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It was well established that physical quantities satisfy scaling functions across a quantum phase
transition with an order parameter. It remains an open problem if there are scaling functions across
a TQPT with extended Fermi surfaces (FS ). Here, we study a simple system of fermions hopping in
a cubic lattice subject to a Weyl type spin-orbit coupling (SOC). As one tunes the SOC parameter
at the half filling, the system displays both Type I and Type II Weyl fermions and also various
TQPT driven by the collision of particle-particle or hole-hole Weyl FS. At zero temperature, the
TQPT is found to be third order whose critical exponents are determined. Then we investigate
if the physical quantities such as specific heat, compressibility and magnetic susceptibilities satisfy
any sort of scalings across the TQPT. In contrast to all the previous cases in quantum or topological
transitions, we find that although the leading terms are non-universal and cutoff dependent, the sub-
leading terms are non-analytic and satisfy universal scaling relations. The sub-leading scaling leads
to the topological depletions which shows non-Fermi liquid corrections and

√
T quantum cusps. One

can also form a topological Wilson ratio from the subleading scalings of two conserved quantities
such the specific heat and the compressibility. One may also interpret the Type I and Type II Weyl
fermions as a TQPT driven by collision of particle-hole Weyl FS. Experimental realizations and
detections in cold atom systems and materials with SOC are discussed.

I. INTRODUCTION

Quantum phase transitions with an order parameter
have been under intense investigations since the exper-
imental discovery of high temperature superconductiv-
ity. It was known that various experimental measur-
able physical quantities near a quantum phase transi-
tion satisfy various universal scaling functions at a finite
temperature1,2. In an other forefront, topological phases
and phase transitions without an order parameter have
also been explored since the experimental observations
of the quantum Hall effects3. Topological phenomena in
various fermionic systems4,5 have been revived since the
more recent experimental realizations of a new kinds of
insulators called topological insulators6,7. It is natural to
study scaling functions across various topological phase
transitions without an order parameter. There are pre-
vious efforts to derive leading scaling functions across a
TQPT such as the Quantum Hall to an insulator tran-
sition in8,9 and that driven by collisions of Dirac points
in a honeycomb lattice10. All these TQPT can be scaled
to a single point in momentum space, so conventional
Renormalization group (RG), large N expansion or other
methods can be applied to capture low energy critical
fluctuations and derive the scaling functions.

Here, we study a simple system where free fermions
hopping in a cubic lattice subject to a Weyl type of spin-
orbit coupling11. There are experimental motivations of
this model from both cold atoms and materials to be dis-
cussed in Sec.VII. As one tunes the SOC parameters at
the half filling, the system displays both Type I and type

II fermion and also various TQPT driven by the collision
of extended particle-particle or hole-hole Weyl FS. The
previous RG analysis scaled to a single Dirac point in mo-
mentum space in8–10 do not apply to such a situation due
to the low energy excitations around the extended FS.
Unfortunately, the previous RG analysis12,13 designed to
deal with leading scalings around an closed and extended
FS do not apply here either due to various cone singular-
ities of the FS geometry at the TQPT. Intuitively, we
do not expect the physical quantities such as specific
heat, compressibility and magnetic susceptibilities sat-
isfy any leading scalings across the TQPT. However, it
is important and interesting to investigate if they satisfy
any sort of scaling different from the leading scalings. At
zero temperature, the TQPT is found to be a third order
one whose critical exponent is determined. Then we find
that in contrast to all the previous cases in quantum or
topological transitions, although the leading terms in all
these physical quantities are non-universal and cutoff de-
pendent, the sub-leading terms satisfy universal scaling
relations. This fact is a unique and salient feature of this
kind of TQPT with extended FS reconstructions. The
sub-leading scaling leads to the topological depletions
(TD) which show non-Fermi liquid corrections and

√
T

quantum cusps. The TDs show non-analytic behaviors
in the quantum critical regime which can be easily dis-
tinguished from the analytic leading terms and detected
experimentally. One can also form a topological Wil-
son ratio from the subleading scalings of two conserved
quantities such the specific heat and the compressibility.
One may also interpret the Type I and Type II Weyl
fermions as a TQPT driven by collision of particle-hole
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FIG. 1. (a) The non-abelian gauge fields (ασx, βσy, γσz) are
put on the three links in a cubic lattice. (b) The (α, β, γ)
parameter space. There are one SU(2) Abelian point at the
origin and three more different Abelian points in the corre-

spondingly rotated frames S̃U(2),
˜̃
SU(2),

˜̃
S̃U(2) at the edge,

face and the cubic center respectively. There are Type I Weyl
fermions along the line connecting the cubic center to the
edge center and Type II Weyl fermions at the face center.
(c) The 8 Type I Weyl fermions with the topological charges
N3 = ±1 at α = β = γ = π/2. See Fig.2 for the Weyl point
explanation.

Weyl FS. We provide an intuitive classification schemes
on the TQPT in terms of the collisions of FS in the
particle-hole and particle-particle ( or hole-hole ) chan-
nel, augmented by the associated leading or sub-leading
scaling functions. Some possible connections with the
subleading topological entablement entropy and classi-
cal cusps in O(3) Heisenberg model are briefly discussed.
Some possible perspectives are outlined. Experimental
realizations and detections in cold atom systems and ma-
terials with SOC are discussed.

