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We design a quantum molecular dynamics method for strongly correlated electron metals. The
strong electronic correlation effects are treated within a real-space version of the Gutzwiller vari-
ational approximation (GA), which is suitable for the inhomogeneity inherent in the process of
quantum molecular dynamics (MD) simulations. We also propose an efficient algorithm based on
the second-moment approximation to the electronic density of states for the search of the optimal
variation parameters, from which the renormalized interatomic MD potentials are fully determined.
By considering a minimal one-correlated-orbital Anderson model with parameterized spatial de-
pendence of tight-binding hopping integrals, this fast GA-MD method is benchmarked with that
using exact diagonalization to solve the GA variational parameters. The efficiency and accuracy are
illustrated. We have demonstrated the effect of temperature coupled with electronic correlation on
structural properties simulated with MD. This novel method will open up an unprecedented oppor-
tunity enabling large-scale quantum MD simulations of strongly correlated electronic materials.

I. INTRODUCTION

Electronic correlation effects in materials such as tran-
sition metal oxides, give rise to emergent phenomena in-
cluding Mott insulating state, magnetism, heavy fermion,
and unconventional superconductivity. These phenom-
ena defy the description of the density functional the-
ory (DFT) within local density approximation (LDA),
which has been successful in describing electronic and
structural properties of good metals and several semicon-
ductors. Other discrepancies show up for materials like
elemental actinide solids. For instance, the experimen-
tally measured equilibrium volume of δ-plutonium is 25%
larger than the one given by the DFT-LDA approach,
the greatest deviation known between experiment and
theoretical value for this theory. The inadequacy of the
DFT-LDA method for strongly correlated electron mate-
rials can be partly cured by including a direct treatment
of quantum fluctuation effects by such quantum many-
body approaches like the dynamical mean-field theory
(DMFT).1,2 Together with its success in describing key
physical observables in many strongly correlated electron
materials, however, the LDA+DMFT is computation-
ally expensive and in practice limited to solid state sys-
tems with high crystalline symmetry, making it time con-
suming to describe the structural relaxation problems.
The combination of LDA with the Gutzwiller variational
method3,4 has proved successful in providing an alterna-
tive but fast approach to the strongly correlated electron
metals.5

We note that the energies and stability of various crys-
talline structures, and the structure of disordered liquids,
of simple and d-band metals can be calculated by ab ini-

tio DFT methods alone and/or coupled with Molecular
Dynamics (MD).6 Computational requirements limit the
application of DFT MD simulations to thin film surface
slabs, and to a few interacting defects in the bulk, con-
taining at most 300 to 400 atoms. Faster methods based

on empirical fitting of electron density or tight-binding
parameters, such as the Embedded Atom Method7 and
Second Moment Approximation,8 respectively, are rou-
tinely employed in MD simulations consisting of thou-
sands of atoms and more. Due to reasons outlined above,
standard ab initio DFT methods are not suitable for
strongly correlated electron metals. Therefore, MD simu-
lations of strongly correlated electron metals, such as Pu,
are limited to empirical methods,9,10 where the quantum
nature of the electronic degrees of freedom are not ex-
plicitly considered. As an initial step in the direction to
include quantum effects in MD simulations of strongly
correlated electron metals, we propose to combine the
computationally efficiency of the GA method with MD.

The strategy seems to be straightforward in princi-
ple. However, practical applications to realistic systems
present challenges. On the one hand, for an explicit treat-
ment of strong electronic correlation effects, the ab initio

method requires a definition of local correlated orbitals.
On the other hand, for the MD, forces should be calcu-
lated on the fly. The aim of this work is to present a
generic framework of the GA-MD method, together with
a path forward for improving the computational speed
of the GA optimization procedure. We propose the con-
struction of such parameterizations as presented in the
tight-binding electronic structure method, and the use of
the semi-empirical second moment approximation of elec-
tronic density of states for the calculation of local kinetic
energy. The latter will significantly speed up the mini-
mization procedure in the Gutzwiller variational method
for the electronic structure, opening up the possibility of
MD simulations to strongly correlated electronic materi-
als.

The outline of the paper is as follows. In Sec. II, we give
a detailed description of the density matrix formulation
of the Gutzwiller approximation. It has the advantage
of being applicable to crystals, as well as topologically
and/or chemically disordered and impurity systems.5,15
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In Sec. III, we derive an approximate but analytical so-
lution to the optimization equations in the GA, where a
high quality fitted solution on the whole range of physi-
cal interest is provided, and propose the second moment
approach to the electronic density of states for the cal-
culation of kinetic energy parameters. In Sec. IV, the
formulation of force on individual atoms is presented. In
Sec. V, this efficient GA-MD method is demonstrated in
a minimal Anderson model for heavy fermion systems
based on tight-binding hopping integrals. A concluding
summary is given in Sec. VI.

II. DENSITY MATRIX FORMULATION OF
GUTZWILLER METHOD

A. Renormalization of hopping integrals

First, we review the Gutzwiller method briefly for
which we closely follow Ref. 5 but here we specifically
include the topological disorder, i.e., during a typical
MD process, no symmetry remains and all atoms are in-
equivalent. Among numerous theoretical approaches, the
Gutzwiller method provides a transparent physical inter-
pretation in terms of the atomic configurations of a given
site. Originally, it was applied to the one-band Hubbard
model Hamiltonian:11

H = Hkin +Hint , (1)

with

Hkin =
∑

i6=j,σ

tijc
†
iσcjσ , (2)

and

Hint = U
∑

i

ni↑ni↓ . (3)

The Hamiltonian contains a kinetic partHkin with a hop-
ping integral tij from site j to i, and an interaction part
with a local Coulomb repulsion U for electrons on the

same site. c†iσ (ciσ) is the creation (annihilation) oper-
ator of an electron at site i with up or down spin σ.

niσ = c†iσciσ measures the number (0 or 1) of electron
at site i with spin σ. The Hamiltonian, Eq. (1), con-
tains the key ingredients for correlated up and down spin
electrons on a lattice: the competition between delocal-
ization of electrons by hopping and their localization by
the interaction. It is one of the most widely used models
to study the electronic correlations in solids.
In the absence of the interaction U , the ground state is

characterized by the Slater determinant comprising the
Hartree-like wave functions (HWF) of the uncorrelated

electrons, |ψ0〉. When U is switched on, the weight of
the doubly occupied sites will be reduced because of the
cost of an additional energy U per site. Accordingly, the
trial Gutzwiller wave function (GWF) |ψG〉 is built from
the HWF |ψ0〉:

|ψG〉 = gD|ψ0〉 . (4)

