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Lattice translation symmetry gives rise to a large class of “weak” topological insulators (TIs),
characterized by translation-protected gapless surface states and dislocation bound states. In this
work we show that space group symmetries lead to constraints on the weak topological indices
that define these phases. In particular we show that screw rotation symmetry enforces the Hall
conductivity in planes perpendicular to the screw axis to be quantized in multiples of the screw
rank, which generally applies to interacting systems. We further show that certain 3D weak indices
associated with quantum spin Hall effects (class AII) are forbidden by the Bravais lattice and by
glide or even-fold screw symmetries. These results put strong constraints on weak TI candidates
in the experimental and numerical search for topological materials, based on the crystal structure
alone.

I. INTRODUCTION

The discovery of topological insulators and supercon-
ductors is one of the most important breakthroughs of
condensed matter physics in the past decades1–3. The
key principle underlying the existence of these novel topo-
logical phases is that the presence of a symmetry, such as
time reversal symmetry (T ), can lead to a quantized bulk
topological invariant and robust gapless surface states. In
a gapped fermion system, this invariant cannot change
unless the gap closes, defining a stable quantum phase
and protecting the existence of gapless boundary states.
After the discovery of three dimensional topological in-
sulators, which are protected by T , it was shown that
other global symmetries in the Altland-Zirnbauer (AZ)
classes4, such as charge conjugation (C) and spin ro-
tational symmetries, can also give rise to topological
phases, leading to the periodic table5,6 of topological in-
sulators and superconductors.

It was realized early on that additional topological
phases can be obtained from invariants defined on a lower
dimensional slice of the Brillouin Zone7 (BZ). Since this
definition requires the discrete translational symmetry
of the lattice, it was initially thought that these phases
would not survive generic disorder and were termed
“weak” topological insulators. The lower-dimensional
topological invariants are therefore known as weak in-
dices. However, further efforts then showed that weak
topological phases have robust topological surface states
even in the presence of impurities8–12, and lattice dislo-
cations therein host protected gapless modes that orig-
inate from the weak indices13–16. Recently it was also
proposed that strong interactions can lead to novel topo-
logical orders on the surface of weak TIs17–19. Most of
these theoretical predictions remain untested due to the
difficulty of finding materials realizing these weak topo-
logical phases20–22, though several candidates have been
predicted in ab-initio studies23–26.

The consideration of a perfect lattice with translational
symmetry immediately raises the question of whether the

space group symmetries of this lattice may also have an
impact on the topological properties. The addition of
space group often leads to the emergence of novel phases,
generally termed topological crystalline insulators27–44,
with different properties from weak TIs. Here we ad-
dress a complementary question: what are the restric-
tions brought by space group symmetries on possible
topological phases, in particular, the weak topological
phases?

In this work, we show that the nonsymmorphic ele-
ments of the space group lead to new and strong con-
straints for the weak indices beyond those derived from
the point group. First, we show that for three dimen-
sional (3D) magnetic insulators in class A there is a non-
trivial quantization condition on the Hall conductivity
tensor in the presence of a nonsymmorphic screw symme-
try. We derive this condition from band theory, and then
provide a general proof of its applicability to interacting
systems. Second, we turn to time-reversal-invariant insu-
lators in class AII and show how nonsymmorphic screw
and glide symmetries can make the weak indices vanish
in a particular direction. While enumerating every AZ
symmetry class and dimensionality is beyond the scope
of this paper, we present the necessary formalism to gen-
eralize our results to topological superconductors with a
few examples in Appendix C.

