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In solid state conductors, linear response to a steady electric field is normally dominated by
Bloch state occupation number changes that are correlated with group velocity and lead to a steady
state current. Recently it has been realized that, for a number of important physical observables,
the most important response even in conductors can be electric-field induced coherence between
Bloch states in different bands, such as that responsible for screening in dielectrics. Examples
include the anomalous and spin-Hall effects, spin torques in magnetic conductors, and the minimum
conductivity and chiral anomaly in Weyl and Dirac semimetals. In this paper we present a general
quantum kinetic theory of linear response to an electric field which can be applied to solids with
arbitrarily complicated band structures and includes the inter-band coherence response and the
Bloch-state repopulation responses on an equal footing. One of the principal aims of our work
is to enable extensive transport theory applications using computational packages constructed in
terms of maximally localized Wannier functions. To this end we provide a complete correspondence
between the Bloch and Wannier formulations of our theory. The formalism is based on density-
matrix equations of motion, on a Born approximation treatment of disorder, and on an expansion in
scattering rate to leading non-trivial order. Our use of a Born approximation omits some physical
effects and represents a compromise between comprehensiveness and practicality. The quasiparticle
bands are treated in a completely general manner that allows for arbitrary forms of the spin-orbit
interaction and for the broken time reversal symmetry of magnetic conductors. We demonstrate
that the inter-band response in conductors consists primarily of two terms: an intrinsic contribution
due to the entire Fermi sea that captures, among other effects, the Berry curvature contribution
to wave-packet dynamics, and an anomalous contribution caused by scattering that is sensitive to
the presence of the Fermi surface. To demonstrate the rich physics captured by our theory, we
explicitly solve for some electric-field response properties of simple model systems that are known
to be dominated by interband coherence contributions. At the same time we discuss an extensive
list of complicated problems that cannot be solved analytically. Our goal is to stimulate progress in

computational transport theory for electrons in crystals.

I. INTRODUCTION

In response to a steady electric field E, weakly disor-
dered Fermi-liquid conductors reach a steady state that
does not break translational symmetry. After disorder
averaging, such a steady state can be completely char-
acterized by a non-equilibrium single-particle density-
matrix, pn/ (k) diagonal in the Bloch state wave-vector
k but not in the equilibrium band index n. In general
all single-particle observables O maintain their crystal
periodicity when they respond to E and therefore have
expectation values of the form

(0)= > (n,KklOn', k) ps (k). (1)

k,n,n’

In metals linear response to a constant, uniform electric
field is normally dominated by the band-diagonal part of
the density matrix, namely n’ = n, which represents a
change in the occupation probability of the Bloch states.
The past two decades have nevertheless provided many
examples of observables in conductors whose linear re-
sponse to a steady electric field is dominated by the inter-
band coherence (n’ # n) response that is normally im-
portant only in dielectrics. Examples of linear response

quantities that are often in this category include, but are
not limited to, the quasiparticle spin-density response
responsible for spin-orbit and spin-transfer torques in
ferromagnets [1-12], the anomalous Hall effect in mag-
netic conductors [13-32], the spin-Hall effect in paramag-
netic semiconductors and metals [33-45], the minimum
conductivity of graphene, graphene multilayers [46-62]
and topological insulator surface states [63-67], the chi-
ral anomalies of Weyl and Dirac semimetals [68-78] and
interaction effects [79, 80] including Coulomb drag, in
particular in chiral materials [81-94]. Related examples
may be found in ultracold atomic gases. In this paper
we refer to band off-diagonal density-matrix response to
a steady electric field generically as anomalous response.

When calculating the linear response of these observ-
ables to an electric field, accounting for the interplay be-
tween diagonal and off-diagonal density matrix response
is vital in order to capture the underlying physics and
determine the correct result. The response properties in
which we are interested typically involve a competition
between intrinsic inter-band coherence effects dependent
only on the band structure of the crystal, and intra-band
response that is limited by scattering by electron-phonon
or electron-magnon interactions or by crystal imperfec-
tions. The interplay has most often been addressed the-



oretically using simplified models with narrow applica-
bility, or by using relaxation time approximations that
typically fail to account accurately for inter-band coher-
ence and complex Fermi surface topologies. Yet many
systems of interest, such as metals and a host of recently
discovered topological materials, have complicated band
structures for which few-band models are simply unavail-
able or unsuitable, and accurate solutions can only be
found only using computational techniques. Frequently
even the Berry curvatures can only be calculated nu-
merically, and incorporating inter-band coherence effects
due to disorder is even more challenging. Direct numeri-
cal implementation of transport calculations is especially
challenging in the DC limit where the frequency charac-
terizing the time-dependence of the external electric field
tends towards zero.

Motivated by these observations, the goal of this pa-
per, which generalizes Refs. 95 and 96, is to devise a gen-
eral transport formalism of broad applicability that ac-
counts for the diagonal and off-diagonal responses, both
intrinsic and extrinsic, on an equal footing. The results
we present are suitable for use in numerical calculations
that allow for general Fermi surface topologies involving
many pockets with irregular shapes. In this way our work
generalizes to the case of anomalous response transport
theories that account for Fermi surface peculiarities, and
for realistic scattering properties on those Fermi surfaces
that are not accurately captured by simplifying relax-
ation time approximations. Because it requires efficient
evaluation of velocity-operator matrix elements in a rep-
resentation of orthonormal Bloch states, our intention is
that applications of our transport formalism take advan-
tage of recent progress in advancing maximally-localised
Wannier orbital tools [97, 98] for constructing accurate
representations of crystal Hamiltonians. To this end we
provide in the present work two distinct but related sets
of expressions: one set is formulated in the crystal mo-
mentum representation, which has been the natural lan-
guage of conventional transport theory, while an equiva-
lent set is expressed in the Wannier representation, which
is the natural language of tight-binding models.