The role of gD is to reduce the weight of the configura-
tions with doubly occupied sites, where D =

∑

i ni↑ni↓
measures the number of double occupations and g (<
1) is a variational parameter. This method corrects
the mean-field (Hartree) approach, for which up and
down spin electrons are independent, and, overestimates
configurations with doubly occupied sites. Using the
Rayleigh-Ritz principle, this parameter is determined by
minimization of the energy in the Gutzwiller state |ψG〉,
giving an upper bound to the true but unknown ground
state energy of H . To enable a practical calculation, it is
necessary to use the Gutzwiller approximation, which as-
sumes that all configurations in the HWF have the same
weight.
Nozieres12 proposed an alternative which shows that

the Gutzwiller approach is equivalent to the renormal-
ization of the density matrix in the GWF. It can be for-
malized as

ρG = T †ρ0T . (5)

The density matrices ρG = |ψG〉〈ψG| and ρ0 = |ψ0〉〈ψ0|
are projectors on the GWF and HWF, respectively. T is
an operator which is diagonal in the configuration basis;
T = ΠiTi where Ti is a diagonal operator acting on site
i:

Ti|Li, L
′〉 =

√

p(Li)

p0(Li)
|Li, L

′〉 . (6)

Here, Li is an atomic configuration of the site i, with
probability p(Li) in the GWF and p0(Li) in the HWF re-
spectively, whereas L′ is a configuration of the remaining
sites of the lattice. Note that this prescription does not
change the phase of the wave function as the eigenvalues
of the operators Ti are real. The correlations are local,
and the configuration probabilities for different sites are
independent.
The expectation value of the Hamiltonian is given by,

〈H〉G = Tr(ρGH) . (7)

The mean value of the on-site operators is exactly cal-
culated with the double occupancy probability, di =
〈ni↑ni↓〉G. Therefore, the di are the new variational pa-
rameters replacing g. Using Eqs. (5)-(6), the two-site
operator contribution of the kinetic energy can be writ-
ten as
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〈c†iσcjσ〉G = Tr(ρGc
†
iσcjσ) = 〈c†iσcjσ〉0

∑

L−σ

√

p(L′
σ, L−σ)

p0(L′
σ)

√

p(Lσ, L−σ)

p0(Lσ)
, (8)

where L′
σ and Lσ are the only two configurations of spin

σ at sites i and j that give a non-zero matrix element
for the operator in the brackets. The summation is per-
formed over the configurations of opposite spin L−σ. The
probabilities p0 in the HWF depend only on the number
of electrons, whereas the p in the GWF also depends on
di.
After some elementary algebra, one can show that the

Gutzwiller mean value can be factored into

〈c†iσcjσ〉G =
√
qiσ〈c†iσcjσ〉0

√
qjσ , (9)

where these renormalization factors qiσ are local and can
be expressed as

√
qiσ =

√

1− niσ − ni−σ + di
√
niσ − di +

√
di
√

ni−σ − di
√

niσ(1− niσ)
.

(10)

In Eq. (9), 〈c†iσcjσ〉0 is shorthand for the expectation

value of c†iσcjσ over the HWF |ψ0〉, and similarly for
the average over the Gutzwiller state |ΨG〉. We have
also used niσ as shorthand for 〈niσ〉, that is, the average
number of electrons on the considered “orbital-spin” in
the HWF. In the simple case when the state is homo-
geneous and paramagnetic, all quantities becoming site-
and spin-independent.
In Eq. (9), the term contributing to the kinetic energy,

〈c†iσcjσ〉0, is renormalized by a factor of q, which is less
than one in the correlated state, and equal to one in the
HWF. This factor can be interpreted as a direct measure
of the correlation effect. Indeed Vollhardt13 has shown
that 1/q = m∗/m where m∗ is the effective mass and
m is the bare mass of the electron. Thus a q close to 1
corresponds to a weakly correlated electron system and
a smaller q value reflects enhancement of the correlation
effect. Equation (7) leads to the variational energy per
site, and for the homogeneous and paramagnetic state, is
given by

E(d) = 〈H〉G = 2qε0kin + Ud , (11)

which can be minimized numerically with respect to the
variational parameter d. In the above expression, the
factor 2 accounts for the two-fold spin degeneracy and
ε0kin is the kinetic energy per site and per spin identical
at all sites and spins for a homogeneous HWF:

ε0kin =
∑

j

〈c†iσcjσ〉0tij . (12)

In the case of half filling (n = 1/2), minimization is ana-
lytical, and provides the optimal choice for double occu-
pancy d:

d =
1

4

(

1− U

16ε0kin

)

, (13)

and

q = 1− U2

(16ε0kin)
2
. (14)

If the Coulomb repulsion U exceeds a critical value Uc =
16ε0kin, q = 0, leading to an infinite quasiparticle mass
with a Mott-Hubbard Metal-Insulator transition. This
is also known as “the Brinkmann-Rice transition”,14 as
these authors first applied the Gutzwiller approximation
to the Metal-Insulator transition.
Away from half-filling, one has to minimize the vari-

ational energy of Eq. (7) numerically. Moreover if the
system is spatially inhomogeneous, which is the case for
a MD simulation, all quantities (di, qi) may vary locally
from one site to the other. Consequently, the general
variational energy, a function of double occupancy prob-
abilities di on all sites, is

Evar =
∑

ijσ

√
qiσtij

√
qjσ〈c†iσcjσ〉0 +

∑

i

Udi . (15)

Minimization must then be performed numerically for
each site, i.e., derivation with respect to di, leading to
the local equation:

∂
√
qiσ

∂di
=
U
√
qiσ

4|eiσ|
, (16)

for the spin degenerate case. The factor 4 arises from the
two-fold spin degeneracy and the Hermiticity. Through-
out this work, we limit discussions to the spin degener-
ate case. We keep the spin index in the relevant phys-
ical quantities solely to reminder that these quantities
are measured per spin projection. Here eiσ is the local
partial “effective” kinetic energy, i.e., the contribution
of orbital-spin “iσ” to kinetic energy, calculated with an
“effective” hopping:

eiσ =
∑

j

〈√qiσc†iσcjσ〉0tij
√
qjσ . (17)

This quantity is always negative, which explains the use
of its absolute value in Eq. (16).

