂iλ `j
` )

(96)

The first term by itself is not symmetric. However, we
can choose:

λi`j =
1

4π

∫
dr′Jjk(r′)εi`k|r − r′| (97)

The resulting magnetic field tensor is:

Bij =
1

12π

∫
dr′(J ik(r′)εj`k + Jjk(r′)εi`k)

(r − r′)`

|r − r′|
(98)
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This equation is manifestly traceless and symmetric. It
also satisfies ∂iB

ij = 0 (making use of ∂iJ
ij = 0 for a

steady current), which indicates the absence of magnetic
charge. We have therefore found the correct Biot-Savart
law for this theory, which can then be used to obtain
the magnetic field tensor for an arbitrary steady current
configuration. Note that, like in the previous theory,
the Biot-Savart law falls off very slowly, leading to large
inductances in this theory.

E. Summary of Maxwell Equations

The generalized Maxwell equations for the traceless
vector charge theory take the following mildly nauseating
form:

∂iE
ij = ρj

∂iB
ij = ρ̃j

1

2

(
εiak∂

a(∂j ρ̃
k − ∂2B k

j ) + εjak∂
a(∂iρ̃

k − ∂2B k
i )

)
= −∂tEij − Jij

1

2

(
εiak∂

a(∂jρ
k − ∂2E k

j ) + εjak∂
a(∂iρ

k − ∂2E k
i )

)
= ∂tBij + J̃ij

Eii = 0

Bii = 0

(99)
Once again, the equations have a nice electric-magnetic
symmetry, reflecting the self-duality of the theory.

VI. CONCLUSION

In this work, we have generalized some of the ba-
sic notions of electromagnetism to systems with tensor
U(1) gauge fields, instead of the conventional U(1) vector
gauge theory. The topics treated here have included elec-
trostatic fields, potential formulations, Maxwell equa-
tions, Lorentz forces, and Biot-Savart laws. There is
much that carries over quite naturally, while some con-
cepts have interesting modifications. While we have laid
the groundwork here, there is plenty more that could
be done. Obviously one could work out the electromag-
netic properties of rank 3 and higher theories. But also,
electromagnetism is a much broader subject than just
the topics treated here. In principle, one could pull out
their favorite electromagnetism textbook and generalize
everything chapter by chapter to the higher rank ana-
logue. One could work out the theory of higher rank
radiation, higher rank circuits, higher rank waveguides,
and so on. It’s a brand new playground.
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APPENDIX A: MAGNETIC PARTICLES IN THE
SCALAR CHARGE THEORY

As mentioned in the text, the scalar charge theory
(without trace condition) is not self-dual. Therefore, we
cannot simply read off the fields for magnetic particles
from the corresponding electric ones, and they must be
calculated separately. While the electric charges of this
theory were scalars, the magnetic charges are vectors,
∂iB

ij = ρj . For an electrostatic configuration, in the
absence of electric currents, we must also have:

εiab∂aB
j
b + εjab∂aB

i
b = 0 (100)

Recall that Bij in this theory is traceless, but not sym-
metric. For brevity, we will go right for the throat and
take a potential formulation:

Bij = ∂iφ̃j −
1

3
δij(∂kφ̃

k) (101)

which can be verified to solve the electrostatic constraint.
We now force this magnetic field to satisfy the magnetic
Gauss’s law for a point source:

∂iB
ij = ∂2φ̃j − 1

3
∂j(∂kφ̃

k) = pjδ(3)(r) (102)

As an educated guess, we will take an ansatz of the form:

φ̃j = α
pj

r
+ β

(p · r)rj

r3
(103)

We have:

∂2φ̃j = −4π

3
(3α+ β)pjδ(3)(r) + 2β

(
pj

r3
− 3

(p · r)rj

r5

)
(104)

∂j(∂kφ̃
k) = (β − α)

(
pj

r3
− 3

(p · r)rj

r5
+

4π

3
pjδ(3)(r)

)
(105)