Theories of the transport steady state must account
for whichever Bloch state scattering mechanisms play the
dominant role in limiting the repopulation of states near
the Fermi level. The theory we present treats weak elastic
disorder in the Born approximation and assumes that the
Wannier representation of the crystal’s k- p Hamiltonian
is known. We focus on the off-diagonal response of the
Bloch state density matrix which is normally dropped
in theories of electronic transport in metals. Whereas
our theory is formulated in the spirit of earlier works by
Karplus, Luttinger and Kohn, we make full use of in-
sights acquired in the last four decades, in particular in
the identification of topological terms in linear response
stemming from the Berry curvature of Bloch states. At
the same time our response theory retains, on the same
footing as the Berry-curvature terms, contributions to
leading sub-dominant order in a weak scattering expan-

sion of the density matrix. In this introductory paper we
focus on the case of elastic scattering from crystal imper-
fections which we characterize by the variance of Wannier
representation disorder matrix elements, or equivalently
through an average over impurity configurations. Never-
theless the theory is presented in a form that can straight-
forwardly be extended to account for (i) time-dependent
external fields and disorder potentials (ii) inelastic scat-
tering (iii) more complex scattering mechanisms such as
skew scattering and side jump that require going beyond
the conventional Born approximation and (iv) more com-
plex averages over impurity configurations including e.g.
terms with crossing impurity lines describing interference
between scattering at different sites [99].

The kinetic equations have a complex matrix structure,
in particular those involving the interband part of the
density matrix. The band-diagonal response contains the
usual Fermi-surface response which diverges when disor-
der vanishes. The off-diagonal response is driven by the
intrinsic band structure, which includes Berry curvature
contributions, and also indirectly by a scattering term
involving only quasiparticles at the Fermi surface. These
will be referred to as the off-diagonal driving term and
the anomalous driving term respectively.

We note that the band off-diagonal response studied
in this work represents inter-band coherence in the same
way that off-diagonal terms in the density matrix of a
quantum bit are associated with coherence between the
bit up and down states. Likewise, the understanding of
the dephasing time in quantum computation and solid
state transport is conceptually similar, and in both cases
is related to time-dependent perturbations. Nevertheless,
the bit is invariably a localised system whereas the situ-
ations of interest in this paper concern extended systems
having a Fermi surface, for which the steady state is qual-
itatively different from e.g. transport through a quantum
dot or superconducting island. The notion of a dephasing
time relevant to our work is the same as that encountered
in weak localization. Whereas weak localization is a co-
herence effect induced by impurity scattering, in which
one is interested in coherence between states in the same
band but with different wave vectors, the relevant con-
cept in the present work is coherence between states from
different bands induced by an external electric field.

Our paper is organized as follows. In Section IT we in-
troduce the Hamiltonian and density matrix in the Bloch
and Wannier representations. In Section III we discuss a
variety of related models for disorder in a crystal, which
provide a context for relating disorder scattering matrix
elements to the wave-vector dependence of the orbital
content of Bloch states. In Section IV we use the Born
approximation to derive the form of the collision term in
a general kinetic equation for the full density matrix. Fi-
nally in Section V we present a theory for the response of
the Bloch-state density-matrix of a crystal to a spatially
constant electric field. The results obtained and their im-
plications are discussed in Section VI. In Section VII we
discuss some examples of material/observable combina-



tions for which off-diagonal response is often important.
The paper concludes with a summary of our conclusions
and an outlook for future work.

II. BLOCH AND WANNIER
REPRESENTATIONS

Transport theory is most conveniently formulated in
terms of momentum-space orbitals, whereas disorder po-
tentials are best characterized in terms of their real-space
orbital matrix elements. Partly for this reason, we use
both Bloch and Wannier representations of crystalline
wavefunctions throughout this paper. The two-types of
states are related by

i, k) = Zexpzk L) |i, L),
li, L) = —= ) exp(—ik-L) |i, k).
mg

where 7 is an orbital label, L is a crystal lattice vector, N
is the number of unit cells in the crystal, k is a wave vec-
tor in the crystal Brillouin-zone and i, k) = e~ " |u;)
is a Bloch wave function constructed from orbital ¢, and
li, L) is a Wannier wavefunction. We assume that the
orbital identifications achieve maximally localized Wan-
nier functions [97, 98] that can be physically identified
with atomic orbitals on particular sites within the crys-
tal’s unit cell, or with particular chemical bonds. Note
that the Bloch functions |i, k) are not energy eigenstates.
The construction of-maximally localized Wannier func-
tions provides Hamiltonian representation that in most
crystals is accurate and has a reasonably small matrix
dimension and, importantly for what follows, provides a
representation of the crystal’s k - p Hamiltonian that is
independent of momentum k.

Our transport theory assumes that the Wannier repre-
sentation perfect-crystal Hamiltonian:

= Y Hipli, L)' L] 3)

LL"ii

is known. Translational symmetry guarantees that H}f,L,
depends only on L — L’ for any ¢, i'. The disorder mod-
els we discuss below assume that the real-space Wannier
functions (r|i, L) is localized near lattice site L. Tt follows
from translational symmetry that the band Hamiltonian
is diagonal in crystal momentum:

Hy = Hy' i, k)i’ k|, (4)
ki

where

ZHLO exp(—ik - L). (5)

The band eigenstates €' are the eigenvalues of H, }:/, SO
that

Hy = ZEL” |m, k)(m, k|, (6)

km
where m is a band index,

m, k) = 2™, k) (7)

i

and z( ™) is the m-th eigenvector of Hi". We refer
to the representation provided by the {|m,k)} basis
as the eigenstate representation, and write |m,k) =
e~ * T umk). Our formalism is designed to calculate the
response to a steady electric field of the single-particle
density matrix, which can be expressed in either the
Wannier or the eigenstate representations:

p= 3 oL DYWL= S o Imk)m k|

LL’ii’ kk’mm/’
(8)

These two representations will be used interchangeably
throughout this work.

III. DISORDER MODELS

With the exception of special cases, such as a clean
undoped Dirac cone, response to a steady electric field is
finite only in a disordered crystal. The transport formal-
ism used in this paper is based on a Born approximation
for the disorder potential. We comment below on the
degree to which it can be generalized to stronger poten-
tials by making a t-matrix expansion. As we see below,
disorder then enters through averages of products of two
eigenstate-representation disorder matrix elements of the
following form; (n%, k'|U|nq1, k) (nh, k|U|na, k'). The av-
erage of the disorder potential is incorporated into the
band Hamiltonian so that disorder averages of a single
matrix element, (n’, k’|U|n, k), vanish by definition. We
will discuss two disorder models: a random potential
model and one based on random uncorrelated impurities.