II. TYPE I WEYL FERMIONS AS A TQPT

The Hamiltonian of fermions hopping in a cubic lattice
subject to Weyl type spin-orbit coupling in Fig.1a can be
written as

H =
∑

k

hi(k)σi, i = 0, 1, 2, 3 (1)

where σi = σ0 is the identity matrix, σi are
3 Pauli matrices and h0(k) = −2t(cosα cos kx +
cosβ cos ky+cos γ cos kz), hx(k) = 2t sinα sin kx, hy(k) =
2t sinβ sin ky, hz(k) = 2t sin γ sin kz . The Non-abelian
gauge parameters (α, β, γ) are shown in Fig.1b. Its two
energy bands are ǫ±(k) = h0(k) ± h(k) where h(k) =
√

[hx(k)]2 + [hy(k)]2 + [hz(k)]2. At half filling µ = 0,
the particle and hole FS is given by:

ǫ±(k) = 0 (2)

It is easy to see that the particle energy is related to

that of the hole ǫ+(~k+ ~Q) = −ǫ−(~k) where ~Q = (π, π, π)
is the FS nesting vector which separates the particle FS
from the hole FS. It is this separation which distinguishes
the TQPT in particle-particle or hole-hole from that of
Type I in Fig.2 and Type II Weyl fermions in Fig.7 where
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FIG. 2. A pair of Type I Weyl fermions at (0, 0, 0) and
(π, π, π) with opposite topological charges are turned into a
particle WFS and a hole WFS respectively due to a small SOC
α = β = γ = θ. The topological charges are conserved in the
process. It is in the qz = 0 cross section with the energy ǫ
as the vertical axis. Note the separation between the particle
and hole WFS by the FS nesting momentum ~Q = (π, π, π).

the particle WFS collides with the hole WFS. It also leads
to the relation between the particle DOS and that of hole
D+(ω) = D−(−ω) at the half filling µ = 0.

At the cubic center (α, β, γ) = (π/2, π/2, π/2) in
Fig.1b, there are 8 Type I Weyl fermions located at
kx = 0, π, ky = 0, π, kz = 0, π carrying the topological
monopole charges N3 = ±1 in Fig.1c. The center is the
π flux ( in all the three planes ) Abelian point with the
˜̃̃

SU(2) symmetry in the rotated basis. It is the inver-
sion symmetry breaking in Eq.1 which leads to their ex-

istences. Its dispersion relation ǫI±(~q) = ±
√

q2x + q2y + q2z
leads to the dynamic exponent z = 1 and a vanish-
ing DOE D(ω) ∼ ω2, so it is a semi-metal. Conven-
tional scaling analysis with z = 1 in1,2 leads to Cv ∼
T 3, χu ∼ T 2 which can be easily distinguished from con-
vention Fermi Liquid (FL) behaviors Cv ∼ T, χu ∼ C.
Here we focus on rich and interesting topological phase
transitions along the three lines emanating from the 8
Type I Weyl fermions. We will only focus on the half
filling case µ = 0. Away from the center, some or all
Weyl fermions will become closed particle or hole Weyl
Fermi surface (WFS) shown in Fig.2. The WFS still keep
the topological monopole charges N3 = ±1 of the Weyl
fermions4. How the WFS evolve along the three lines
α = β = γ = θ, α = π/2, β = γ = θ, α = β = π/2, γ = θ
are shown in Fig.3,5,6 respectively. The WFS satisfy
∑8

i=1 N3i = 0 during the evolution. Extend our analysis
to the doping cases with µ 6= 0 and map out the global
topological phase diagrams in the chemical potential µ
and the SOC parameter space will be presented in sub-
sequent works.
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FIG. 3. The particle WFS evolves along α = β = γ = θ
for θ = 4π/9, π/3, π/4. At the QCP θc = π/3, the big
WFS with N3 = 1 (blue) hits the other 3 small WFS

( yellow ) with N3 = −1 at 6 Fermi points at ~Kc =
(±2π/3, 0, 0), (0,±2π/3, 0), (0, 0,±2π/3). As θ increases fur-
ther, it becomes a whole ( green faucet tap-like ) Fermi sur-
face with the total N3 = 1− 1− 1− 1 = −2 charge, so it is a
topological non-trivial FS. The hole WFS can be reached by
shifting the particle WFS by the FS nesting vector (π, π, π).

III. THE THIRD ORDER TQPT ALONG

α = β = γ = θ AT ZERO TEMPERATURE.