II. CHERN NUMBER AND HALL
CONDUCTIVITY (CLASS A)

A. Hall conductivity of a 3D insulator

A simple example of weak indices in a three dimen-
sional system is the quantized Hall conductivity of an in-
sulator, which in proper units is given by integer-valued
Chern numbers of 2D slices of the BZ. Even though these
indices do not rely on translation invariance for topo-
logical protection, we also term these weak indices, as
they are inherited from a lower dimensional view on the
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FIG. 1. (a) Brillouin zone of an insulator with fourfold screw
symmetry. The perpendicular plane through the BZ center
(blue) contains four high symmetry points, we use the for-
mula relating the Chern number to rotation eigenvalues at
these points. There are four invariant lines in the direction
of the screw axis (red). (b) and (c) The screw eigenvalues λ
evolve into each other along the fourfold (twofold) screw in-
variant lines through Γ and M (X and Y ). The values trace
spirals as the function of kz, the complex phase also illus-
trated by color code. (d) Intuitive real space picture of the
screw operation and a symmetric insulator as a stack of inte-
ger Chern insulator layers related by the screw. The unit cell
contains four layers, so the Hall conductance per transverse
unit cell is a multiple of 4.

system. Being off-diagonal elements of the conductivity
tensor, these Chern numbers transform like an axial vec-
tor under point group operations. Here we show that
a nonsymmorphic screw symmetry further imposes an
important constraint on the integer-valued Hall conduc-
tivity. As we show below, this constraint holds generally
for interacting systems, as long as the ground state is a
non-fractionalized 3D insulator which preserves the screw
symmetry. We also expect that the constraint remains
valid in disordered systems that do not break the sym-
metry on average8–10,16.

In a 2D system, the Hall conductance (or conductiv-
ity) σxy characterizes the transverse current response to
an in-plane electric field: jx = σxyEy. Using the Kubo
formula one finds45,46 that the Hall conductivity in units
of e2/h is given by the integral of Berry curvature for the
occupied bands over the BZ:

σxy =
e2

h
C, C =

1

2π

∫
BZ

d2k Tr
occ.
Fk (1)

where Trocc. is the trace over occupied bands and F is the
Berry curvature matrix. In an insulator with a bulk gap

between valence and conduction bands, the total Berry
flux over the BZ is quantized to be an integer, known as
the Chern number C, and hence σxy is also quantized.

In a 3D insulator the Hall conductivity becomes an
antisymmetric tensor and can be cast in terms of an axial
vector46 Σ as

σij =
e2

2πh
εijlΣl, Σi =

εijl
4π

∫
BZ

d3k Tr
occ.
F jlk (2)

where repeated indices are summed over implicitly. In
band insulators this “Hall vector” is always a reciprocal
lattice vector47 and can be expressed as Σ =

∑3
i=1 GiCi

where Gi are an independent set of primitive reciprocal
lattice vectors, and Ci ∈ Z is the Chern-number for a
cut of the BZ spanned by the other two reciprocal lattice
vectors and oriented towards Gi. The weak topologi-
cal invariant associated with 3D insulators in symmetry

class A is such a “Chern vector” ~C ∈ Z3. In Appendix A
we prove that the “Hall vector” transforms as an axial
vector even for nonsymmorphic symmetries. This shows
that lattice symmetry severely constrains its allowed val-
ues, as it has to stay invariant under every orthogonal
transformation in the point group. Typically, nonzero
values are only allowed with low enough symmetry. For
example, two (improper) rotations with intersecting axes
are sufficient to force vanishing Hall conductance28.

Let us impose periodic boundary condition with Nz
unit cells in the direction of an arbitrary primitive lattice
vector az. Using the bulk formula, the Hall conductance
of the resulting 2D system in the plane normal to az is

σxy =
1

2
(Nzaz)m εmnlσnl = Nz

e2

2πh
Σ · az =

e2

h
NzCz.

(3)
Adding one extra unit cell along the az direction will in-
crease the normal Hall conductance by exactly the Chern
number Cz in units of e2/h. In an anisotropic limit the
3D insulator can be viewed as a stack of 2D layers with

a quantized Hall conductance σLxy = e2

h Cz each. There-
fore the Hall conductivity tensor (2) is nothing but the
Hall conductance per unit cell layer, σLxy, which can be
defined as the difference between the Hall conductance
of Nz and Nz + 1 layers. As will become clear later, this
difference σLxy does not depend on Nz as long as Nz is
much larger than the correlation length, so we adopt this
definition for our interacting proof.

In the following we show that, with a nonsymmorphic
n-fold screw symmetry, the Hall conductance per unit cell
layer along the screw-axis direction cannot be an arbi-
trary integer (in units of e2/h) for a gapped 3D insulator
without fractionalization. Instead it must be a multiple
of n, as enforced by the screw symmetry.