A. Random potential

Using the relationship between Bloch and Wannier ba-
sis functions we consider



<Zl’7 k/|U|'Ll; k> <12’7 k|U|12, k') = m Zexp[zh(Ll —LQ/)] exp[—zk'~(L1/ —LQ)] <21/,L1/|U|Zl, L1> <22/,L2/|U|ZQ, L2>

9)
We assume that the macroscopic response is identical for all disorder potentials, allowing us to disorder average, and
that translational symmetry is recovered after performing this average, implied above by the overline. It follows that

<i1/, L1/|U|i1, L1> <i2/, L2/|U|i2, L2> = <i1/, Ll/ + L|U|21, L1 + L> <i2/, sz + L|U|12, L2 + L> (10)
for any L. In other words we can set one of the four lattice vectors to zero in specifying independent disorder averages.
Interpreting the Wannier-representation matrix elements using a tight-binding model language, matrix elements with
L; # Ly represent disorder in the hopping Hamiltonian while ones with L; = L; represent disorder in the atomic
Hamiltonian on a particular site. The character of the disorder in a particular system is frequently not understood
well enough to prefer one disorder model over another. For the sake of definiteness, we assume atomic disorder, and

therefore set L1, = Ly and Lo = Lo, obtaining

<11/, k/|U|21, k) <12/, k|U|22, k/> = m Z exp[z(k - k/) : (Ll - Lg)]<21/,L1|U|21, L1> <12/, L2|U|22, L2> (11)

L,y,L>

Using translational symmetry this disorder average depends only on Ly — Lo. It follows that

<i1/,kl|U|i1,k> <12/ k|U|22,kl =

This is the most general disorder potential model we will
consider. The model can be simplified by assuming that
there are no spatial correlations in the disorder potential.
In this case the disorder average reads

(i1, K'\Ulir, k) {ior, k|Uliz, k)

1 - : - -
= N <21/,L|U|21,L> <22/,L|U|22,L> (13)
is independent of wavevector. In the simplest model the
disorder fluctuations in the on-site atomic-like Hamilto-
nian are rigid energy shifts, leading in the Wannier rep-
resentation to

. . . . Ug
<Zl’7 k/|U|Zla k> <12’7 k|U|127 k/> = WO 5i1/,i1 61'2/,1'2; (14)
where Uy typically has dimensions of energy x volume.
In the Bloch representation the matrix elements reads

(mar, K'\Uma, k) (mar, k|U|m2, k')

UO Z (m1/ * (ml) Zl(zmz/)*zl(;ng) (15)

i2

The simplified model of Egs. (14) and (15) can account
for stronger atomic disorder potentials simply by view-
ing the disorder potential as a scattering matrix, but does
not account for interference between scattering at differ-
ent impurity sites. If the random potential is viewed
as originating from a collection of impurities, interfer-
ence between scattering processes at different impurity
locations is present in the model provided one goes be-
yond the Born approximation to higher order in the
scattering potential (U* and higher orders). In mod-
els that do not account for arbitrary band structures,

Zexp k—k')- L] (i, LUy, L) (iz/, L

= 0]0]ia, L = 0). (12)

the physics introduced above is often expressed in terms
of a continuous disorder model in real space in which
the expectation values of the various moments of the
potential U are specified as a function of the position
r. In the simplest version of Gaussian white noise, cor-
responding to Eqs. (14) and (15), one typically writes
(U U(r)) = (UE/V)s(r — r'), where V is the vol-
ume. Henceforth we shall use the abbreviated notation
umnm' = (m,k|Um’, k'), for disorder potential matrix
elements in a band eigenstate representation. The trans-
port theory outlined in the following section, accounts for
disorder only in terms of averages of the product of two
disorder matrix elements.

B. Uncorrelated impurities

A related model regards the disorder potential as aris-
ing from a series of randomly distributed impurities:

=> U(r - R), (16)
R

where U represents the potential of a single impurity, and
R labels the impurity locations. In the Bloch represen-
tation we have

Uk:k:’ = kk’ Z e_z (= k' ) R (17)

Since the impurity locations are random the sum van-
ishes.  For the second-order term in the potential
it is straightforward to prove that (Up7 U™ =

i

nUpp" Z/{k/k , where n; represents the impurity den-
sity. These expressions can be converted to the Wannier



representation using the prescription outlined in Sec. II,
Eq. (7).

The expansion in powers of n; can be continued to any
desired order. At order U#, for example, interference be-
tween scattering processes at different impurity locations
R, R’ will appear explicitly.

C. Disorder average

The preceding discussion illustrates the fact that the
expansion of the density matrix in the strength of the
disorder potential can be formulated either in powers of
7 (random potential model) or in powers of the impurity
density n; (uncorrelated impurity model). In the remain-
der of this work we choose the latter for concreteness. In
either case the disorder average can be constructed so
as to capture the physics of the problem under study.
For example, when repeated scatterings off the same im-
purity are known to be important one can replace the
potential U with the ¢-matrix. In this manner highly
complex physics can be accounted for using our formal-
ism, such as the Kondo effect [100].

IV. DENSITY-MATRIX KINETIC EQUATION

The system is described by a single-particle density
matrix p, which obeys the quantum Liouville equation

Ly =0, (18)

where H is the total Hamiltonian of the system. It is con-
venient to decompose the density matrix into two parts:
one part, denoted by (p), is averaged over impurity con-
figurations, while the remainder, which is eventually in-
tegrated over, is denoted by g¢:

p=1(p)+g. (19)

In this section we will use angle brackets for disorder
averages. Note that this definition implies that (g) =
0. The Hamiltonian itself is decomposed into a band
Hamiltonian, a disorder potential, and a perturbation
Hpg due to the electric field, H = Hy+ U + Hg.