In this section, we focus on along the diagonal line
α = β = γ = θ in Fig.1b and at the half filling µ = 0.
How the WFS evolves along this line is shown in Fig.3.
Notably, there is a TQPT driven by the collisions of the
4 WFS where the colliding 4 particle WFS takes a saddle
point ( cone ) geometry near a Von Hove singularityKc =
2π/3 and the critical SOC parameter θc = π/3. When

expanding around the VHS K = Kc + ∆/
√
3 and θc in

Fig.4, we get the particle energy spectrum:

ǫ+(~q) = −[∆ + aq2x − b(q2y + q2z)] (3)

where ∆ =
√
3(θc − θ) is the tuning parameter and a =

1/2, b = 3/4 + ∆/4.
The DOS takes the piece-wise form:

D(ω) =

{

B[Λ−
√

−(ω+∆)
a ], ω +∆ < 0

BΛ, ω +∆ > 0
(4)

where Λ is the momentum cutoff and B = 1
(2π)2b . Note

the non-analytic depletion in the DOS due to the TQPT.
From the DOS, we can evaluate the ground state en-

ergy and find:

E ∼
{

α∆2 + 1
(2π)2b

2√
a

2
15 |∆|5/2 + · · · , ∆ < 0

α∆2 +B0∆
3 + · · · , ∆ > 0

(5)

where · · · means analytical terms or higher order non-
analytic terms, the α,B0 are cutoff dependent. Only
the leading non-analytic term is cutoff in-dependent and
universal. It is the ∆ dependence of b which leads to the
background numerical value −0.77.
At the half filling µ = 0, plugging the parameters ∆ =√
3(θc − θ), a = 1/2, b = 3/4 +∆/4 into Eq.5 and taking

two derivatives lead to:

E′′(θ, µ = 0) ∼
{

α+A0

√
θ − θc, θ > θc

α+B0(θ − θc), θ < θc
(6)
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FIG. 4. The FS geometry near the TQPT driven the particle-
particle WFS collision at Kc = π− θc, θc = π/3 in the qz = 0
cross section. The K = π − θ = Kc + ∆/

√
3 is the VHS.

The hole-hole WFS collision is similar by changing the shaded
regime to a vacuum.

where the exponents ν− = 1/2, ν+ = 1 are universal and
the coefficient A0 = 0.18856 is cutoff independent and
stands for the universal contributions from a single cone
of the TQPT in Fig.4. While B0 is not universal and
cut-off dependent.
At the half filling µ = 0, there are 6 particle and 6

hole WFS colliding at the same time. So in the second
derivatives of the total ground state energy: A = 12A0 =
2.262.
We performed numerical calculations on the ground

state energy in the BZ as shown in the Appendix A.

E′′
n(θ, µ = 0) ∼

{

−0.77 +An(θ − θc)
ν+ , θ > θc

−0.77 +Bn(θ − θc)
ν− , θ < θc

(7)

where the numerical exponents ν+ = 0.5 ± 0.05, ν− =
1.0± 0.05 match the analytical values ν+ = 1/2, ν− = 1
well, the numerical coefficient An = 2.19 is also very close
to the analytical value A = 2.262 achieved above.

IV. SUB-LEADING SCALING FUNCTIONS

ACROSS THE THIRD TQPT AT A FINITE T

It was established1,2 that near a quantum phase tran-
sition at zero temperature, the experimental measurable
physical quantities such as single particle Green func-
tions, specific heat, compressibility, magnetic susceptibil-
ities, etc should satisfy scaling functions. However, there
are always low energy excitations around the WFS on
both sides of the TQPT in Fig.4. It becomes problematic
to apply the scaling analysis near a quantum phase tran-
sition with an order parameter to such a TQPT. Unfor-
tunately, the previous RG analysis12,13 designed to deal
with leading scalings around an extended FS do not ap-
ply here due to the cone singularity of the FS geometry
in Fig.4. From Eq.3, intuitively, one can still define the
dynamic exponent z = 2 with respect to the cone sin-
gularity. However, its physical meaning should be quite
different from that defined in the QPT with an order pa-
rameter and symmetry breaking1,2 and need to be care-
fully examined. Indeed we show that despite the leading
terms in all these physical quantities are cutoff depen-
dent and non-universal, the subleading terms do satisfy
universal scaling with z = 2 which lead to non-analytic
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therefore non-Fermi liquid corrections to the leading an-
alytic terms. They always take the opposite sign to the
leading term, therefore can be called topological deple-
tions.
Because z = 2, one can apply the scaling analysis in10

here to write down the sub-leading scaling function for
the specific heat and the uniform compressibility κu =
χ00(~q → 0, ω = 0) for a single particle-particle ( or hole-
hole ) cone in Fig.4:

Cv =
π2

3
BkB(kBT )Λ− BkB(kBT )

3/2

√
a

Ψi(
|∆|
kBT

) (8)

κu =
1

2
BΛ− B(kBT )

1/2

√
a

Ωi(
|∆|
kBT

)

where i = 1, 2 stands for the two sides of the transitions
∆ < 0 and ∆ > 0 in Fig.4 and Fig.8.
Note the first term is the leading term, proportional to

the frequency ( or energy ) cutoff Λ and non-universal.
while the second term is the sub-leading term, indepen-
dent of the frequency ( or energy ) cutoff Λ and a uni-

versal function of the scaling variable s = |∆|
kBT . Due to

the opposite sign between the two terms, the universal
sub-leading term can be interpreted as the topological
depletion coming from the TQPT.
The general form of the two scaling functions Ψi(x)

and Ωi(x) are evaluated in the appendix B. Here, we
only list the topological depletions in the three limiting
regimes in Fig.8 for the specific heat