∂iB
ij =

−4π

9
(8α+ 4β)pjδ(3)(r) +

1

3
(5β + α)

(
pj

r3
− 3

(p · r)rj

r5

)
(106)

To solve the magnetic Gauss’s law, we need α = −5β
and 16πβ = 1, which has the solution α = − 5

16π and

β = 1
16π . Our potential then has the form:

φ̃j = − 1

16π

(
5
pj

r
− (p · r)rj

r3

)
(107)
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and the magnetic field takes the form:

Bij =

− 1

16π

(
− 5

pjri

r3
− pirj

r3
+

(p · r)δij

r3
+ 3

(p · r)rirj

r5

)
(108)

We can also consider a traceless (non-symmetric) tensor

current J̃ ij for the magnetic particles. In the presence
of this magnetic current, the time evolution equation for
Bij is modified to:

εiab∂aE
j
b = ∂tB

ij + J̃ ij (109)

Like in the electric case, this equation can be used as the
fundamental definition of the current tensor J̃ ij . Taking
a derivative yields the continuity equation:

∂tρ̃
j + ∂iJ̃

ij = 0 (110)

A steady magnetic current will generate a time-
independent electric field, which must satisfy:

∂a(εiabE j
b ) = J̃ ij (111)

which we can solve via:

εiabE j
b =

(
1

4π

∫
dr′J̃ ij(r′)

(r − r′)a

|r − r′|3

)
+ εabc∂bλcji

(112)

Eij =
1

8π

∫
dr′J̃ j

k (r′)εk`i
(r − r′)`
|r − r′|3

+
1

2
(∂jλ` i

` −∂`λ
j i
` )

(113)
We then choose:

λj`i = − 1

4π

∫
dr′J̃ i

k (r′)εk`j
1

|r − r′|
(114)

The resulting electric field is:

Eij =
1

8π

∫
dr′(J̃ j

k (r′)εk`i + J̃ i
k (r′)εk`j)

(r − r′)`
|r − r′|3

(115)
This electric field is symmetric and also satisfies
∂i∂jE

ij = 0, indicating the absence of electric charge.
We have therefore found the correct dual Biot-Savart law
for this theory. From this formula, we can construct the
electric field tensor corresponding to an arbitrary steady
current of magnetic particles.

In order to derive the Lorentz force for the magnetic
particles, it is useful to formulate in terms of the dual
gauge variable Ãij , which is canonically conjugate to Bij .

Note that Ãij is non-symmetric. From the Ampere’s
equation of this theory, in the absence of electric cur-
rents, we can reverse engineer the following expression
for Eij in terms of the dual potential:

Eij = −1

2
(εiab∂aÃ

j
b + εjab∂aÃ

i
b ) (116)

We note that Ãij represents the phase associated with a j
oriented charge hopping in the i direction. Therefore the
effective dual vector potential for a charge pj is given by

Ãeffi = pjÃij . The role of the “magnetic field” for this
particle (in the sense of the conventional Lorentz force)

will be played by pip̂j(p̂
kεjnm∂nÃmk) = −pi(p̂j p̂kEjk).

The Lorentz force then takes the form:

F i = pj(P
ikBkj − εik`vkp̂`p̂mEjm) (117)

where P ik is the projector into the plane transverse to
pj . We note that this force always lies in the transverse
plane, consistent with the 2-dimensional nature of the
particles.

APPENDIX B: USEFUL FORMULAS

As we all learned in our undergraduate days, the di-
vergence of the electric field of a point charge is given
by:

∂i
ri

r3
= 4πδ(3)(r) (118)

This can be derived by performing an integral over a ball
S of radius R centered at the origin:∫

S

∂i
ri

r3
=

∫
∂S

1

R2
= 4π (119)

Since this must be true for arbitrary R, we can conclude
that there must be a delta function contribution at the
origin. We will list below some further useful formulas,
derived via the same technique, which are useful for the
manipulations performed in the main text.