B. Screw symmetry enforced constraints

Below we will show the Chern number for a cut perpen-
dicular to an n-fold screw axis is quantized to a multiple
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FIG. 2. The process used in the general proof for the Hall
conductance constraint (5), illustrated in the case of a 2-fold
screw. (a) A thick slab with half-integer thickness and twisted
periodic boundary condition in the z direction. As we open
the boundary condition in the z direction, the Hall conduc-
tance may change by a surface contribution −σSxy. (b) We
combine two slabs, the screw axis allows to arrange these
such that the interfaces are guaranteed to be identical, a top
surface (F) meets a bottom surface (G) with the same orien-
tation. Glueing the two interfaces together each contributes
+σSxy. (c) The resulting system has periodic boundary condi-
tions in all three directions with odd thickness while the Hall
conductance is an even multiple of the conductance quantum.

of n. Consider an essential n-fold screw in the z direction,
by essential screw we mean a SG operation that leaves
no point in space invariant up to lattice translations48.
We assume that the translation part is 1/n of the primi-
tive lattice vector parallel to the n-fold rotational axis49,
g = {Cn|az/n}. We invoke results28,40,50 that allow cal-
culation of the Chern number in the presence of n-fold
rotational symmetry in 2D as a product of rotation eigen-
values of occupied bands at high symmetry points of the
BZ. For example with C4 symmetry (Fig. 1 (a))

exp

(
2πi

C

4

)
=

∏
m∈occ.

ξΓ
m (C4) ξMm (C4) ξXm

(
C−2

4

)
(4)

where ξkm (O) is the rotation eigenvalue of O in band m
at momentum k. Similar formulae can be derived for
rotations C2, C3 and C6.

When restricted to the 2D cut of the BZ through Γ,
a screw acts the same way as a symmorphic Cn rota-
tion, so the formula can be applied. Now consider the
high-symmetry lines in the BZ, parallel to the screw axis
(vertical lines in Fig. 1 (a)). As the n-th power of the
screw gn = (−1)F {1|az} is a pure translation up to
fermion parity, the eigenvalues of screw g take values
of λ = exp (ik · az/n+ 2πim/n+ πiF/n) for m ∈ Zn

(Fig. 1 (b) and (c)). When restricted to the perpendicu-
lar plane with k · az = 0 the eigenvalues are simply the
n-th roots of fermion parity (−1)F . Increasing kz by 2π
changes the eigenvalue of g by a factor of e2πi/n, lead-
ing to a n-multiplet of occupied bands at each screw-
invariant momentum. This shows that the product of
screw eigenvalues at high-symmetry points is always 1 for

every gapped band structure. This immediately proves
that

σLxy
e2/h

= Cz ≡ 0 mod n. (5)

In the following we show that this result is not a pecu-
liarity of band theory for free electrons, but holds for any
gapped unique ground state preserving n-fold screw sym-
metry, even in the presence of interactions. The proof is
based on the following cut and glue procedure. We start
with a slab containing Nz + m/n unit cells along the z
direction which is parallel to the screw axis. While this
number of unit cells is not integer, screw symmetry allows
us to identify the top and bottom surfaces using a bound-
ary condition twisted by a Cn rotation51, which results in
a screw symmetric bulk without boundaries (Fig. 2 (a)).
To take the thermodynamic limit we assume the size of
the system is much larger than the correlation length of
the gapped bulk. To define the Hall conductance σxy in
this geometry we invoke the Streda formula52, whereby
the Hall conductance is given by the charge bound to a
localized 2π flux threaded through the system. Unless
the charge captured is an integer, the system is fraction-
alized and has degenerate ground states, contradicting
our initial assumption.