CTD
v =































−π2

3

B√
a
k2BT

√

|∆|, ∆ ≪ −kBT

−2.88201
B√
a
k
5/2
B T 3/2, |∆| ≪ kBT

−
√
π

2

Bk
1/2
B√
a

∆2

√
T
e
− ∆

kBT , ∆ ≫ kBT

(9)

and for the uniform compressibility:

κTD
u =































− B√
a

√

|∆|, ∆ ≪ −kBT

−0.536077
Bk

1/2
B T 1/2

√
a

, |∆| ≪ kBT

−
√
π

2

Bk
1/2
B T 1/2

√
a

e
− ∆

kBT , ∆ ≫ kBT

(10)

One can see both topological depletions are non-
analytic only in the QC regime in Fig.8. While, essen-
tially no depletion when ∆ ≫ T and a constant

√

|∆|
depletion when −∆ ≫ T which can be absorbed to the
leading FL contribution anyway. This fact make their
experimental detections feasible ( see Sec.7 ).
One can also form the topological Wilson ratio

RTD
W

(

|∆|
kBT

)

=
k2
BTκTD

u

CTD
v

whose values in the three regimes
are:

RTD
W =











3/π2 ∆ ≪ −kBT

0.186, |∆| ≪ kBT
(

kBT
∆

)2
, ∆ ≫ kBT

(11)

FIG. 5. The particle WFS evolves along α = π/2, β = γ = θ
for θ = 4π/9, π/3, π/4. The end point θ = 0 ( not shown ) is
the 0 flux ( in all the three planes ) Abelian point with the

S̃U(2) symmetry in the rotated basis in Fig.1b. At θc = π/3,
the WFS with N3 = 1 hits the one with N3 = −1 at the two
Fermi points at ~Kc = (±π/2, 0, 0). As θ decreases further,
it becomes a whole Fermi surface ( violet vase ) with the
total N3 = 1 − 1 = 0 charge, so it is topologically trivial FS.
The rest 4 Type I Weyl fermions remain intact through the
TQPT. This should be in a different class of TQPT than in
Fig.3. The co-existence of the 4 Type I Weyl fermions and
the TQPT of WFS is one of the new features along this line.
The hole WFS can be reached by shifting the particle WFS
by one of the two FS nesting vectors (0, π, π), (π, π, π).

which is even independent of a and b characterizing the
shape of the cone in Fig.8. In fact, it is also independent
of how many cones are participating in the TQPT16, so
universal for all the TQPTs in Fig.3,5,6.
As shown in the appendix B, due to the [C4 × C4]D

symmetry at α = β = γ, the topological depletions of
the magnetic susceptibility χxx(T ) = χyy(T ) = χzz(T ) =
1
3χ

00(T ) also satisfy the sub-leading scaling Eq.10.

V. THE 3RD ORDER TQPT ALONG THE

LINE α = π/2, β = γ = θ AND CO-EXISTENCE OF

FOUR TYPE I WEYL FERMIONS

At half filling µ = 0, 2 particle WFS and 2 hole

WFS collide at the same time at ~Kc = (π/2, 0, 0) and
θc = π/3. The dispersion near Kc = ±π/2, θc = π/3

can also be written as Eq.3 where ∆ =
√
3(θc − θ), a =

1/2, b = 5/8 −∆2/8. Using Eq.6, we find A0 = 0.2263,
then the 2 particle WFS and 2 hole WFS contribute
to A = 4A0 = 0.90. Similarly, the subleading scal-
ing function in Eq.9 and Eq.10 need also multiply by 4,
but the topological Wilson ratio Eq.11 remains identical.
As shown in appendix B, due to the non-conservation
of the spins, only the sum over the spin components
∑

i χ
ii(T ) = κu in the magnetic susceptibilities satisfy

the sub-leading scaling Eq.10.
We also performed numerical calculation in the whole

BZ:

E′′
n(θ, µ = 0) ∼

{

−0.224 +An(θ − θc)
ν+ , θ > θc

−0.224 +Bn(θ − θc)
ν− , θ < θc

(12)

where An = 0.861 is quite close to the analytic value
A = 4A0 = 0.90.
1. Coexistence of 4 Type I Weyl fermions
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FIG. 6. The particle WFS evolves along α = β = π/2, γ = θ
for θ = 4π/9, π/4, 0. The TQPT happens at the end point
θc = 0 where it becomes a corner-sharing octahedron. The
hole WFS can be reached by shifting the particle WFS by one
of the 4 FS nesting vectors (0, 0, π), (π, 0, π), (0, π, π), (π, π, π).
There are also 8 straight Type II Weyl fermions at θc = 0
shown in Fig.7.

As shown in Fig.5, there are also 4 Type I Weyl
fermions located at (0, 0, π), (0, π, 0), (π, 0, π), (π, π, 0)
with the anisotropic dispersion ǫI± = −[ 12 (q

2
z − q2y) ∓

√

q2x + sin2 θ(q2y + q2z)]. They reman intact through the

TQPT, so just act as 4 spectators. From the simple scal-
ing analysis with z = 1, their contributions to the specific
heat is Cv ∼ T d/z ∼ T 3 which is analytic and subleading
to the topological analytic depletion Cv ∼ T d/z ∼ T 3/2

in the QC regime due to the third order TQPT. Fur-
thermore, it can not be distinguished from the analytic
T 3 FL corrections. However, they do contribute to the
surface Fermi arcs and associated chiral anomalies in the
transport properties. How the TQPT in the bulk in Fig.5
interfere with the surface Fermi arcs need to be investi-
gated in a separate publication.