∂i
rj

r3
=

4π

3
δijδ(3)(r) +

δij

r3
− 3

rirj

r5
(120)

∂k
rirjrk

r5
=

4π

3
δijδ(3)(r) (121)

∂`
rirjrk

r5
=

4π

15
(δijδk` + δikδj` + δi`δjk)δ(3)(r)+

δ`irjrk + δ`jrirk + δ`krirj

r5
− 5

rirjrkr`

r7

(122)

∂k
rirj

r3
=
δikrj + δjkri

r3
− 3

rirjrk

r5
(123)

∂2
rirj

r3
= −4π

3
δijδ(3)(r) + 2

(
δij

r3
− 3

rirj

r5

)
(124)

∂i∂k
rkrj

r3
=

4π

3
δijδ(3)(r) +

δij

r3
− 3

rirj

r5
= ∂i

rj

r3
(125)
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APPENDIX C: GENERALIZED CURL
CONSTRAINTS

In the text, we have considered different forms of
Gauss’s laws. These were all either generalized diver-
gences or trace conditions. One might also consider gen-
eralized curl constraints, such as εijk∂jE

`
k = ρi`? To see

why we have not analyzed this type of theory, we first

examine the rank 1 analogue, ~∇× ~E = ~ρ. Whereas the
divergence constraint gave rise to point particles, such a
curl constraint naturally gives rise to string-like excita-
tions, due to the fact that:

∂iρ
i = εijk∂i∂jEk = 0 (126)

This constraint on the vector charges automatically
forces them to form closed loops, a constraint which can-
not be broken within the Hilbert space. Another way to
understand this is to note that we can rewrite the gauge
constraint as:

ρi = ∂jε
ijkEk = ∂jẼ

ij (127)

where we have defined the antisymmetric tensor Ẽij =
εijkEk, which captures all the information of the origi-
nal vector. We therefore see that a curl constraint on Ei
actually gives us a dual formulation of an antisymmet-
ric U(1) tensor gauge field (the standard Kalb-Ramond
theory). The generalized electromagnetism of this phase
is therefore inherently more complicated, since one must
think in terms of a closed string theory instead of a the-
ory of point particles. For the purposes of describing
three-dimensional spin liquids, the analysis is a moot
point anyway, as Kalb-Ramond theory is unstable to
confinement in three spatial dimensions due to instan-
ton effects22–24. This theory therefore does not exist as
a stable phase of matter.

Similarly, if we take a “curl” gauge constraint on our
tensor gauge field, say εijk∂jE

`
k = ρi`, the charges would

obey the constraint:

∂iρ
i` = 0 (128)

This forces the tensor charges to line up along one-
dimensional string-like structures. Similar stories hold
for other curl constraints. Therefore, the charges of all
of these theories are extended objects, not point parti-
cles, which makes the analysis of the generalized electro-
magnetism much more complicated. Furthermore, such
putative phases may be destabilized by instantons, so it
is not clear whether these correspond to stable phases of
matter at all. We therefore defer a more detailed analysis
of such theories to future work.

APPENDIX D: MICROSCOPIC MODELS

In the main text, we have mostly abstracted from
the microscopic behavior of the higher rank U(1) spin

liquids, instead relying on a more macroscopic field-
theoretic approach. This is a useful point of view, since
most of the essential physics is independent of the micro-
scopics, with a few small exceptions (such as the precise
quantization of dipole moments in the scalar charge the-
ory). Nevertheless, it is useful to keep the microscopic
theories in mind, since they often offer important clues
in elucidating the physical principles of generalized elec-
tromagnetism. We will therefore review here some of the
basic principles of the previously discovered lattice mod-
els which are known to exhibit the behavior of higher
rank U(1) spin liquids.3,19,20