Next we cut the system open in the z direction. During
this process we change the Hall conductance by a surface
contribution of −σSxy. σSxy can depend on the thickness,
but should saturate to a thickness-independent constant,
as long as Nz is much larger than the correlation length
of the gapped bulk. We then take n copies of this open
system and arrange them along the z direction related
by Cn rotations such that all the interfaces are symme-
try related (Fig. 2 (b)). Gluing the surfaces together by
restoring the screw symmetric bulk Hamiltonian changes
the Hall conductance by σSxy at each interface, as the
separation between them is much larger than the bulk
correlation length. The resulting system (Fig. 2 (c)) has
periodic boundary conditions in all three directions with
a thickness of nN + m unit cells and Hall conductance
of n

(
σxy − σSxy

)
+ nσSxy = nσxy. Thus we proved that a

sample with arbitrary integer thickness has a Hall con-
ductance which is a multiple of n times the conductance
quantum.

III. WEAK TI INDICES (CLASS AII)

A. Constraints from Bravais lattice

We now consider time-reversal symmetric insulators in
class AII. To calculate the weak Z2 invriants we evaluate7

νi =
1

2π
Tr
occ.

(∫
1
2T

2

Fkd2k−
∮
∂ 1

2T
2

Ak · dk

)
mod 2

(6)
where A and F are the Berry curvature and connection
and the integral is over the interior and boundary of half
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TABLE I. Constraints on possible weak indices based on the
Bravais lattice in time reversal invariant insulators. The al-
lowed values of Gν are labeled according to the convention
for high symmetry momenta in ITA53, “all” means all the 8
possible values are allowed.

Crystal system Centering Allowed values of Gν

Triclinic P all

Monoclinic
P all
C Γ, Y , A, M

Orthorhombic

P all
C Γ, Y , T , Z
I Γ, X
F Γ, Y , T , Z

Tetragonal
P Γ, Z, M , A
I Γ, M

Trigonal
P Γ, A
I Γ, T

Hexagonal P Γ, A

Cubic
P Γ, R
I Γ, H
F Γ

of the time-reversal invariant 2D cut of the BZ spanned
by the two reciprocal lattice vectors other than Gi and
offset from the Γ point by Gi/2. Expanding the momen-
tum vector in a primitive reciprocal lattice vector basis
as k = 1

2π

∑3
j=1 kjGj these planes are defined by ki = π

and form a face of the parallelepipedal reciprocal unit cell
centered around Γ. The weak indices define a k-space
vector, pointing to one of the 8 TR invariant momenta
(TRIM):

Gν =
1

2
νiGi. (7)

This vector is independent of the choice of the unit cell38

and transforms under space group operations as k-space
vectors (see Appendix A). One can enumerate the al-
lowed values of Gν by inspecting tables for Wyckoff-
positions of the reciprocal space groups: Gν can only
take values at points with half-integer Miller indices that
are invariant under the point group up to reciprocal lat-
tice vectors. For example, a face-centered cubic lattice
(as realized in the diamond structure54), cannot support
non-trivial weak indices without breaking point group
symmetries, simply because no TRIM is left invariant
under the point group except Γ. These types of con-
straints, enforced only by the type of Bravais lattice55,
are listed in Table I.

These results can also be rationalized from the band
inversion point of view. To get a nontrivial weak in-
dex, we need an odd number of band inversions among
the four TRIM’s located on a plane offset by Gi/2 (de-
fined as above) and only the band inversions at the four
TRIM’s here contribute to the weak index νi. But point
group symmetry relates some of these TRIM’s, and band
inversion can only occur simultaneously on all symmetry
related points. For example in the bcc reciprocal crys-
tal TRIM’s are symmetry equivalent in such a fashion

that there is an even number of related points in any of
these offset planes, explaining the lack of nontrivial weak
TI’s. On the other hand, a strong TI is possible with
any SG, as the Γ point is always of maximal symmetry
and it is possible to have a band inversion only at Γ (see
Appendix D).

B. Constraints from nonsymorphic symmetries

The presence of nonsymmorphic symmetries leads to
further constraints on the weak indices. We now show
that in the presence of an essential twofold screw in the
z direction, the weak index must be trivial in this direc-
tion. First we note that a 2-fold screw {C2|az/2} with
az a primitive lattice vector, squares to {−1|az}, repre-
sented at kz = π as +1, which commutes with T . For
now we assume the other two primitive lattice vectors are
perpendicular to az and in the kz = π plane the screw
acts like a proper inversion in a 2D system. We use the
known result to evaluate the weak index by counting in-
version eigenvalues27, it is given by the total number of
occupied Kramers pairs with −1 inversion eigenvalue at
the four TRIM’s modulo 2. In this plane Kramers part-
ners have the same screw eigenvalues, as required.