VI. THE 5TH ORDER TQPT ALONG THE

LINE α = β = π/2, γ = θ AND THE 8 TYPE II

WEYL FERMIONS.

How the FS evolves along this line is shown in Fig.6.
As shown in Fig.6, there is a TQPT at the π flux ( in

XY plane ) Abelian ending point θc = 0 with the ˜̃SU(2)
symmetry in the rotated basis in Fig.1b. At half filling
µ = 0, all the 4 particle WFS and 4 hole WFS collide at

the same time at θc = 0. Near ~Kc = (π/2, 0, 0), θc = 0,
the dispersion can also be written as Eq.3 where ∆ =
−θ2/2, a = 1/2, b = 1/2 + ∆/2. Note the quadratic de-
pendence of ∆ on the SOC tuning parameter θ. Plugging
these parameters into Eq.5, we find

E ∼ 1

15π2
|θ|5 + · · · (13)

where · · · means leading analytical terms. Taking 5
derivatives to get rid of the leading analytic terms leads
to

d5E

dθ5
∼ 8

π2
sgnθ (14)

(0,0,π/2)

Hole
WFS

Particle
WFS

Hole
Cone

Particle
Cone

Type II
Weyl 

Fermion
(0,0,π/2)+

q
z

+

−

(0,0,π)

(0,0,0)

FIG. 7. A type II Weyl fermion at (0, 0, π/2) and θc = 0 in
Fig.6 can be viewed as a TQPT of a particle WFS and a hole
WFS. It is in the cross section of qx = 0 or qy = 0 with qz as
the vertical axis. Under a small SOC α = β = π/2, γ = θ, it
splits into a Type I particle WFS with a charge 1 centered at
(0, 0, 0) and a Type I hole WFS with a charge −1 centered at
(0, 0, π).

It shows that the transition is a 5th order one. Because
all the 4 particle WFS and 4 hole WFS collide at the same
time, A = 8A0 = 64

π2 . Similarly, the subleading scaling
function in Eq.9 and Eq.10 need also multiply by 8, but
the topological Wilson ratio Eq.11 remains the same.
1. Type II Weyl fermions at α = β = π/2, θ = 0 as a

TQPT

One new feature at the TQPT θc = 0 is that in
addition to the particle-particle and hole-hole WFS
collisions, the particle WFS also touches the hole
WFS shown in Fig.6 and 7, such a cone structure
between the particle WFS and the hole WFS is nothing
but a special case of the type II Weyl fermions dis-
cussed in24. Shown in Fig.7 is essentially a 3d version
of 2d Dirac fermions. In 2d case, it was known15

that there are 4 Dirac fermions at α = β = π/2
with topological charges 1,−1, 1,−1 at the 4 Time-
reversal invariant momenta (0, 0), (π, 0), (π, π), (0, π).
Now adding the third dimension without putting
any SOC along it will change the 4 Dirac fermions
into the 8 Type II Weyl fermions at the 8 momenta
(0, 0,±π/2), (π, 0,±π/2), (π, π,±π/2), (0, π,±π/2)
shown in Fig.6. Their topological charges are de-
termined by the projections onto the (kx, ky) plane,
independent of the kz component, so still given by
1,−1, 1,−1 at the 4 projections on the (kx, ky) plane:
(kx, ky) = (0, 0), (π, 0), (π, π), (0, π).
Without losing any generality, we look at the Type II

Weyl fermion’s dispersion at (0, 0, π/2):

ǫII± (~q) = −[−qz ∓
√

q2x + q2y ] (15)

where the ± corresponds to the particle and hole WFS
shown in Fig.7. At µ = 0, taking − sign leads to the

particle WFS −qz ≥
√

q2x + q2y which takes a cone struc-

ture near (0, 0, π/2). Taking + sign leads to the hole

WFS qz ≥
√

q2x + q2y which also takes a cone structure

above the particle cone shown in Fig.7. Now putting
the SOC γ = θ along the third direction, any small
θ immediately opens gap to both the particle WFS



6

0∆< 0 ∆> 0 T
0

∆

C  /T,v κ u

(a)

QC
−0T−|∆|1/2 1/2−

(b)

C  /T,v κ u

T

FIG. 8. Experimental signatures of the topological depletions
and sub-leading scalings (a) The specific heat Cv/T and the

compressibility κu at a given T shows a non-analytic
√
T de-

pletion in the QC regime. The FS geometry in the three
regimes are shown in Fig.4. (b) The quantum

√
T cusps in

Cv/T and κu in the QC regime in (a) as T lowers. From

the ratio of the coefficients of the
√
T in the two quantities,

one may also measure the universal Topological Wilson ratio
RTD

W .