A. Scattering term in the Born Approximation

The Born approximation is made to simplify the scat-
tering term, the disorder contribution to the quantum
Liouville equation. We now derive an expression for the
scattering term which is valid in the absence of an ex-
ternal electric field by setting Hg — 0. To this end we
express the the quantum Liouville equation in terms of
coupled equations for (p) and g as follows:

B0 4 L, (o)) + (U, g)y =,
Y 3 Hogl + 7 U] - 1 (U6 = =5 [0, ()

(20)

In the Born approximation we can ignore the last two

terms on the left hand side of the equation for g because

they contribute only beyond leading order in the disorder

potential. What remains is a first-order in time inhomo-

geneous linear differential equation for g which can be
formally integrated yield

) o ; / ; /
90 =-7 / dt' MU, (ot — ) et ! R (21)
0

In the Born approximation we can use the disorder-free
expression for_thq time—evolutiop of the density matrix:
(p(t — 1)) = etHot"/h(p(t))e =o'/ o obtain

o) =5 [ e ) (22)

Note that we will no longer write the time dependence of
(p)(t) explicitly. We obtain the full kinetic equation by
substituting Eq. (22) for ¢ in the first of Egs. (20):

Lo L o o)+ () =0, (29

where the Born approximation scattering term is

T =5 [ @l U ooy

(24)

B. Scattering term in the eigenstate representation

We now take advantage of the translational symmetry
recovered after impurity-averaging by working in momen-
tum space where (p) is diagonal. Because J({p)) is diag-
onal and is the product of three matrices in the single-
particle Hilbert space, one of which ({(p)) is itself diagonal
in momentum, the expression for J({(p)) at momentum k
involves only one free intermediate momentum k’:



(U U™ Yy ™ e (e —ei e/
(25)

1"

1 o0 ’ o1 . m/! m!l N 7
Il = 5 [ SO e
— (U U™ e R I oy (U U™ ) ) e R e,

The final expression is obtained by regularizing the time integral by inserting a e’ convergence factor and using

1 >~ / 7i(57’1,/7s;c"//7in)t//h _ |: 1 :| m m’ m'’

h2/0 dt' e "%k =P e =) + hé(ak/ epr ). (26)
The é-functions enforce energy conservation for real scattering events, while the principal part terms account for
disorder-induced level repulsions. The complete expressions for these two contributions to the scattering term are
listed in the Appendix A.

To solve the kinetic equation, we decompose the disorder-averaged part of the density matrix into two parts,
(p) =n+ S, where n is diagonal in the band index, and S is off-diagonal. Below we use the impurity density n; as a
formal parameter to distinguish effects that arise at different orders in a disorder strength expansion. For the energy
conserving scattering terms acting on the diagonal part of the density matrix we obtain

mm 271'77/1 mm’ m’m mm m’m' m m’
[Ja(n)]e™ = T Z Upye" Uprg™ (g™ —mge ™ )é (e — egr );
2 ez i / vy ro ! ’ 1,1 st " ’ (27)
[oa(m)g"™ = —= DU U (g™ = )R — )+ (T =g )8R — )y

m'k’

where the first equation is simply Fermi’s Golden Rule and in the second equation it is understood that m’ # m. For
the principal part terms

" n ’ ’ " " " ’ ’ 1 ’ ’ 1
3 L e R L s |

K/ k k k!
Note that the diagonal (m = m’) elements of the principal term vanish and that the Born approximation collision
term is linear in (p). We will not consider the principal-value contributions to the collision terms further in this work,
but note however that they can be incorporated into the general solution using the method outlined below for the

elastic scattering terms. Finally, these expressions can be converted to the Wannier representation using Eq. (7).

C. Beyond the Born approximation

The expansion of Egs. (22) and (23) can be continued to higher orders in the impurity potential. The leading-order
contribution beyond the Born approximation the scattering term up to order n; is

1

T ==z [ (U fem o IR i ol 1 ()1, (29)

Such an expansion is necessary when seeking to include for example skew scattering terms due to spin-dependent im-
purity potentials [101]. For the case of side-jump terms the correct answer can be obtained in the Born approximation
provided the electric field term Hpg is included in the time-evolution operator [102]. These specific matters will be
discussed in a future publication.

We do expect that effects not included at the Born approximation level will sometimes be observable. One well
known example is weak localization, which can be identified experimentally by characteristic field and temperature
dependences. Additionally, it has been pointed out recently [99] that interference between scattering processes at
different impurity locations, not included in the Born approximation, can sometimes play an important role in Hall
effects. We judge that the transport theory outlined above makes a good compromise between wide (but not universal)
applicability and practicality for applications with realistic band structures.

V. LINEAR RESPONSE THEORY found by tracing the relevant operators with the den-
sity matrix. In the general case an operator may have
A. Numerical implementation procedure a nonzero expectation value in equilibrium, although for

We are interested in the non-equilibrium expectation
values of quantum mechanical observables, which are



common observables such as the charge current and spin
polarization in paramagnetic systems the equilibrium ex-
pectation value is zero.

The Hamiltonian is assumed given in a representation
of maximally localized Wannier functions as in Eq. (3).
Expectation values may be evaluated either directly in
the Bloch representation or using the Wannier represen-
tation. In the Bloch representation

Te(p0) = > O™ pi™. (30)

k,n,n’

One resorts to Egs. (2) and (7) to transform the matrix
elements of O to the Bloch representation, while the ma-
trix elements of the density matrix are given in Egs. (35),
(42), (49) and (47).

In the Wannier representation

TG0 = Y Ofyeiis. 1)
L.L',i

The matrix elements }le, in the Wannier representation
are assumed known, whereupon one can use Egs. (2) and
(7) to convert the matrix elements given in Egs. (35),
(42), (49) and (47) to the Wannier representation.

We note that Eq. 30 as written applies as long as the
operator O is diagonal in wave vector. If one is seeking
to calculate the charge or spin current expectation values
in systems in which spin-orbit terms in the scattering po-
tential are important (e.g. skew scattering and side-jump
contributions), the current operator in general contains
terms off-diagonal in wave vector. In such cases Eq. 30
must be generalized to include a sum over k-off-diagonal
matrix elements of both O and j.

B. Driving term and kinetic equation

When a constant uniform electric field is applied the
term Hg = eFE - r is added to the Hamiltonian. Below
we assume that because FE is small, » may be replaced
by lattice vector L in the Wannier function Hamiltonian.
The electric field therefore produces only a lattice-site
dependent energy shift. The quantum Liouville equation
takes the form

dp 1 i

o T Ho+Upl=—+
In linear response theory the density matrix is decom-
posed into equilibrium and response components by
definining (p) = (po) + (pE), where (pg) is the correction
to the equilibrium density matrix (pg) to first order in the
electric field. We shall use this notation (subscript 0 for
equilibrium, subscript E for the electric-field correction,
no subscript for the sum of the two) for all components
of the density matrix, thus ng = nox + ngg and so forth.
By linearizing the kinetic equation with respect to £ and
noting that J(pg) = 0, we find that

d(pE)
dt

[HE, pl- (32)

1

h

+ 7 [Ho, (pe)] + T({pr)) =~ [H, {po)]. (33)

Because all three terms are on the left had side are linear
in pg, the linear response can be evaluated by performing
a formal matrix inversion.