B. Inequivalent sites: renormalization of levels

When sites are inequivalent, or if orbitals belong to
different symmetries as in a multi-orbital basis, it is nec-
essary to add to the Hamiltonian an on-site energy term

Hon-site =
∑

iσ

ǫ0iσniσ . (18)
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The Hubbard Hamiltonian is then written as

H = Hkin +
∑

iσ

ǫ0iσniσ + U
∑

i

ni↑ni↓ , (19)

with Hkin given by Eq. (2). In this case, the starting
HWF directly obtained from the non-interacting part of
the Hamiltonian, is not automatically the optimal choice,
i.e., having the lowest energy. When we look for the
ground state of Eq. (19) in the Hartree-Fock (HF) self-
consistent field formalism, it is necessary to vary the or-
bital occupations. Practically, it can be achieved by re-
placing Eq. (19) by an effective Hamiltonian Heff of inde-
pendent particles with renormalized on-site energies ǫiσ:

Heff =
∑

i6=j,σ

tijc
†
iσcjσ +

∑

iσ

ǫiσniσ + C . (20)

The HWF we seek is an approximate ground state of
the true many-body Hamiltonian (19) and is the exact

ground state of effective Hamiltonian (20). The addi-
tive constant C accounts for the double counting energy,
so that the ground state energies are the same for both
Hamiltonians:

〈Heff〉 = 〈H〉 . (21)

The optimal choice of parameters ǫiσ can be obtained by
minimizing the ground state energy of Heff with respect
to ǫiσ . Invoking the Hellmann-Feyman theorem, one can
obtain the derivative of the kinetic energy

∂〈Hkin〉
∂ǫiσ

= −
∑

j 6=i,σ

ǫjσ
∂〈njσ〉
∂ǫiσ

. (22)

By taking a mean-field approximation 〈ni↑ni↓〉 ≈
〈ni↑〉〈ni↓〉, and performing a partial derivative on both
sides of Eq. (21) with respect to ǫlσ′ , and comparing

the coefficients before the factor ∂〈niσ〉
∂ǫ

lσ′

, we recover the

well-known formula for the on-site energies:

ǫiσ = ǫ0iσ + U〈ni−σ〉 , (23)

which is usually obtained from a direct mean-field decou-
pling. Here the constant C is simply −U∑

i〈ni↑〉〈ni↓〉.
In the Gutzwiller approach, the same argument about

the variation of orbital occupation, i.e., flexibility on the
HWF |ψ0〉, is true. It is necessary to find a way to vary
this Slater determinant, from which the GWF |ΨG〉 is
generated, so that the Gutzwiller ground-state energy is
a minimum. One needs to find an equivalent of Eq. (23)
in the Gutzwiller context. The average value of Eq. (19)
is given by:

〈ΨG|H |ΨG〉 =
∑

ijσ

tij
√
qiσ〈c†iσcjσ〉0

√
qjσ + U

∑

i

di

+
∑

iασ

ǫ0iσ〈niσ〉0 . (24)

Following the previous HWF self-consistent field ap-
proach, one can find an effective Hamiltonian Heff of in-
dependent particles having |ψ0〉 as an exact ground state.
This state |ψ0〉 generates the GWF |ΨG〉 which is an ap-

proximate ground state of the true Hamiltonian Eq. (19).
In analogy with Eq. (21),

〈ψ0|Heff|ψ0〉 = 〈ΨG|H |ΨG〉 , (25)

leads to the expression:

Heff =
∑

i6=j,σ

t̃ijc
†
iσcjσ +

∑

iσ

ǫiσniσ + C′ , (26)

with effective but fixed renormalized hopping integrals
t̃ij =

√
qiσtij

√
qjσ and effective on-site energies ǫiσ, still

to be determined. The Hellmann-Feynman theorem ap-
plied to Heff provides again an expression similar to
Eq. (22), but with effective hopping integrals. Taking
into account the dependence of the qiσ’s through niσ

(Eq. (10)) and differentiating Eqs. (24) and (25) with
respect to the parameters ǫiσ, one obtains the equivalent
expression to Eq. (23) in the Gutzwiller context:

ǫiσ = ǫ0iσ + 2eiσ
∂ ln(

√
qiσ)

∂niσ

. (27)

Here eiσ is the partial kinetic energy of orbital-spin iσ:

eiσ =
∑

jσ

t̃ij〈c†iσcjσ〉0 =

∫ EF

−∞
EÑiσ(E)dE − ǫiσ〈niσ〉0 ,

(28)

with Ñiσ the iσ-projected density of states (DOS) for a
system described Heff. Equation (25) leads to

C′ = U
∑

i

di −
∑

iσ

2eiσ
∂ ln(

√
qiσ)

∂niσ

〈niσ〉 . (29)

Except for a few very special conditions in one-band
Hubbard model, the renormalization of correlated-orbital
levels is not only important in the optimization of the
total energy but also in giving a correct description of
single-particle quasiparticle properties.15 To solve the
full problem of finding an approximate ground state to
Eq. (19), one is faced with a self-consistency loop: First
get the occupations 〈niσ〉0 from a HWF, and a set of
‘bare’ ǫ0iσ levels; then obtain a set of configuration pa-
rameters, the probabilities of double occupation, di by
minimizing Eq. (24) with respect to these probabilities,
followed by the on-site level renormalization according
to Eq. (27). The loop is repeated until a convergence is
achieved.

III. APPROXIMATIONS FOR FAST
CORRELATED ELECTRONIC STRUCTURE

A. Approximated solutions of Gutzwiller
minimization

Due to the complicated expression of Eq. (10), it is
non-trivial to solve Eq. (16). Graphically, the solution
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corresponds to the intersection of the function
∂
√
qiσ

∂di
with

a horizontal line U/4|eiσ| (see Fig. 1).

FIG. 1. (Color online) The exact (full line) and approximate
(dashed line) ∂

√
qiσ/∂di as a function of di.