−qz ≥
√

θ2 + q2x + q2y near (0, 0, 0) and the hole WFS

qz ≥
√

θ2 + q2x + q2y near (0, 0, π) with the dynamic ex-

ponent z = 1 in Fig.7. At the same time, the 4 particle
WFS split with the form Eq.3 with the dynamic expo-
nent z = 2. The 4 hole WFS also split at the 4 FS
nesting momenta. When θ gets close to π/2, then the
particle and the hole WFS shrink to a small sphere with
q2x+q2y+q2z = (π/2−θ)2 shown in Fig.2. At θ = π/2, they
shrink to Type I Weyl fermion shown in Fig.1. Although
type I fermion is a semi-metal, while in the Type II Weyl
fermion, both the extended particle and hole WFS add to
contribute to a finite DOS D(ω) ∼ Λ2−αω2 with a possi-
ble topological depletion in DOS ∼ αω2, so it is a metallic
phase26. For tilted Type II Weyl fermions in24, α > 0.
While for the special straight Type II Weyl fermions in
Fig.7, α = 0.
From the simple scaling analysis, the 8 Type II Weyl

fermions with z = 1 contribute to the specific heat
CD

v ∼ αT 3 which is subleading to the topological de-
pletion CD

v ∼ T 3/2 due to the 5th order TQPT in the
QC regime. In fact, as said above, for the straight Type
II Weyl fermions, even the coefficient α = 0, so it does
not even have a topological depletion to CD

v , χD
u .

VII. EXPERIMENTAL REALIZATIONS AND

DETECTIONS IN COLD ATOMS AND

MATERIALS

The Hamiltonian Eq.1 of free fermions hopping in a
cubic lattice subject to a Weyl type of spin-orbit cou-
pling can be achieved by loading cold atoms in a cubic
optical lattice. Indeed, recently, 2d SOC has been ex-
perimentally implemented in the fermion 40K gas29,30.
Soon after, using an optical Raman lattice scheme, the
authors in the experiment32 realized the Rashba SOC of
spinor bosons with tunable (α, β) in a square lattice. An
optical lattice clock scheme31 was proposed to generate

a 2d SOC in an optical lattice, it has the advantages to
suppress the possible heatings issue. Most recently, by
using the most magnetic fermionic element dysprosium
to eliminate the heating due to the spontaneous emission,
the authors in33 created a long-lived SOC gas of quan-
tum degenerate atoms. The long lifetime of this weakly
interacting SOC degenerate Fermi gas will facilitate the
experimental study of quantum many-body phenomena
manifest at longer time scales. The heating issues with
fermions may be more serious than those with spinor
bosons. However, the TQPT in Fig.3,5,6 are for non-
interacting fermions, they are essentially single particle
properties, so the heating issues should be manageable
in current cold atom experiments with fermions.

Of course, any experiments are performed at finite
temperatures which are controlled by the topological
phase transitions at T = 0 in Fig.3,5,6. The TQPTs
do not survive at finite T > 0, but become the 3
crossover regimes shown in Fig.8. The crossover tem-
perature can be estimated as T ∼ ∆ ∼ t ∼ 3nK which
is easily experimental reachable with the current cool-
ing techniques34,35, so the

√
T quantum cusp behav-

iors in Cv/T and κu, the universal Topological Wilson
ratio in Fig.8 could be detected by the specific heat
measurements36,37, In-Situmeasurements38 and the com-
pressibility κ measurements37. The change of the FS
topology across the TQPT in Fig.3,5,6 and in the Type
I Weyl fermions in Fig.2 and Type II Weyl fermions in
Fig.7 can be monitored by the momentum resolved in-
terband transitions39 and the band mapping technique
developed in32.

As shown in Fig.3,5,6, Type I fermions are quite com-
mon and robust in this simple SOC model. However, the
Type II fermions seem quite restricted, also only straight
Type II fermions different than the tilted Type II pro-
posed in24 can be realized. Subleading scaling functions
in Eq.9 and 10 can be easily extended to the Type II
Weyl fermions with z = 1 in these materials. Unfortu-
nately, the topological depletion ∼ T 3 is analytic, can
not be distinguished from the FL corrections which are
also T 3. As said above, there is no such topological de-
pletion for the straight Type II fermions. Type I Weyl
fermions have been discovered in several materials18–22.
Type II Weyl fermions24 seem also have been found in a
few materials, although there are still quite controversial
experimental interpretations on the number of bulk type
II Weyl fermions and associated surface Fermi arcs27,28.
Topological Lifshitz transitions happen in all these Type
I and Type II Weyl fermion materials. Although they
may not be described precisely by the Hamiltonian Eq.1,
they should be in the same topological classes as those
in Fig.3,5,6. So the results achieved in this paper should
also apply to the Topological Lifshitz transitions in these
non-interacting or weakly interacting materials.
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VIII. DISCUSSIONS AND CONCLUSIONS