We now discuss the form of the driving term on the
right hand side of Eq. (33) using the Wannier and Bloch
eigenstate representations. In the Wannier representa-
tion the driving term takes the form

1

h

el - (L — L/) i’
ST ol
(34)
In the Bloch representation the equilibrium density ma-
trix is given by

(i L| [HEu <P0>] |i/7 Ll> =

(m, kl{po)|m/ k) = fo(el)s™™ =ng",  (35)

where fo(e})') is the Fermi-Dirac distribution function
evaluated at energy €)'. To obtain the driving term we
substitute Hg = eE - 7 into the commutator [Hg, (po)],
and use the fact that |m, k) = e"*"|u) to re-express
terms of the form

#|m, k) = {z % e“““} [Ue)- (36)

With this substitution the driving term can immediately
be written in the form [103]

_ % (m, |[Hpg, (po)]|m’, k) =
228 {5mm/% IR [fole) — h(s?')]},
(37)
where
, our’
RE™ = (uflli— ) (38)

is a momentum space Berry (gauge) connection. This
is the part of the driving term that gives rise to the
momentum-space Berry curvature intrinsic contribution
to the Hall conductivity of systems with broken time re-
versal symmetry, and also to other response properties in
other systems. The Fermi occupation number difference
factor fo(e}") — fo(ep) makes it evident that the term
in square brackets drives off-diagonal response, m # m/’,
and therefore inter-band coherence contributions to the
electrical response of the solid. Equation (37) specifies
the full intrinsic driving term, which is determined only
by the system’s electronic structure.

C. Diagonal part of the density matrix to leading
order in the impurity density

Using Eq. (37) and the Born approximation for the col-
lision term, the density matrix response can be organized
as in an expansion in powers of n;. Because [Hy, (pg)] is



purely off-diagonal in the band index, the leading steady-
state (time—independent) response is purely diagonal and

, hence it is denoted by n% b,

- eE  Ofo(e)
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The collision contribution to the kinetic equation can be
viewed as a matrix operator acting on the density matrix.

Considering for the moment only the diagonal response

we define the collision matrix K by

Jd(nE)Zlm =N, Z Kmk,m’k’ ng,}”/ (40)
m'k’

proportional to n;”

K@ acts on the density-matrix considered as a vector with
components labelled by band and wavevector. Compar-
ing with Eq. (27) we have that

2mn; " "
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m m
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Solving for ngg to leading order in n; we find that [104]

WG =0 B Y K e ol PR ()
m/k/ Ek/
where we have used vy’ = (1/h) (0} /0k). Note that

the total density response summed over all bands and
wavevectors is a zero eigenvalue of K,k /e so that
K;l,l“m,k, is strictly speaking undefined. However, the
driving term does not act on this eigenvector. We im-
plicitly assume above that the matrices K and K ~! have
been decomposed to remove the total density from the
vector space. In the simplest case, that of a metal, one

may replace

dfo(ey)

D =—0(ep —er). (43)

D. Off-diagonal part of the density matrix and
anomalous driving term

Because [Hy, (pg)] is non-zero off the diagonal, the lin-
ear response of off-diagonal density- matrix components
to a steady electric field, Sg, does not diverge in the
absence of disorder. The leading response is therefore
independent of disorder strength and starts at the next-

to-leading order in n;, which we can explicitly label by
(0).

dsﬁ’mm ' (0)1m
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The right hand side in Eq. (44) has two contributions.
The first is the intrinsic off-diagonal driving term,

o Dl (44)

!
m
eE . Oup

B = = o o(el) — folel ), (45)

which represents the Fermi sea response and contains all
the Berry phase like contributions. The second depends
on disorder and we refer to it below as the anomalous
driving term D™ = —J,qlni, 1)]’”7” which is due to
scattering and is non-zero only on the Fermi surface. This
extrinsic term will be written in a more explicit form in
Eq. (48). The solution to Eq. (44) is straightforwardly
found

%%ZL(”K“W”wm+DﬁW%WW (46)

It is regularized by inserting an infinitesimal e " and
taking the limit n — 0 after integrating over time

mm I'mm
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— Ui u}?km}n Eq. (47) we have separated the principal part and the

o-function terms in the time integral. The J-function
terms are important near points in momentum space
where different bands touch , as discussed below. The

matrix-elements of Jod[ngkl)]mm/ can be identified from
Eq. (27). Using Eq. (27), We express explicitly the
anomalous driving term D’mm =
i _ ™
D] Z Ui U™
/k/
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(48)

Using Eqs. (45), (47) and (48) the full off-diagonal re-
sponse of the crystal can be determined to leading order
in the disorder potential.

E. Diagonal part of the density matrix to
next-to-leading order in the impurity density

The sub-leading order contribution to the diagonal
density matrix, distinguished by the superscript () sat-
isfies the equation

Jalng 8™ = —Jal S5 T (49)
Where Sk 0 = =55 0) is found using Eq. (47). The RHS of

(49) plays the role of a supplementary effective di-
agonal driving term that arises from the collision kernel
acting on the off-diagonal response. The RHS plays the
role of a driving term and the LHS needs to be solved.
This equation can be solved for n(b?,)c using the method
explained above, i.e., by letting K~ act on the effective
driving term, as inf Ref. 104. The expansion now con-
tains all terms in the density matrix up to order zero in
the impurity density (disorder strength), since the next
iteration of Sgg will be order (M) i.e. x n;.