This situation will affect applications of the Gutzwiller
method to MD, as analytical expressions are desirable
to derive forces on the atoms. Fortunately, the func-

tion
∂
√
qiσ

∂di
can be fitted with reasonable accuracy (see

Fig. 1) by a logarithm function, giving an analytical ap-
proximate solution di of Eq. (16). This choice was sug-
gested by the shape of the true derivative of

√
qiσ , with

the following physical constraints: The uncorrelated case
(U = 0) has to give the solution di = n2

iσ, for a given oc-
cupancy niσ, and the probability of double occupancy di
is restricted in the range max(0, 2niσ − 1) < di < niσ

(otherwise there would be negative arguments in the
square root of q), providing a rescaling of the logarithm
argument. Finally, we determine the coefficient in front
of the logarithm, such that the fitted function has the
same slope as the true one in the uncorrelated limit n2

iσ.
The final result reads:

∂
√
qiσ

∂di
≃ −c ln(adi + b) (30)

The physical constraints above fix uniquely all three co-
efficients

a =
1

n2
iσ −max(0, 2niσ − 1)

, (31)

b = −a max(0, 2niσ − 1) , (32)

c =
n2
iσ −max(0, 2niσ − 1)

4n3
iσ(1− niσ)3

. (33)

Within this approximation, the approximate value of
double occupancy, as the solution of the minimization
equation, is di = (n2

iσ − dmi ) exp(−U/4|eiσ|)− dmi , where
dmi = max(0, 2niσ − 1). The small remaining difference

between this approximate and the true value can be cor-
rected by a second order expansion around the approxi-
mate value di leading to a more accurate analytical ex-
pression

d2ndi = di −
f ′ +

√

f ′2 − 2f ′′[f + c ln(adi + b)]

f ′′ . (34)

Here f , f ′, and f ′′ stand for the true
∂
√
qiσ

∂di

, and its first
and second order derivatives, respectively, calculated at
the approximated value di.
The relative error of this second order corrected value

with respect to the exact solution is less than 1% over
the whole range of values. Thus, this second order cor-
rected local double occupancy is used in the calculation
of renormalization factor

√
qiσ, Eq. (10). To check the

validity of this approximation for the derivative, we also
plot in Fig. 1 the comparison between true and approxi-
mate

√
qiσ. Again we see the good accuracy, with a small

discrepancy occuring in the range of very small double
occupancy, i.e., corresponding to high values of Coulomb
repulsion U , not often encountered for realistic materials.

B. Second moment approximation (SMA): An
efficient tool for kinetic energy evaluation

The other input for Eq. (28) necessary to perform
tractable MD simulations is the partial kinetic energy.
A common approximation is the well-known approach
of second moments.16 It is supported by the observa-
tion that all necessary quantities for the energetics are
integrated quantities. Consequently, they are not too
sensitive to the fine details of the DOS, which can be ap-
proximated by a rectangular electronic density of states
of bandwidth Wiσ and height 1/Wiσ for each orbital and
spin. The second moment of the rectangular DOS, equal

to ǫ2i +
W 2

i

12 , is set equal to the real one obtained from

closed loop paths counting 〈i|H2|i〉 = ǫ2i +
∑

j t
2
ij , deter-

mining the bandwidth Wiσ.
Practically, for a given MD snapshot, the second mo-

ment for a given atomic site “i” can be constructed as
a sum over atoms “j” neighboring “i” as µ2,i =

∑

j t
2
ij

(see Appendix for more details). Using the simple tight-
binding theory,17 the hopping integrals tij scale as a
power law of the interatomic distance rij = |ri−rj |. With
the number of electrons on each atom (assuming charge
neutrality for all sites), the partial kinetic energy, needed
as input in Eq. (28), is given by eiσ =Wiσniσ(niσ−1)/2,
similar to the result by Ackland.18 To compute µ2 and to
account for the effect of Coulomb correlations, we use the
hopping integrals renormalized by q-factors,

√
qitij

√
qj ,

rather than the bare ones, tij : After minimization in the
Gutzwiller method, the true interacting Hamiltonian H
is replaced by an effective Hamiltonian of non-interacting
quasiparticles similar to (26), with renormalized hopping
integrals. Potentially the on-site energies need to be
renormalized too, but it is not necessary in our case, as we
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assumed charge neutrality, so there is no average charge
transfer between sites. To conclude, we show that inclu-
sion of electronic correlations in MD simulations within
the Gutzwiller method just requires one more interme-
diate step, compared to usual one, with renormalization
factors that reduce the values of the hopping integrals.
Once computed for a set of actual positions of atoms,
the rest of the process is similar to other semi-empirical
approaches.8,19

IV. FORCES FOR MD

For a given set of atomic positions, the overall total
energy of the system is the sum of the electronic approx-
imate Gutzwiller ground state energy EG plus a short
range repulsion potential,

Etot = EG + Erep . (35)

The x-component of the force acting on atom i, Fx,i is
the derivative of Etot with respect to position compo-
nent xi of this atom (same relations hold for y- and z-
components):

Fx,i = −dEtot

dxi

= −
∑

j

(
∂EG

∂dj

∂dj
∂xi

+
∂EG

∂njf

∂njf

∂xi
)− ∂EG

∂xi
− ∂Erep

∂xi

= −∂EG

∂xi
− ∂Erep

∂xi
, (36)

since the first two terms in the second line are zero be-
cause of Gutzwiller optimizations with respect to dou-
ble, dj and single, njf occupancies respectively. From
the Hellmann-Feynman theorem, the first term, due to
the hybridization, can be split into elementary contribu-
tions:

∂EG

∂xi
=

∑

j 6=i

∑

αβ

f
(x)
iαjβ , (37)

where the contribution of orbitals α of site i and β of
site j (α or β are either d- or f -orbitals) is related to the
derivative of the hopping integral tiαjβ ,

f
(x)
iα,jβ = −∂tiα,jβ

∂xi
4
√
qi〈c†iασcjβσ〉

√
qj . (38)

For the interacting case (U 6= 0),
√
qi or

√
qj are less

than one for correlated-orbitals but equal to one for non-
correlated-orbitals. For the non-interacting case (U = 0),
the above formula is obtained by setting all q = 1. It
can be shown that forces due to hybridization are always
attractive.
Formula (38) requires knowledge of the mean value of

the hopping operator. If the eigenstates are known, as in
the case of the exact diagonalization, one can exactly cal-
culate this value (see Appendix). If using SMA, it is pos-
sible to calculate an approximate value of this average by

generalizing this approximation to off-diagonal elements
of Green function. However, contrary to the exact di-
agonalization, we cannot apply the Hellmann-Feynman
theorem and the result is a small difference of location
between the energy minimum and the zero of forces. We
overcome this problem by replacing the exact Hamilto-
nian by a Hamiltonian approach based on SMA, in which
the terms of partial local kinetic energies are replaced by
their approximations, eiα = 1