However, this situation in a 3D system with screw is
different from a 2D system with a symmorphic inversion
symmetry in that the screw requires an equal number
of both screw eigenvalues below the gap, as shown ear-
lier. Specifically at kz = π at each high symmetry point
the number of occupied +1 and −1 eigenvalues must be
equal, and as the number of occupied bands is constant,
the total number of occupied −1 bands is a multiple of
4, leading to a trivial Z2 index in this plane.

In general, a weak vector in the presence of an essential
screw {C2|az/2} is only allowed if

Gν · az ≡ 0 mod 2π. (8)

We analogously argue31,32 that an essential glide for-
bids nontrivial weak index in the direction parallel to the
the translational part of the glide. Again, a diagonal
glide is never essential and the constraint follows from
Bravais-lattice considerations. In general, an essential
glide with in-plane translation az/2 only allows a weak
vector if Gν ·az ≡ 0 (mod 2π), consistent with the anal-
ysis of the “hourglass” surface states37,40.

IV. CONCLUSION

In summary, we derived a set of constraints on weak
topological indices in 3D insulators from nonsymmorphic
and symmorphic space group symmetries. We showed
that in the presence of n-fold screw rotation, Hall con-
ductivity must be quantized as a multiple of n for any
3D non-fractionalized insulator preserving screw symme-
try. This condition is generally proved for interacting
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systems. We also showed certain 3D weak indices for TIs
(class AII) are forbidden by the Bravais lattice and glide
or even-fold screw symmetries. These Bravais-lattice con-
straints can also be applied to weak indices in topologi-
cal superconductors, see Appendix C. These results put
strong constraints on the candidates for weak topolog-
ical phases in the ongoing experimental and numerical
efforts to find physical realizations of these novel topo-
logical phases.
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Appendix A: Proof for transformation properties of
weak indices

First we review the representations of space group
operations in k-space40,41. We use the convention
(Appendix B) with Bloch basis functions

∣∣χxl
k

〉
=∑

R e
ik(R+x)

∣∣φlR+x

〉
, where we split the orbital index

a = (x, l), x labels the sites of the unit cell by their
real space position and l is an on-site orbital index ac-
counting for spin, orbital angular momentum, etc. (the
values l can take may depend on x). A useful property
of this basis is that it is periodic in the real space coor-

dinate, i.e.
∣∣∣χ(x+R)l

k

〉
=
∣∣χxl

k

〉
for any lattice vector R.

We emphasize that our treatment is not specific to tight-
binding models, the same can be told in the continuum,
there x is the continuous index for position in the unit
cell and l stands for the spin only. To go to the tight-
binding approximation, we restrict the Hilbert-space to
a finite set of orbitals per unit cell, the only assumption
we make is that orbitals centered on different sites span
orthogonal subspaces.

Consider a general space group operation g = {O|t}
acting on one of the basis states

g
∣∣φlR+x

〉
= U ll

′

x

∣∣∣φl′g(R+x)

〉
= U ll

′

x

∣∣∣φl′O(R+x)+t

〉
(A1)

where U is the site and g-dependent unitary represen-
tation on the local orbitals, a double representation if
the model is spinful. Applying this to the Bloch basis
functions, with simple algebra we find

g
∣∣χxl

k

〉
= e−i(gk)tU ll

′

x

∣∣∣χgx,l′gk

〉
(A2)

with gk = Ok and gx = Ox + t that is understood
as a permutation of sites at the same Wyckoff position.
Grouping indices back together, this can be written as

g |χak〉 = e−i(gk)tU ba
∣∣∣χbgk〉

The key observation is that in this basis the k-
dependence decouples as a single factor proportional to
the identity. Consider the transformation of a Bloch
eigenstate in the n-th band |nk〉 = nak |χak〉. The sym-
metry transformation results in a state at gk, the co-
efficients transform as (gn)agk = e−i(gk)tUabnbk or in a

compact notation g (nk) = (gn)gk = e−i(gk)tUnk. As g
is a symmetry operation, the transformed state is again
an eigenstate of the Bloch Hamiltonian with the same
energy, but at gk. As a consequence, the transformation

of occupied band projector operator Pk =
∑
n∈occ. nkn

†
k

reads

(gP)gk =
∑
n∈occ.