VI. DISCUSSION

Our transport theory addresses the influence of a con-
stant electric field on the density-matrix of independent
electrons in a weakly disordered crystal. In real crys-
tals, electron-electron interactions always play an essen-
tial role, even when electrons form a Fermi liquid state.
In practice we imagine the independent fermions that ap-
pear in our theory as the quasiparticles of a mean-field-
like description of a particular crystal of interest. The
Kohn-Sham quasiparticles of density-functional-theory
(DFT) are of particular interest because DFT combined
with an appropriate exchange-correlation energy func-
tional provides a good enough description of many im-
portant solid state systems. Because the Kohn-Sham
quasiparticles are defined by an effective Hamiltonian
that depends on electron charge and spin- or current-
density functions, which can themselves be altered in an
important way by an applied electric field, applications
of the transport theory might in many instances require
that the response be self-consistently incorporated in the
Kohn Sham Hamiltonian. This is particularly true in the
case of solid state systems with order that can be manip-
ulated magnetically, for example the many interesting
effects that are important in spintronics.

A. Band-diagonal and off-diagonal contributions

The formulation of transport theory summarized above
demonstrates that, to sub-leading order in disorder
strength, the linear response of observables to a steady
electric field depends in general on the interplay between
three contributions distinguished by the way in which
they contribute to the single-particle density matrix in
the band-eigenstate representation: (i) a contribution to
the band-diagonal part of the density matrix which bal-
ances the intra-band driving term and scattering on the
Fermi surface, and diverges in the limit of very weak
disorder scattering; (ii) a contribution to the band off-
diagonal part of the density matrix that is independent of
disorder character and hence an intrinsic band-structure
property involving the entire Fermi sea and (iii) an ex-
trinsic contribution to both the band off-diagonal and the
band-diagonal parts of the density matrix that is finite in
the weak disorder limit and originates from the collision
kernel acting on the leading Fermi surface response (i).
Given a Wannier interpolation of a crystal Hamiltonian
it is practical to fully and accurately solve the transport
equations we have derived using modern computational
resources.

The leading band-diagonal response [(i) above] of elec-
trons close to the Fermi surface is the subject of most
transport theories in metals [104] and, indeed, it nor-
mally dominates the response of most observables, longi-
tudinal current in particular, in reasonably good metals.
It has been studied extensively in the past and is well
understood [104].

B. Contributions to inter-band coherence

The importance for some observables of the intrinsic
off-diagonal driving term D gy in practical solid state ma-
terials under typical experimental conditions first came
to light in recent theoretical efforts to achieve a quan-
titative understanding of the anomalous Hall effect, the
Hall effect in the absence of a magnetic field, which is
non-zero in ferromagnetic and some non-collinear anti-
ferromagnetic systems [18-26, 29-32]. The intrinsic Hall
current response is expressed exactly in terms of the
momentum-space Berry curvature of the crystal bands,
and can be non-zero even in insulators [19, 20, 24, 26].
In two-dimensional insulators, the Hall conductivity is
proportional to the integral of the Berry curvature over
the two-dimensional Brillouin-zone, which is a quantized
topological index of the band structure, the first theoret-
ically understood classification of crystal band structures
[105]. The quantum Hall effect of two-dimensional insula-
tors is an example of an important electric field response
of an insulator, which must originate entirely from the
off-diagonal terms because of the absence of a Fermi sur-
face. Insulator response to an electric field is also impor-
tant in spintronics, which has witnessed an increasingly
active role for magnetic insulators. In metals, the intrin-
sic response (i) and the much more complex extrinsic
sub-leading response (iii) must be treated on an equal
footing in order to achieve reliable theoretical results.
Our transport formalism is motivated by the desirability
of meeting this need, not only in toy model systems, but
also in crystals with complex electronic structure. The
anomalous driving term D7, (iii) leads to a scattering
correction to the intrinsic response. It arises from a pro-
jection of the collision kernel acting on the diagonal part
of the density matrix ngg, which contains a d-function
at the Fermi energy. Hence this contribution involves
the carriers on the Fermi surface. This correction can be
sizable in magnitude and in many cases cancels out the
total response of observables of interest [37, 43, 44, 106].

The expansion in disorder strength of the off-diagonal

part of the density matrix starts at order nz(-o). To see
this, note firstly that the intrinsic off-diagonal driving
term Dgg has no dependence on disorder. Secondly, re-
ferring to Eq. (48), in the anomalous driving term D',
the factor of n; cancels the factor of 1/n; contained in the
scattering time 7,,,, making this term apparently indepen-
dent of the impurity density. This is simply a reflection
of the fact that (i) the non-equilibrium correction to the
density matrix is an expansion in powers of n; and (ii)
the leading term in the expansion is o< n; L since it is
linear in the transport scattering time that is needed to
keep the Fermi surface near equilibrium. The next-to-
leading term is thus of order nl(-o). (Alternatively, if one
uses U? instead of n; to characterise the strength of the
disorder potential, then this contribution to the density
matrix appears to be independent of the magnitude of
the disorder potential.)



It is interesting to consider briefly the limiting case in
which inter-band disorder matrix elements happen to be
much smaller than intra-band ones. In this case the inter-
band coherence contribution is dominated by the intrin-
sic off-diagonal driving term, and the anomalous driving
term is negligible. If, in addition, the diagonal disorder
matrix elements happen to differ strongly between two
bands then effectively the dynamics is dominated by one
band. However, realistic disorder potentials, such as bare
and screened Coulomb potentials and short-range disor-
der, as well as spin-dependent potentials leading to spin
flip and skew scattering, always have off-diagonal matrix
elements that are comparable in magnitude to the diag-
onal ones.

C. Inter-band coherence effects in conductors and
insulators

In most conducting crystals whether metals, semicon-
ductors or semimetals all three terms (i)-(iii) are present
in the linear response to an electric field. In non-magnetic
conductors with strong spin-orbit interactions the band-
diagonal part of the density matrix is responsible for
the steady-state spin density (alternatively the current-
induced spin polarization) [37, 43, 44, 63, 107, 108]. The
band off-diagonal part is responsible for the spin-Hall ef-
fect, which typically has sizable contributions from both
the intrinsic driving term (ii) and the anomalous driv-
ing term (iii) [43, 44, 106]. In massless Dirac fermion
systems such as graphene and topological insulators the
inter-band coherence terms (ii) and (iii) give rise to the
well-known Zitterbewegung contribution to the minimum
conductivity [49, 50, 54, 58-62]. This contribution is
traced to the d-function terms in Eq. (47), which are im-
portant at the Dirac point, when the bands touch. Hence
the off-diagonal part of the density matrix contains a re-
active response to electric fields and is associated with
non-adiabatic corrections to the carrier motion.