We may classify the FS topologies at the half filling
in terms of topological phase transitions and associated
leading or sub-leading scaling functions. There are two
kinds of TQPT: (1) the first one is between particle and
hole which leads to Type I and Type II fermions. (a)
Type I Weyl fermions are relativistic, have closed either
particle or hole FS with the DOS D(ω) ∼ ω2 and sat-
isfy leading analytic scaling with the dynamic exponent
z = 1. (b) Type II Weyl fermions are non-relativistic,
have extended open particle and hole FS with the DOS
D(ω) ∼ Λ2−αω2 and satisfy sub-leading analytic scaling
with the dynamic exponent z = 1. (2) The second one
is the TQPT between particle and particle ( or hole and
hole ) through a cone singularity, has extended FS on
both sides with the DOS given in Eq.4 and satisfy sub-
leading non-analytic scaling with the dynamic exponent
z = 2. Our preliminary results away from half filling
shows there are new classes of TQPT with anisotropic
dynamic exponents43. Of course, at sufficiently large µ,
there is a quadratic band touching through a closed hole
FS with the DOS D(ω) ∼ √

ω, ω > 0;D(ω) = 0, ω < 0.
It leads a metal to BI transition which satisfies a leading
non-analytic scaling with dynamic exponent z = 2. The
results will be presented in a subsequent publication. It
would be also interesting to look at the physical classi-
fication here from formal K theory classification. How-
ever, so far, the K theory classification only assumes the
translational symmetry, but ignore the constraints from
crystalline symmetries which take the spin-orbital cou-
pled crystalline symmetries in Eq.1.

Eq.9 and 10 take a similar form to the topological en-
tanglement entropy44: S = αL−γ where the first term is
the leading non-universal term proportional to the length
between the boundary of the two entangled regimes A
and B. While the second term is the sub-leading term, in-
dependent of the boundary and universal called topologi-
cal entanglement entropy γ = logD where D is quantum
dimension D ( which is a counter-part of the dynamic
exponent z here ). There is also a relative minus sign be-
tween the two terms ! This suggests that the form may
be a general scaling structure across a TQPT, in sharp
contrast to the conventional leading scaling across a con-
ventional QPT with an order parameter and associated
symmetry breaking.

The subleading scaling behaviors in the specific heat in
Eq.9 remind the specific heat near the finite temperature
phase transition of the classical O(3) Heisenberg model45

Cv ∼ C − b0t
−α where t = |(T − Tc)/Tc|, b0 > 0 and α ∼

−0.1. So the specific heat will show a maximum classical
cusp near Tc. This cusp has been precisely detected in
specific heat experiments. This fact has also been used
to determine the Anomalous Hall effect near the finite
temperature phase transition in46. Here the quantum√
T cusp behavior in the QC regime near T = 0 in Fig.8 is

due to the TQPT at (T = 0,∆ = 0). So the mechanism of
the quantum cusp discovered in this paper is completely

different than that of the classical cusp.
As shown in Fig.3,5,6, Type I fermions are quite com-

mon in this simple model. In contrast to the Weyl Semi-
metals in materials18–22 which have only 2 ( or 4 ) Weyl
points if the Time reversal ( or Inversion ) symmetry is
broken. Here there are 8 and 4 Weyl points in Fig.1c and
Fig.5 respectively due to the Inversion symmetry break-
ing. The present paper focused on the TQPTs in the
bulk. Taking a slab geometry with two surfaces ( in real
space ) parallel to the (1, 1, 1) direction, every Fermi arc
connects one +1 to one −1 monopole, so it may be inter-
esting to investigate how the Fermi arcs in the two sur-
faces connect the projections of the 8 or 4 Weyl points
onto the two surfaces and monitor how the Fermi-arcs re-
construct across the TQPT in the bulk in Fig.3 and Fig.5.
While 8 Type II fermions seem quite restricted, are only
realized at the π flux in abelian point α = β = π/2, γ = 0
in Fig.6. It remains unknown if there is a well defined
surface Fermi-arcs associated with these 8 straight Type
II fermions.
In terms of scaling functions, the TQPT in Fig.3,5,6

should all be in the same universality class. The topo-
logical Wilson ratio is even identical. However, the main
difference is that the WFS is still topologically non-trivial
carrying the topological charge N3 = −2 after the TQPT
in Fig.3, but becomes trivial in Fig.5 and 6. It seems the
scaling functions near a single cone may not reflect the
total topological charges carried by the WFS. Different
TQPT may be described by the same set of scaling func-
tions. However the total coefficient A does depend on
the global topology of the WFS which is related to N3.
Due to the vanishing of DOS at the Type I Weyl point,

a weak interaction is irrelevant. But due to the extended
FS at the Type II Weyl point and the particle-particle or
hole-hole TQPT point, any weak interaction is relevant.
Following Ref.14,15,40,41, it is important to look at the ef-
fects of both positive U and negative U . For example,
for U > 0 and away from half filling, due to the N3 = −2
in Fig.3, depending on the signs of pairing amplitudes on
different parts of WFS, it may lead to new TR invari-
ant topological superfluids with an associated Majornan
surface mode7.
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Appendix A: Numerical evaluation of zero

temperature universal amplitude and critical

exponents in the TPTs.

The Ground-state energy along the line α = β = γ = θ
is calculated as

EGS(θ) =
1

(2π)3

∫

k filled

dk[ǫ+(k; θ) + ǫ−(k; θ)] (A1)
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FIG. 9. The ground-state energy density and its derivatives
on the lattice versus the SOC parameter θ/π. (a) The ground-
state energy (b) It’s first-order derivative, (c)It’s second-order
derivative (d)It’s third-order derivative. So the TPT at θc =
π/3 is a third order one.

whose Numerical results are list in 9.
It is obvious that when θ < θc, E

′′

(θ) ∼ (θ − θc).