2Wi,αniα(niα − 1) and the
bandwidth of the density of states projected onto the

orbital |iα〉, Wiα =
√

12
∑

jβ t̃
2
iα,jβ . In this approach,

partial occupancies at zero temperature are simply given
by niα = 1

2 +
EF−ǫiα
Wiα

, where EF is the Fermi level of the
system. Here, in the case of correlated systems, the hop-
ping integrals t̃iα,jβ are connected to the real tiα,jβ by
the Gutzwiller renormalization factors

√
qiα,

√
qjβ . By

applying this to the effective Hamiltonian (26) and re-
placing spin index σ by a more general orbital-spin index
α, we can write the approximated SMA Hamiltonian as

HSMA =
∑

j,α

1

2
Wj,αnjα(njα − 1) + ǫjαnjα + C′ . (39)

The advantage of this approach is that, by construction,
the minimum energy location coincides exactly with the
location of zero forces by allowing the application of the
Hellmann-Feynman theorem. Finally, note that this ap-
proach based on an energy expressed in the SMA is simi-
lar to Ackland and Reed.18 With the above formulas one
can establish that the force experienced by the atom i is
expressed as

Fx,i = −
∑

j,α

∂Wj,α

∂xi

1

2
njα(njα − 1)− ∂Erep

∂xi
. (40)

The dependence of Wj,α on hopping integrals tiα,jβ(|ri−
rj |), enables an explicit expression for the force, depend-
ing on the model under consideration as discussed in
next section. The computed forces Eq. (36) for ED or
Eq. (40) for SMA, are then inserted into Newton’s equa-
tion of motion (EOM) for each atom. The positions are
advanced in time by a time step δt by numerically in-
tegrating the EOMs with the Verlet algorithm. The re-
sulting new atomic positions are then taken as input into
Eq. (26), and new atomic forces Eq. (36) or Eq. (40) are
computed. The MD trajectory consists of the string of
many time steps iterating back and forth through this
two-step process.

V. MODEL AND RESULTS

A. Model

To illustrate the method, we consider a minimal two-
orbital model that mimics, e.g., heavy fermions or ac-
tinides systems, with one non-correlated band, called for
convenience “d”, whereas the other, called “f”, possesses
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a strong local Coulomb repulsion U . For simplicity, each
of these two orbitals has a spin- 12 degree of freedom. This
model is described by the following Hamiltonian (close in
spirit to the Anderson lattice model) with the usual no-
tation:

H =
∑

i6=j,σ

[

tid,jdc
†
idσcjdσ + tid,jfc

†
idσcjfσ + tif,jdc

†
ifσcjdσ

]

+
∑

iσ

(ǫ0idσn
d
iσ + ǫ0ifσn

f
iσ) +

∑

i

Unf
i↑n

f
i↓ . (41)

Here the d-orbitals are coupled among themselves and
with f -orbitals, whereas the f -orbitals are only coupled
to their neighboring d-orbitals. The power laws17 in dis-
tance from atom located at position ri to atom at rj
for hopping integrals dd -coupling and df -coupling are re-
spectively:

tid,jd = tdd,0
r50

|ri − rj |5
, (42)

and

tid,jf = tdf,0
r60

|ri − rj |6
, (43)

where tdd,0 and tdf,0 are constants, r0 is a reference unit
of length used in our calculations. After the Gutzwiller
variational treatment of Hamiltonian Eq. (41), we obtain

Heff =
∑

i,j,σ

tid,jdc
†
idσcjdσ +

∑

i,j,σ

[tid,jf
√
qjc

†
idσcjfσ +H.c.]

+
∑

iσ

(ǫidσn
d
iσ + ǫifσn

f
iσ) +

∑

i

Uidi + C′ , (44)

whose parameters are obtained from the minimization
procedure analogous to deriving Eq. (26) from Eq. (25),
for a given set of atomic positions. When the converged
Gutzwiller ground state for the electronic degrees of free-
dom has been obtained, we calculate the forces on each
atom. These attractive forces have a quantum origin,
due to the hybridization through the hopping integrals.
Finally, a phenomenological repulsive potential between
atoms is added:

Erep =
1

2

∑

ij

Λ0r
12
0

|ri − rj |12
, (45)

with Λ0 a constant.

Within this particular model, application of formula
(40) gives the following explicit expression of the x-

component of the force acting on atom i:

Fx,i = 12
∑

j 6=i

{

njd(njd − 1)

Wjd

(5t2jdid + 6qif t
2
jdif )

+
nid(nid − 1)

Wid

(5t2idjd + 6qjf t
2
idjf )

+
njf (njf − 1)

Wjf

(6qjf t
2
jfid)

+
nif (nif − 1)

Wif

(6qif t
2
ifjd)

+
Λ0

|ri − rj |12
}

xi − xj
|ri − rj |2

, (46)

and a similar expression holds for the y-component. Here
the f -orbital bandwidth Wif (or Wjf ) is the bare one
renormalized by Gutzwiller factor, i.e. Wif =W 0

if

√
qif .

As a demonstration, we studied different geometries
and number of atoms both with SMA and ED: dimer,
trimer, and 1600 atoms in two dimension. For the latter
case, we used both open boundary conditions, i.e., a clus-
ter of 1600 atoms isolated in space, and periodic bound-
ary conditions, within the minimum image convention
(MIC)23 to avoid boundary effects. In all calculations,
we take t0dd = −1t, t0df = 0.5t, and Λ0 = 0.4t. Hereafter
all energies are measured in units of t. The bare f level
is chosen to be ǫ0ifσ = −U/2. To illustrate a realistic or-
der of magnitude, we fix t = 0.5 eV and the length unit
r0 = 4 Å.

B. Simple analytical cases: dimer and trimer

The dimer and trimer have simple geometries, where
all calculations, both ED and SMA, can be performed
analytically. This way, we can easily compare both meth-
ods and have an estimate of the systematic error made
with the approximation in the uncorrelated case (U = 0).
Ground state energies and equilibrium distances are sum-
marized in Table I. Kinetic energies are also displayed
for comparaison with values given in Tables II and III.
The case of the dimer is presented here to illustrate

the approach. The exact solution arises from the diag-
onalization of the Hamiltonian matrix for a given spin
polarization







ǫd 0 tdd tdf
0 ǫf tfd 0
tdd tdf ǫd 0
tfd 0 0 ǫf







Then, in an independent electron picture, one fills the
lowest energy states with four electrons for a half-filled
system. The total energy of the system is the sum of
electronic energy and repulsion terms. With the chosen
values of on-site energies and taking into account the spin
degeneracy, one obtains

EED

tot = −2
√

t2dd + 4t2df +
Λ0

r12
. (47)
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FIG. 2. (Color online) Total energy (in eV) versus interatomic
distance (in units of r0) for the dimer calculated with exact
diagonalization (solid line) and with the second moment ap-
proximation (dashed line) in uncorrelated case (U = 0).