In magnetically-doped conductors the band off-
diagonal part of the density matrix is responsible for the
anomalous Hall effect, which in turn has strong contri-
butions from both the intrinsic and anomalous driving
terms [21-26]. The extreme case of this is the quantum
anomalous Hall effect occurring in topological insulators
in which the chemical potential lies in the surface en-
ergy gap opened by the magnetization [32]. In that case
the surface valence band is full while the surface conduc-
tion band is empty, hence the band-diagonal part of the
density matrix is zero and the anomalous driving term
likewise vanishes [31]. The quantized anomalous Hall re-
sponse results from the intrinsic off-diagonal driving term
Dpgy. A similarly complex interplay between the diagonal
and off-diagonal response enters the calculation of spin-
orbit torques in ferromagnetic structures (see below).

Finally, in insulators the diagonal driving term van-
ishes identically and consequently the anomalous off-
diagonal driving term is also zero. The only possible
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response is due to the intrinsic off-diagonal driving term,
which leads to e.g. the inter-band polarization.

D. Computational applications

The aim of this work is to provide a general quantum
kinetic equation that can be easily adapted to compu-
tational strategies to study inter-band coherence effects
in systems with complex band structures that cannot be
described by simple analytical models. In this subsection
we discuss briefly a series of problems that are amenable
to a treatment based on the quantum kinetic equation as
presented above.

A considerable amount of research has focused on the
possibility of switching the magnetization of a ferromag-
net by passing an electrical current through it. Initial
studies focussed on spin-transfer torques, which exploited
the inhomogeneity in the magnetization in the vicinity of
an interface. Recent research has highlighted the role of
spin-orbit torques in materials with strong spin-orbit in-
teractions. The calculation of the spin-orbit torque is
equivalent to finding the steady-state spin density in-
duced by an external electric field, which lends itself to
the treatment introduced in this work. Computational
methods in this case are indispensable since the materials
under study are typically metals with complicated band
structures involving several bands with complex topolo-
gies intersecting the Fermi surface.

An interesting recent development in this direction
concerns interfacing ferromagnets with topological mate-
rials with strong spin-orbit coupling. Experimental work
has shown that the steady-state spin density in a topo-
logical insulator gives rise to a sizable spin-orbit torque in
an adjacent ferromagnet [109]. In principle, for a topo-
logical insulator one can use a simple two-band Dirac
model to determine the spin density given a certain dis-
order realization. Yet one recognized limitation of using
topological insulators is that the spin density lies only in
the plane containing the interface. This has led to the
exploration of novel topological materials such as tran-
sition metal dichalcogenides. Among these the type-II
Weyl semimetal WTey has been shown to give rise to a
strong out-of-plane spin-orbit torque due to the absence
of mirror symmetry [110-113]. An accurate calculation
of this torque can only be done numerically due to the
complexities of the band structure of WTes. A simple
analytical model of WTes consists of a tilted Dirac cone
such that one band becomes effectively flat and the Fermi
surface appears to be open. This unphysical feature is not
present in the numerically calculated band structure, yet
no accurate analytical model currently exists. In addi-
tion, the Fermi surface has been shown to be complex,
with electron and hole pockets concomitantly present.

Likewise the spin-Hall and inverse spin-Hall effect in
metals continue to be the subject of a significant amount
of work and controversy [45]. The kinetic equation has
been shown to capture this effect accurately. Moreover, a



numerical formulation can accommodate different bound-
ary conditions with relative ease, a fact that is of the
utmost importance in this problem, since the effect of
the spin-Hall current can only be detected through the
spin accumulation it generates at the boundary of the
sample. The theoretical framework can be extended to
cover spin-dependent scattering mechanisms leading to
skew scattering and side jump, as well as to the correct
definition of the conserved spin current [114], which is
cumbersome to deal with analytically.

As a final example, we note that the kinetic equation
can be straightforwardly extended to describe magneto-
transport in materials with arbitrary band structures,
revealing the physical origin of complex phenomena in-
volving both Berry phase and scattering effects, such as
the chiral anomaly of Weyl semimetals. This will be done
in a forthcoming publication [115].

E. Comparison with equivalent formulations of
linear response theory

The formulation of linear response theory that we
present converts the quantum Liouville equation into an
effective semiclassical kinetic equation that is exactly
equivalent to the quantum Boltzmann equation. It is
very similar in spirit to the Keldysh method [116]. In
the same way as the quantum Boltzmann equation our
approach can be generalised to inhomogeneous systems
by taking the Wigner transform of the density matrix
and making a gradient expansion in the spatial variable.
However, the approach presented in this work is consid-
erably more intuitive and transparent than the Keldysh
method since the kinetic equation is formulated in terms
of the density matrix, which can be directly associated
with quantum mechanical expectation values. It avoids
the cumbersome steps needed to convert the Keldysh
Green’s function into an effective distribution function,
such as the necessity of an Ansatz for the Keldysh compo-
nent and integration over an additional energy variable,
which become increasingly opaque in complex, multiband
systems.

The method we propose has a strong parallel with the
Kubo approach based on the fluctuation-dissipation the-
orem. Whereas the starting point of both approaches is
the quantum Liouville equation, the Kubo approach fo-
cuses on solving the quantum Liouville equation immedi-
ately in integral form and then expanding this solution in
the strength of the disorder potential. The Kubo method
may thus be termed the integral approach to the kinetic
equation, while the method we discuss could be viewed
as the differential approach. The propagators appearing
as part of the Kubo method are equivalent to the time-
evolution operators in our density-matrix language. The
main methodological difference is in the way the disorder
is treated: the Kubo approach essentially incorporates
the disorder potential U directly into the time-evolution
operator, and then expands this in the strength of the
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disorder potential. The density-matrix approach builds
up the disorder expansion order by order before solving
for the density matrix using the time evolution opera-
tor for the clean system. The vertex correction due to
the disorder ladder diagrams, which in the Kubo formal-
ism leads to the correct expression for the momentum
relaxation time, is equivalent to the scattering-in term
in the kinetic equation, and is much easier to obtain in
the language discussed in this work. It does not require
summation over an infinite series of terms, which would
be rather inconvenient for numerical implementations.