(gn)gk(gn)†gk = UPkU
†. (A3)

So if g is a symmetry, such that (gP)k = Pk, any gauge
invariant quantity that can be expressed through Pk

is invariant if the k-space coordinates are transformed
accordingly. Examples include41 the Berry curvature
F = iP dP ∧ dPP and closed loop integrals of the Berry
connection A (see below).

The “Hall vector” as defined in Eqn. (2) may be cast
in a coordinate free form, as

Σ =
1

2π

∫
TrF ∧ dk. (A4)

To see that it is equal to
∑3
i=1 GiCi, it is sufficient to

check that ai ·Σ is the same in the two cases for all lat-
tice vectors. Simple substitution shows that this vector
transforms as an axial vector under all SG operations (i.e.
even under inversion, Σ → (detO)OΣ) as stated in the
main text.
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For completeness we derive the transformation prop-
erties of A and F under the basis change corresponding
to switching between conventions and show that invari-
ants calculated in either convention give the same result.
(For details about the two conventions see Appendix B)
We feel this is necessary because, while the Berry con-
nection for the Bloch basis |χ̃ak〉 vanishes and one can
safely use the coefficients, for the basis |χak〉 it is nonzero,
Aabχ = i 〈χak|d

∣∣χbk〉 = iδabeiktata dk. This means that
one may worry that the formulae in terms of the com-
ponents in this basis may be missing some terms coming
from the derivatives of the basis vectors.

For generality, we consider a transformation Uk acting
on the coefficients, it may either be a basis transforma-
tion, or a physical one and let n′k = Uknk. We find

Tr
occ.
A′ =

∑
n

in′† dn′ = Tr
occ.
A+ iTr

(
PU† dU

)
(A5)

Tr
occ.
F ′ = Tr

occ.
dA′ = Tr

occ.
F + idTr

(
PU† dU

)
(A6)

where Trocc.(.) =
∑
n(.)nn is the trace over occupied

bands, while Tr(.) =
∑
a(.)aa is the trace over the en-

tire Hilbert-space of the unit cell. We see that as long as
PU† dU is unit cell periodic, which is the case for the ba-

sis transformation Uabk = W ab
k = δabeikra if P = P̃ (BZ

periodic convention). The change in Trocc.
∫
S
F is fully

compensated by the change in Trocc.
∫
∂S
A in the formula

for the Z2 invariants and vanishes for Chern-numbers.
We note that the expression for Trocc.

∮
A along a non-

contractible loop in terms of the projector is modified in
the |χ〉 basis,

Tr
occ.

∮
A = i log det

+

(
W−G

k0−G∏
k=k0

Pk

)
(A7)

where det+ is the pseudo-determinant of the matrix,
which is defined as the product of all nonzero eigenval-
ues. This is equivalent to calculating the determinant of
the restriction to the local occupied space at k0, i.e. we
evaluate −i log det+ as the sum of the complex phases of
the nonzero eigenvalues. The reason WG appears is the
mismatch of the basis at k0 and k0 + G.

Appendix B: Conventions for Bloch functions

There are two widely used conventions to define the
Bloch basis functions. When appropriate we use the
convention where we define Bloch basis functions |χ̃ak〉 in
terms of the orbitals of the unit cell |χ̃ak〉 =

∑
R e

ikR |φaR〉
where R is the unit cell coordinate and a the orbital in-
dex. Note the absence of phase factors corresponding to
the position of the orbitals within the unit cell, so the ba-
sis functions are strictly periodic in the BZ. While in this
convention the information about the position of the or-
bitals is lost, thus the polarizations computed via Berry
vector potential integrals do not equal the true Wannier

center positions, the Bloch Hamiltonian is BZ periodic,
making some derivations more transparent.