Using the hopping integrals given by Eqs. (42) and (43),
one calculates the force experienced by an atom accord-
ing to Eqs. (37) and (38). The equilibrium interatomic
distance is obtained when this force cancels out.

The treatment of the same problem by the SMA
method provides the approximated total energy for the
half-filled case:

ESMA

tot = −
√
3(
√

t2dd + t2df +
√

t2df ) +
Λ0

r12
. (48)

From this expression, the same approach as in the ED
case yields the force experienced by an atom through
Eq. (40), or (46) applied for this diatomic case, and to
obtain the equilibrium interatomic distance. The com-
parison between the ED and SMA total energies as a
function of the interatomic distance is shown in Fig. 2.
It is to be seen the very good agreement between the ex-
act solution and the approximation. We should note that
the good agreement of the ED dimer with its SMA coun-
terpart might be coincidental since replacing the exact
DOS with only 4 delta-functions by a rectangular DOS
is an extreme limit of the approach.

The same analytical approach may still be made in the
case of the trimer, yielding a 6× 6 matrix to diagonalize.
Again we found a very good agreement of results between
the SMA and the ED, as shown in Table I.

Within the Gutzwiller method, we have calculated the
equilibrium distance of the dimer as a function of the
interaction U (Fig. 3) in the SMA. We have also com-
puted, for U = 4t, the total energy as a function of the
interatomic distance (Fig. 4(a) ) and the force as a func-
tion of the interatomic distance too (Fig. 4(b)). Notably,
the distance corresponding to minimum of energy pre-
cisely coincides with that of the zero force. We also used
these analytical calculations to benchmark our codes for
arbitrary number of atoms as explained in the next sub-
section.

ED (eV/at) SMA (eV/at) deviation (%)
Dimer
Eg -1.052 -1.013 3.7
Ekin -1.970 -1.872 5.0
interatomic distance 0.8313 0.8358 0.5
Trimer
Eg -0.987 -1.067 8.1
Ekin -1.838 -1.967 7.0
interatomic distance 0.8863 0.8821 0.4

TABLE I. Comparaison of ground state energy Eg, kinetic
energy Ekin and equilibrium interatomic distance between ex-
act diagonalization (ED) and second moment approximation
(SMA) for dimer and trimer in the uncorrelated case (U = 0).
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FIG. 3. (Color online) Equilibrium interatomic distance ver-
sus U for the dimer calculated with the Gutzwiller method in
the SMA.

C. Cluster of atoms

To benchmark our method and illustrate the efficiency
of the SMA with approximate solution for double occu-
pancy, we also performed the calculation based on exact
diagonalization. Since we are interested in finding only
the equilibrium structure of the system, the velocity on
each atom is set to zero before advancing by ∆t the nu-
merical solution of the EOM. The time step ∆t in our
practical units was set to 10−2 corresponding to a real
time of 8.8 femtosecond with a mass of Pu atom, which
is in the reasonible order of magnitude of usual MD simu-
lation22. The resulting MD “trajectory” eventually finds
a local minimum on the energy landscape as the atomic
positions are converged and the residual forces are driven
to the noise limit.

We started with an initial condition of a regular square
lattice of 40 × 40 atoms in a two dimensional cluster
with open boundary conditions. After 100,000 MD it-
erations, we obtained the two snapshots of atomic posi-
tions as shown in Fig. 5 from the ED and SMA methods,
respectively. An important advantage of the SMA cal-
culation is a calculation two orders of magnitude faster
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FIG. 4. (Color online) Total energy (a) and force (b) ver-
sus interatomic distance for the dimer calculated with the
Gutzwiller method in the SMA for U = 4t.

than ED. These snapshots, even if they are far from be-
ing converged (total energy has not yet reached a con-
stant limit), tend to form a hexagonal local order. More-
over, both patterns also keep the same overall symmetries
of their initial square lattice-like structure with obvious
four mirror-symmetry axes, each of them being shifted
from its two neighboring axes by 45◦. Starting with the
same initially ordered structure, the system is trapped
into metastable states, which have the same symmetries
as the initial one. This artificial effect does not happen
when we performed a true MD calculation, as discussed
later in Section D, where the velocity of atoms adds ran-
domness to smear out the memory of initial conditions.

To avoid edge effects (surface effects in a three-
dimensional case), we considered a periodic replication of
the initial cluster in both ordered and randomized struc-
tures. Starting from these two different initial condi-
tions, we performed MD simulations with the ED and
SMA codes, both using the minimum image conven-
tion (MIC).23 The effect of this approximation will be
discussed later. After MD steps and minimization on
the overall total energy by tuning the size (x and y-
directions) of the periodic box containing the initial clus-
ter, iterations in both ED and SMA approaches con-
verged to a unique hexagonal close-packed structure. The
only difference between ED and SMA is a slightly dif-
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FIG. 5. (Color online) Snapshot of atomic positions obtained
from exact diagonalization (a) and the SMA (b) for a cluster
of 1600 atoms, with open boundary conditions, after 100,000
MD steps from ordered initial conditions (see text).

ferent equilibrium interatomic distance (dED
0 = 0.9852r0

versus dSMA
0 = 0.9605r0).

Now, to evaluate the influence of the different approxi-
mations made above, we studied the SMA results against
the ED ones, both in the MIC and in the conventional
analytical momentum-space solution since the converged
structure is a regular hexagonal lattice. To this aim, we
performed one single iteration in the hexagonal structure
at the interatomic distance that minimizes the SMA to-
tal energy, to compute the kinetic energy with the SMA
and ED within MIC, and ED in the momentum-space.