But when θ > θc, it should be E
′′

(θ) ∼ (θ − θc)
ν+ with

some value ν+ < 1. The best fits leads to Eq.M6 with
the coefficient An = 2.19 and the critical exponent ν+ =
−(0.50± 0.05) which match the analytic values well.
We also performed similar calculations along the other

two lines α = π/2, β = γ = θ and α = β = π/2, γ = θ
and also found the numerical values match the analytic
ones precisely.

Appendix B: Evaluations of Finite Temperature

universal subleading scaling functions across a TPT.

The Internal energy is

U =

∫ ∞

−∞
dω

D(ω)ω

e
ω

kBT + 1
, (B1)

which leads to the specific heat:

Cv =
∂U

∂T
= kB

∫ ∞

−∞
dωD(ω)

e
ω

kBT

(e
ω

kBT + 1)2

ω2

(kBT )2
(B2)

Plugging in the DOS in Eq.M3 leads to the first equation
in the scaling form Eq.M7 with the scaling variable s =
|∆|
kBT where

Ψ1(s) =

∫ s

0

dx

√
s− xx2ex

(ex + 1)2
+

∫ ∞

0

dx

√
s+ xx2ex

(ex + 1)2
,

Ψ2(s) =

∫ ∞

s

dx

√
x− sx2ex

(ex + 1)2
(B3)

However, the compressibility and magnetic susceptibil-
ity involve Hamiltonian, not just DOS. From Eq.M1, one
can get the fermion Green function:

G(iω, k) = [iω −Hk]
−1 =

∑

s=±

Ps(k)

iω − ǫs(k)
(B4)

where Ps = 1
2

[

σ0 + s
∑

i
hi

h σi

]

is the projection opera-
tors onto the particle-hole bands s = ±.
The dynamic density-spin susceptibility is

χµν(q, iωn) = −kBT
∑

k,iν

Tr[G(iωn + iνn, k
′)σµ

× G(iνn, k)σ
ν ] (B5)

where k′ = k + q.
Working out the sum over the Matsubara frequency

leads to

χµν(q, iωn) = −
∑

k,s,s′

Mµν
ss′ (k, k

′)
fsk − fs′k′

iωn − ǫs
′

k′ + ǫsk
(B6)

where the Fermi distribution function fsk = f(ǫsk) and
Mµν

ss′ (k, k
′) = Tr[Ps(k)σ

µPs′(k
′)σν ].

In the static limit, we have

lim
q→0

fsk − fs′k′

ǫsk − ǫs
′

k+q

= δss′
∂f(ǫ)

∂ǫ
+ δs,−s′

fsk − fs′k
2sh(k)

(B7)

and limq→0 M
µν
ss′ (k, k

′) = Mµν
ss (k, k)δss′ which is evalu-

ated as:

Mµν
ss (k, k) =











1 shx

h s
hy

h shz

h

shx

h
h2
x

h2

hxhy

h2

hxhz

h2

s
hy

h
hxhy

h2

h2
y

h2

hyhz

h2

shz

h
hxhz

h2

hyhz

h2

h2
z

h2











, (B8)

Because the particle and hole WFS collide at momenta

differing by ~Q = (π, π, π), so in extracting non-analytic
contributions, one can drop the mixing between Parti-
cle and hole WFS and focus on just one collision cone
between the P-P or H-H WFS. Then a single cone com-
pressibility is:

κu(T ) = χ00(T ) = −
∫ +∞

−∞
dωD(ω)

∂

∂ω

1

e
ω

kBT + 1
(B9)

Plugging in the DOS in Eq.M3 leads to the second
equation in the sub-leading scaling form Eq.M7 where

Ω1(s) =

∫ s

0

dx

√
s− xex

(ex + 1)2
+

∫ ∞

0

dx

√
s+ xex

(ex + 1)2
,

Ω2(s) =

∫ ∞

s

dx

√
x− sex

(ex + 1)2
(B10)

From Eq.B8, one can also read the single cone spin
susceptibility:

χij(T ) = −
∫

d3k
hihj

h2

∂

∂ω

1

e
ω

kBT + 1

∣

∣

∣

ω=ωs(k)
, (B11)

where i, j = x, y, z.
Since hi is odd function of k, we have χij(T ) =

δijχ
ii(T ). Using the identity h2 = h2

x + h2
y + h2

z, we get
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the following sum rule for the sub-leading scaling which
holds for any (α, β, γ):

∑

i

χii(T ) = κu (B12)

Indeed, similar to the theoretical evaluations and ex-
perimental detections of the coherence length in a SOC

system25, because the spin is not conserved, so we only
expect the average over all the spin components satisfy
the sub-leading scalings.
However, the enlarged [C4 × C4]D symmetry at α =

β = γ = θ dictates

χxx(T ) = χyy(T ) = χzz(T ) =
1

3
χ00(T ) (B13)

which also satisfies the sub-leading scaling individually.
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