In the other convention we define |χak〉 =∑
R e

ik(R+ra) |φaR〉 where ra is the position of the
a-th orbital in the unit cell. The two conventions are
related by the operator Wk with W ab

k = δabe−ikra such

that |χak〉 =
(
W−1

k

)ab ∣∣χ̃bk〉 so the coefficients of of Bloch

wavefunctions transform as nak = W ab
k ñabk . Consequently,

operators expanded in this basis (including the Bloch
Hamiltonian) satisfy Ok+G = WGOkW

−1
G where G is a

primitive reciprocal lattice vector. WG : Hk → Hk+G is
acting between the Hilbert spaces of the coefficients of
the wavefunctions in this basis. This convention, using
the coefficients only (e.g. Anm = in† dm), is usually
assumed in formulae for electromagnetic response, as
the naive Peierls substitution k → k + A only gives
the correct phase factor for hopping in this case. The
two conventions give equivalent results for quantized
topological indices in most symmorphic cases, provided
there is a continuous, symmetry preserving deformation
of the lattice, such that all the orbitals are brought to the
same point in the unit cell. In nonsymmorphic lattices
however, this is never possible, as the shortest orbit of a
point in the unit cell under the symmetry group modulo
lattice vectors is longer than one, there is no crystal
with one site per unit cell obeying a nonsymmorphic
symmetry. For example with an n-fold screw translating
in the z direction one needs at least n lattice sites that
can be arranged such that the positions are ra = aza/n
for a = 1. . . n, so W ab

Gz
= δabe2πia/n and WG = 1 for

perpendicular directions.

We remark that in both bases global antiunitary trans-
formations, such as T = Kσy act as constant operators
in k-space. To switch conventions, one must transform

them same as other operators, T̃ = W−kTW−1
k = T ,

where we used that W−1
k = W−k = W ∗k as W is diagonal

and proportional to the identity in spin space.

Appendix C: Weak topological superconductors
(class C and D)

Weak indices are also present in other symmetry
classes14,16,29,58 and our considerations can be extended
to topological superconductors. In 3D there are analo-
gous 2D Z and 2Z indices in classes D and C respectively,
these are Chern numbers of the Bogoliubov-de Gennes
Hamiltonians and the same reasoning applies as in class
A detailed in section II.

In other cases, however, the presence of charge con-
jugation symmetry (C) has a more important role, we
briefly review class D in 2 dimensions as an example.
In class D there are 1D Z2 indices that serve as d − 1
dimensional weak indices in a 2D system:

νi =
1

π

∮
TrA (mod 2) (C1)
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where the integration contour is along an invariant line
on the edge of the BZ, parametrized as Gi/2 + tεijGj ,
t ∈ [0, 1]. Similarly to the weak Z2 in 3D TI’s, the value
ν′i on a parallel invariant line through the Γ point (tεijGj ,
t ∈ [0, 1]) is not independent, it is related through the 2D
strong index C ∈ Z such that C ≡ (νi + ν′i) (mod 2).
The weak vector

Gν =
1

2

∑
i

νiGi (C2)

also transforms as k-space vectors under all space group
operations. This shows that 2D crystals with rhombic
and square lattices only allow Gν =

(
1
2 ,

1
2

)
(in primitive

basis) and 3 or 6-fold rotational symmetry does not al-
low any nontrivial weak vector. This known result29 is
generalized here and applies to arbitrary nonsymmorphic
space group symmetries with the same point group part.

In order to prove the transformation properties of the
1D weak Z2 indices in class D, we have to switch to the
BZ periodic convention, as Trocc.

∮
A is only quantized in

a periodic basis and gauge. A space group operation g in
this basis is represented as Uab = Uac0 δcbe−ikδRb where
δRa is the lattice vector of the unit cell in which site a of
the unit cell with at R = 0 ends up after the application
of g. U0 is k-independent and we set it to the identity
without loss of generality. The set δRa depends on the
choice of the unit cell, and a basis transformation redefin-
ing the unit cell has the same form with δRa showing the
change of unit cell position to which site a is assigned.
Now we are in a position to prove two things at once: the
1D Z2 indices in class D transform in a simple fashion
under SG operations and are insensitive to the choice of
the real space unit cell.