Exact diagonalization with MIC. In the MIC, elec-
trons on an atom close to the boundary of a supercell are
allowed to interact (via the hopping) with those on the
image atoms belonging to the closest neighboring super-
cell. It essentially establishes the interactions between
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ED SMA Deviation (%)
Numerical (MIC) -1.7984 -2.1419 16.0
Analytical (k-space) -1.8012 -2.1413 15.9
Deviation (%) 0.155 0.028

TABLE II. Comparison of kinetic energy (in units of
eV/atom) between ED within the MIC or within k-space and
SMA for one MD iteration for the uncorrelated case (U = 0).

electrons on the boundary of the original supercell with
those on the opposite sides of the supercell, which are
usually quite far away. The use of MIC is equivalent to
performing Γ-point-only (i.e., k = 0 in the first Brillouin
zone) calculations in the reciprocal space from the Bloch
theorem, for which the Hamiltonian for the supercell is
modified by the phase factor exp(ik ·R) with R the lat-
tice vectors. Naturally, the MIC treatment will be more
suitable for larger systems. Since SMA is based on the
surrounding of an atom, it is much less sensitive to the
system size within MIC.
Exact diagonalization in the reciprocal space of the

minimal unit cell. Since the converged hexagonal struc-
ture has a translational symmetry with a unit cell con-
taining one atom, we can perform an exact diagonaliza-
tion calculation in the reciprocal space of 2 × 2 Hamil-
tonian matrices. In the calculations, we have kept the
hopping integrals up to 3-rd nearest-neighbors. A regu-
lar mesh of k-mesh was generated in the first Brillouin
zone. The eigenvalues are then summed up to the Fermi
level over all k-points for the band-energy. The grid of
the k-mesh is determined with the band-energy varying
no larger than 10−5%.
A summary of the results for 1600 atoms is presented

in Table II. Here only a single iteration was made for the
same structure (hexagonal) with the same interatomic
distance to compare kinetic energy with both methods.
In Table II, we also list the converged results calculated
analytically from the momentum space with the hopping
integrals kept up to 3-rd nearest-neighbors (for both ED
and SMA methods). We note that since the short range
repulsion (i.e., the term in r−12) is exactly the same
(same structure, same distance) for all cases, only kinetic
energies are given in this table. With each approach,
the agreement of results between numerical and analyti-
cal calculations are excellent (deviation 0.155 % for ED
while 0.028 % for SMA). We see that the influence of
MIC in the ED code with respect to exact calculation
(k-space no MIC) is reduced relatively (0.155% relative
deviation) and also we see that the SMA is much less sen-
sitive to MIC (even better agreement between analytical
and numerical results: 0.028%) The difference of the en-
ergy between SMA and ED numerical calculations in real
space is inherent to the SMA approximation itself since
almost the same deviation is also observed in analytical
calculations in momentum space.
Furthermore, our analytical results show that, al-

MIC k-space Deviation (%)
SMA
16 atoms -2.1409 -2.1413 0.017
1600 atoms -2.1419 -2.1413 0.028
ED
16 atoms -1.7207 -1.8012 4.5
1600 atoms -1.7984 -1.8012 0.155

TABLE III. Comparison of energy (in units of eV/atom) for
clusters of 16 and 1600 atoms calculated in the SMA (MIC)
and ED (MIC) methods with that analytically calculated in
the k-space calculation for one single-shot MD iteration in
the uncorrelated case (U = 0).
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FIG. 6. (Color online) Dependence of the interatomic equi-
librium distance on U from the GA-MD simulations with the
SMA on a 40× 40-atom cluster with MIC.

though the kinetic energy obtained from both methods
differs by 16% (see Table II), the equilibrium interatomic
distance deviates only by 2.5 percent. It suggests the
SMA is a reliable method to predict the structure of sys-
tems.

Size effect in the real-space calculations. We have per-
formed calculations on a smaller cluster with 4 × 4=16
atoms from both SMA and ED with MIC periodic bound-
ary conditions, and compare the results with the ana-
lytical solutions of an infinite hexagonal structure. The
kinetic energies are shown in Table III. It is seen that
the deviation in the SMA method even for such a small
system is small and is comparable to that for the system
with 1600 atoms. However, with the ED method, the de-
viation for the 16-atom system is much larger than that
for the 1600-atom one.

Finally, we applied the full Gutzwiller plus MD within
the SMA to the 1600 atoms cluster with MIC for var-
ious values of repulsion U ranging from 0 to 8t. The
U -dependence of the equilibrium interatomic distance
is shown in Fig. 6. As expected and in accordance to
our previous experiences with δ-Pu,5 we see that the
Gutzwiller q-factors have the effect of reducing the hy-
bridization and the resultant attractive forces, which
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leads to a slightly more expanded equilibrium struc-
ture. The same trend was also observed in the results
(not shown here) obtained by exact diagonalization with
U = 0 versus U = 4t, and also for the dimer case pre-
sented above. We note that the structure expansion is
small, around 4% of the interatomic distance for the un-
correlated case. The reason lies in the fact that in the
Anderson-like model, the attractive force arises not only
from the d-f hybridization hopping but also significantly
from the direct d-d hopping. In addition, the efficiency
of the hybridization reduction in the present model is
proportional to

√
qi. It is in contrast to the one-orbital

Hubbard model, where the effective hopping integrals are
proportional to

√
qi
√
q
j
.

D. Temperature effects and MD

We have also relaxed the infinite damping limit for
the velocities we used in preceding sections and perform
true MD simulations. The temperature was fixed with
the gaussian thermostat.23 The simulations were carried
out for 64 atoms in periodic boundary conditions with
a box length equal to the equilibrium value at T = 0
for a given value of U (see Fig. 4). We have studied the
effect of electronic correlation on the radial distribution
function g(r). In the first set of calculations, we fixed the
Coulomb interaction parameter U to 2 eV and considered
the evolution of g(r) as a function of temperature ranging
from 300 K to 6000 K (see Fig. 7). The positions of
the peaks at the lowest temperature are centered at the
positions of the T = 0 ground state structure (not shown
in the figure). We observe two features: the position
of the first peak moves slowly towards smaller distances
while the temperature is increased. At the same time,
the intensity of the peaks decreases and the dips fill in.
Noticeably, at the highest temperatures (3000 K and 6000
K), the dip fills in for g(r) ∼ 0.5; this is suggestive of
the beginning of melt transition, which is in the range
of the melting temperature for all known metals. It can
also be seen that the second and third peak coalesce at
T = 1500 K whereas the same trend occurs for the fourth
and the fifth peak.