For normal vector gauge theories, constructing lattice
models is a simple matter of letting the gauge field live
on links of the lattice, with Ax living on x-directed links,
Ay living on y-directed links, and so on. It is less obvi-
ous how one should put the six components of a rank 2
tensor Aij on the lattice. The key piece of intuition is
to look at the simplest rank 2 tensor: a second deriva-
tive ∂i∂jα of a scalar α. If we choose α to live on the
sites of the lattice, then diagonals like ∂x∂xα will also
live on sites, while off-diagonals like ∂x∂yα will live on
plaquettes in the appropriate plane. We therefore can
construct simple cubic lattice models for rank 2 theories
by allowing Axx, Ayy, and Azz to live on the sites of
the lattice, while Axy, Axz and Ayz live on the appropri-
ate plaquettes (Axy in the xy-plane, and so on). This is
illustrated in Figure 2. Similar stories will hold for the-
ories of even higher rank. We also generically allow the
gauge field to be compact, identifying Aij ∼ Aij + 2π,
making each component of the tensor a quantum rotor.
The corresponding electric tensor components Eij then
become the angular momenta of these rotors.

All of the U(1) theories of a given rank can be con-
structed from the same basic lattice degrees of freedom.
They are distinguished, however, by their gauge con-
straint structure, as determined by the Hamiltonian of
the system. For example, let us work through a lattice
model of the scalar charge theory. Microscopic models
for the other higher rank theories are a straightforward
generalization.

The most important term in the Hamiltonian of the
system is a “U” term, which energetically imposes the
gauge constraint. For the scalar charge theory, this takes
the form:

HU = U(∂i∂jE
ij)2 (129)

where the indices run over {x, y, z} and U is a large
positive number. This corresponds to a generalized type
of “spin-ice rule,” constraining how the rotor momenta
line up relative to their neighbors. In the low-energy
sector, states will obey ∂i∂jE

ij = 0, which then implies
gauge invariance under the following transformations:

Aij → Aij + ∂i∂jα (130)

for gauge parameter α with arbitrary spatial depen-
dence.
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FIG. 2. The microscopic model takes the form of a lattice
rotor model, where each independent component of the tensor
corresponds to a separate rotor. Diagonal components of the
tensor live on each site of a cubic lattice (a 2d cross-section
of which is pictured above). Off-diagonal components live
on the appropriate plaquettes of the lattice, with Axy on
plaquettes in the xy plane, for example.

Our low-energy Hamiltonian should also feature the
most relevant terms which are consistent with this
gauge transformation (i.e. commute with the gauge con-
straint). It is straightforward to check that the resulting
Hamiltonian takes the form:

H =
1

2
(gEijEij +BijBij) + U(∂i∂jE

ij)2 (131)

where g is a numerical coefficient. (The coefficient of
the B term is normalized to 1 for convenience.) The
magnetic tensor Bij takes the form Bij = εiab∂

aAbj . All
other possible terms in the Hamiltonian have larger num-
bers of derivatives and are irrelevant to the low-energy
physics.

At slightly higher energies, there are also states in the
Hilbert space which do not obey the gauge constraint,
∂i∂jE

ij 6= 0. In this case, we define a charge density as:

ρ = ∂i∂jE
ij (132)

which lives on the sites of the lattice. These charges obey
both conservation of charge:∑

sites

ρ = constant (133)

and conservation of dipole moment:∑
sites

ρ~x = constant (134)

These lattice conservation laws imply that the charges in
this lattice model are fractons, as discussed in the main
text.

Note that an individual rotor operator eiAij , which
raises Eij of the rotor by 1, does not commute with the
gauge constraint and will therefore create and/or move
particles. Any such operator must respect both con-
servation of charge and dipole moment. It can there-
fore only create charges in quadrupolar configurations,
or equivalently, jointly move dipolar bound states. It
can easily be checked that eiAij will move an i directed
dipole in the j direction, as discussed in the main text.

The basic principles discussed here easily transfer over
to writing down microscopic models for any of the higher
rank U(1) spin liquids. One first writes down the ap-
propriate “U” term enforcing a gauge constraint. Then
one writes down the most relevant terms which commute
with this gauge constraint. In general, the Hamiltonian
will schematically have an “E2+B2” form and will corre-
spond to a stable phase of matter in (3+1) dimensions.3
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