We introduce the band-flattened Hamiltonian, Q =
1 − 2P, it has the same properties as H except all
particle/hole-like bands have energy ±1. Charge con-
jugation symmetry C = τxK imposes Qk = −τxQ∗−kτx,
for P it means Pk = 1 − τxP∗−kτx. The particle and
hole-like states are related by Hermitian conjugation, this
in general implies Uk = τxU

∗
−kτx, for the diagonal form

we use this means every Ra has to appear twice. This
is a consequence of double-counting degrees of freedom,
the creation and annihilation operators of the same state
must live one the same lattice site. We remark that our
proof relies on the assumption that charge conjugation is
strictly local. While this is always true for BdG Hamil-
tonians, it may not be valid in insulators with effective
particle-hole symmetry that exchanges lattice sites58. We
find

i

∮ G

0

Tr
(
PU† dU

)
= − i

2

∮ G

0

Tr
(
U† dU

)
= (C3)

= −1

2

∮ G

0

∑
a

dkδRa = −1

2

∑
a

GδRa (C4)

where G is the reciprocal lattice vector along which the
integration contour for Trocc.

∮
A is oriented. Because of

the doubling of orbitals the right hand side of the equa-
tion is always an integer multiple of 2π. Comparing with
(A5) we see that a change of the unit cell or a space
group operation (with the appropriate transformation on
k-space) does not change the value of Trocc.

∮
A which is

only defined modulo 2π.

Appendix D: No Constraints on Strong TI’s

In general, a topological phase from Kitaev’s periodic
table, protected by a global symmetry of the 10 AZ
classes is robust against breaking lattice symmetry, such
as strong TI in 3D. If a phase is compatible with a group
G, then it is also compatible with any space group that
is a subgroup of G. This is simply true because the topo-
logical protection doesn’t rely on G, all the symmetry
restrictions in G can do is to rule out certain phases in
the original classification. A subgroup cannot rule out
more phases, as it poses less restrictions. Of course it
is possible to have phases that are protected by G (and
the global symmetry), then breaking G down to a sub-
group can either allow more phases or protect less. For
example, as we saw, nonsymmorphic symmetry can give
interesting results about weak indices, as they rely on the
translation part of the space group for protection.

As every crystallographic space group is a subgroup of
either SG #229 (Im3m) or #191 (P6/mmm), finding ex-
amples of strong TI’s in both of these crystal structures
proves that crystal symmetry cannot forbid strong TI’s:
starting from either of these maximally symmetric exam-
ples and weakly breaking some of the lattice symmetries
one can produce a system with any SG without leaving
the strong TI phase.

In our tight-binding examples we have a single site
per unit cell with two orbitals, four bands in total. One
of the orbitals is a spinful s-orbital, transforming under
rotations with the canonical SU(2) representation and
even under inversion. The other orbital transforms the
same way under proper rotations, but odd under inver-
sion, such orbitals naturally arise through crystal-field
splitting of p-orbitals in a spin-orbit coupled ion. We in-
troduce the Pauli matrices τ to act on the space of the
two orbitals, now proper rotations by angle n are repre-
sented as exp

(
i
2n · σ

)
, inversion as τz and time-reversal

as T = σyK. Both minimal models have the same form
that guarantees that they are invariant under the full
symmetry group:

H(k) =
∑
δ

{sin (k · δ) (δ · σ) τx + (m− cos (k · δ)) τz}

(D1)
where the sum runs over nearest neighbor vectors. By
tuning m we can enter the strong TI phase, this can be
easily checked by counting inversion eigenvalues.

This result is expected based on the band inversion
picture, the Γ point is always of maximal symmetry, it is
possible to have a band inversion only at the Γ point, re-
sulting in a strong TI with trivial weak indices. We can
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also rationalize this result from the effective field the-
ory point of view. The strong TI phase is characterized
by the topological θ term in the long wavelength elec-
tromagnetic action, a theory that possesses continuous

translation an rotation symmetries. While a microscopic
theory with full Galilean invariance is not possible, we
showed that the maximally symmetric crystal structures
are all compatible with this emergent behavior.