In the second set of calculations, we considered the
evolution of g(r) for a given temperature T = 300 K,
versus the Coulomb interaction U ranging from 0 to 4 eV.
Figure 8 showst g(r/r0) for different values of U , where
r0 is the T = 0 equilibrium value for a given value of U .
(Since the curve with U = 3 eV is almost superimposed
on that with U = 4 eV, we do not show it in the figure).
For a given peak, the center of the peak in scaled distance
r/r0, and thus the structure, is the same as a function
of U . The first peak is almost the same height for all
values of U . For the subsequent peaks, each of the peaks
broaden (heights decrease and the dips increase) due to
the increased repulsion as the value of U increases.
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FIG. 7. (Color online) For a given interaction U = 2 eV, ra-
dial pair distribution function g(r) for different temperatures:
T = 300 K (full line), 600 K (thick dashed line), 1500 K (thin
dashed line), 3000 K (dotted line), 6000 K (dotted-dashed
line).
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FIG. 8. (Color online) For a given temperature T = 300 K,
radial pair distribution function g(r/r0) for different Coulomb
interactions: U = 0 (full line), U = 1 eV (thick dashed line),
U = 2 eV (thin dashed line), U = 4 eV (dotted line).

VI. SUMMARY AND CONCLUSION

We have derived for the first time a real-space version
of the Gutzwiller method embedded into the MD sim-
ulations for strongly correlated electron systems. From
a given set of atomic positions, a Hamiltonian can be
constructed in terms of hopping integrals, on-site ener-
gies and Coulomb repulsion terms. It is precisely these
interaction terms that require a treatment beyond mean-
field HF-like theory, but can be described within the
Gutzwiller method. This method is a variational method
in the Rayleigh-Ritz sense, for which one minimizes the
energy of the system via a set of local Gutzwiller vari-
ational parameter dependent on each site, thereby pro-
viding an approximate ground state energy for the sys-
tem. This minimization can be computationally demand-
ing, especially when all the sites are inequivalent. This
has motivated the development of an accurate analytical
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solution for finding the optimized double occupancy on
each site.
MD simulation is a repeated two-step process. First,

employing a Hellmann-Feynman theorem within the
Gutzwiller ground state, we can calculate the quantum
origin of the forces acting on the atoms. This ground
state energy defines an interatomic potential, which ex-
plicitly accounts for correlation effects. Second, the
atomic forces derived from this interatomic potential
are input into the classical equations of motion and the
atomic positions are updated in time for one time step
using a numerical integrator (e.g., the Verlet algorithm).
This process then continues.
A further approximation consists of avoiding exact di-

agonalization of the Hamiltonian from which, in princi-
ple, we can calculate the local DOS to obtain all nec-
essary integrated quantities. Instead, we have proposed
here to use the SMA, in which the true DOS is replaced
by a rectangular constant DOS having the same second
moment. Because the needed quantities to construct the
variational ground state energy are basically integrated
from DOS, they are less sensitive to the detailed struc-
ture of the DOS, thus validating the SMA. The second
moment of the energy is easily computed from a few
Hamiltonian matrix elements, where we can set up the
MD process without invoking exact diagonalization to
solve iteratively the Gutzwiller minimization. Therefore,
a very accurate approximate, but analytical solution, is
available, making this process feasible.
We concluded this first study with an application to

a realistic case to show that this approach is promising.
To our knowledge, this method has never been devel-
oped and will open up new possibilities for simulations
of correlated electron materials with MD. We have ap-
plied the GA-MD method to the real-space lattice An-
derson model. We have demonstrated the effect of tem-
perature and electron correlation on structural properties
simulated for the first time with MD. The generalization
of these ideas to multiple correlated orbitals case is not
made directly because of higher degeneracy. That is, the
number of variational parameters increases as the num-
ber of atomic configurations (namely as 2G, with G the
degeneracy of the level) and therefore the number of lo-
cal equations to be solved increases accordingly. We defer
to future work on how to reduce the cost of calculating
large number of variational parameters, and as in the
single-correlated orbital model studied here, to find an
analytical approach to the problem.
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Appendix: Second moment approximation for bond
quantities

To compute forces from the derivation of Hamiltonian,

one needs average values like 〈c†i cj〉, with i and j being a
short hand for site and spin-orbital states. Within these
notations, and for the purpose of demonstration, we write
the Hamiltonian H in simple tight-binding form:

H =
∑

i6=j

tijc
†
i cj +

∑

i

ǫiniσ , (A.1)

where on-site energies ǫi = 〈i|H |i〉 can be identified as
average value of the Hamiltonian on local state labelled
by i whereas hopping integrals tij = 〈i|H |j〉 couple states
i to j. The bracket is the thermal average obtained for a
general operator O by

〈O〉 = Tr
e−β(H−µN)O

Z
, (A.2)

where H , µ, N and Z are respectively the Hamiltonian,
the chemical potential, the operator number of particles
and the grand partition function. This average reduces to
the ground state mean value at zero temperature. From
exact diagonalization (as we do for the cluster example
developed here), these quantities can easily be calculated
from the weights w(j, n) of state j (and similarly i) on
eigenstate labelled by n and of energy ǫn:

〈c†icj〉 =
∑

n

f(ǫn)w
∗(i, n)w(j, n) , (A.3)

where f(ǫn) is the Fermi distribution, from partial ki-

nentic energy ei =
∑

j tij〈c
†
icj〉 and partial occupancy

ni = 〈c†i ci〉 are obtained. This average reduces to the
ground state mean value at zero temperature.
For large systems, where the speed of calculation is a

limiting factor, it might be desirable however to avoid this
diagonalization, and to find an approximate but cheap
way to get them: that is precisely what the second mo-
ment approximation does.
The second moment approximation is based on the

constraints that all necessary quantities are integrated
quantities. Consequently, they are not sensitive to the
fine details of the DOS, which will be replaced by rect-
angular DOS having the same second moment that the
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true ones. The rectangular i-projected (centered on site
energy εi with width Wi and height 1/Wi) DOS has
its second moment given by: ε2i + W 2

i /12 whereas a
direct path-counting (see Ref. 20) gives ε2i +

∑

j 6=i t
2
ij .

Identification between those two relations fixes uniquely
the bandwidth Wi, from which the approximated i-
projected DOS can be computed. This procedure has

been widely used in semi-empirical molecular dynamics
as in Ref. 18, for approximate local DOS. Within this
approximation, the partial kinetic energy can be written
as: ei =Wini(ni − 1)/2.
All this can be straightforwardly extended to a multi-

band case adding orbital index and spin to labels i and
j. This procedure presents the great advantage of being
very rapid compared to exact diagonalization.
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