All the results we have obtained using the density-
matrix approach to date have matched those obtained
using the Kubo formalism. This includes the steady-
state spin density and spin current [43, 44, 117], as
shown below, the skew scattering and side-jump con-
tributions to the spin-Hall effect both in the presence
and in the absence of band structure spin-orbit cou-
pling [101, 102, 118, 119], the anomalous Hall effect [31],
the longitudinal conductivity of graphene and the min-
imum conductivities of intrinsic monolayer and bilayer
graphene [59, 60].

Aside from its intuitive transparency and straight-
forward physical interpretation, the advantage of the
density-matrix method is that one can immediately sep-
arate intrinsic effects, extrinsic effects, and effects that
combine interband coherence and disorder. For example,
in the density-matrix language it is immediately obvious
that the well-known vertex correction to the spin-Hall
current represents the presence of a steady-state spin
density [43, 44]. Building on this insight, the vanish-
ing of this vertex correction to the spin-Hall effect in
models such as the cubic Dresselhaus and spherical Lut-
tinger models becomes self-explanatory, since a steady-
state spin density in these non-gyrotropic systems is for-
bidden by symmetry.

We stress that the choice of disorder model is inde-
pendent of the approach used. The models we discussed
above for the case of the quantum Liouville equation - a
random disorder potential and uncorrelated impurities -
are frequently used in conjunction with the Kubo formula
and the Keldysh formulation.

VII. APPLICATIONS OF THE THEORY

In this section we discuss the application of the general
theory developed above to a few specific simple model ex-
amples, fully recovering results derived previously using
a variety of different techniques. Our intention in this
section is to establish using a few specific examples, that
our Born approximation theory contains all recognized
physical effects. It is however formulated in this paper in
a way which is appropriate for arbitrarily complex band
structures.

For the sake of simplicity the focus of this section will
be on spin-dependent effects in spin-orbit coupled semi-
conductors described by the Rashba model, including



the electric-field induced spin polarization, the spin-Hall
effect and the anomalous Hall effect. We stress that,
very generally, whenever intrinsic inter-band coherence
effects are strong, extrinsic effects are also expected to
be important. This fact emerges explicitly in the ex-
amples given below. A related example, not studied in
detail here but considered in a recent publication [31], is
that of the anomalous Hall effect in topological insulators
doped with magnetic impurities. In this case, as shown
in Ref. 31, the intrinsic contributions due to the conduc-
tion and valence bands cancel each other out, leaving the
extrinsic contribution due to the anomalous driving term
as the only sizable contribution to the anomalous Hall ef-
fect. This highlights the importance of studying intrinsic
and extrinsic terms on the same footing.

A. Linear Rashba model for a non-magnetic
semiconductor

The Hamiltonian for an inversion asymmetric two-
dimensional electron gas is

—i6

O 3
(50)

where m* is the electron effective mass, a the spin-orbit

constant, o; are the Pauli matrices, and 6 the polar angle
of the wave vector. The eigenvectors are

h%k?
H()k = %‘FO&(Uzky—Uykx)
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and the energies are af = h?k?/2m* £ ak. The two band
indices here are n = +. We assume impurities to be
short-ranged so that there is only one relaxation time for
each band (Bloch lifetime = momentum relaxation time)
which we call 7.

1. Diagonal part of the density matriz and spin density

The diagonal part of the density matrix at 7' = 0 is

2
h—*k + a) 5(eif —er), (52)

(%

where k = (ky/k, ky/k) is a unit vector along the k direc-
tion. We consider a short-range (on-site) disorder of the
form U(r) = Uy >, d(r —r;), and assume that the cor-
relation function satisfies (U(r)U(r")) = n;UZ 8(r — r')
with n; the impurity density. The relaxation times 74

(=1),++ _eE . I%Ti
Ek - h

1 niUg + nim*Ug 1

= ) =

133
(53)

for short-range impurities are found through
h? (1 +

/1.0 +
~0) /dk K o(ef,

)
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We can write the relaxation times as a single matriz in
the 2D manifold

I m*a m*«a
Ti:inim*UOQ (1$ﬂ) — T =19 (H_WUZ)7
(54)
where 79 = h3/(n;m*UZ). We keep only terms up to

first order in « and we define €, = h?k?/2m*. The non-
equilibrium spin polarisation stems from

_ eam*E - kT 1 0
ol ~ TO o, {Ea(k — kr) = 5ro(k - kF)} .
(55)
Here kr = (27n)'/? with n the electron number den-
sity. Without loss of generality consider E || &. In

the eigenstate basis, the spin-y operator is given by
sy = —h/2(cosfo,+sinbo,). Then the expectation value
of the y-component of the spin is obtained as

(sy)
as expected [37, 120].

eam® FE,Ty
27h?
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2. Anomalous driving term and vanishing spin-Hall
conductivity

We compute the spin-Hall conductivity of the system.
The spin-Hall conductivity comes from the off-diagonal
part of the density matrix. First we calculate the con-
tributions from the Berry connection Rg. According to
Eq. (51), we obtain

R 1+o0,), (57)

where = (—sin6, cosf) is the polar unit vector in re-
ciprocal space. Then intrinsic off-diagonal driving term
becomes

eE -0 _
ST [fo(eh) — fo(ex )] oy
from which the intrinsic off-diagonal density matrix is
obtained as

Dgp =

(58)

in ek - é —
Se = o [foleh) = foler)] o

Next we calculate the Fermi surface contribution, i.e., the

contribution from the anomalous driving term D, =
(—1)]

(59)

— Od[nEk The matrix elements of the scattering
potential are given by Ul tUd, = (iUZ/2)siny and

Ut Upw = —(iUZ/2)siny.
v =46 —80. For n(Efl) we use Eq. (52), yielding the off-
diagonal scattering terms from Eq. (27) (see Appendix B
for details)

Here, we have defined

(1) ieF,am™*sinf

Joalngy 117 = =y Sk —kp),
_ ieE,am™* sin 6
Joaln G P = _Tzi(k — kp). (60)



Here, we have expanded the delta functions in Joq(npgk)
and retained the terms up to linear order in o as §(g{ —
e) 2 O(e) — %) +alk+K)05(e), —€Y,) /0. Then we
obtain the the intrinsic off-diagonal density matrix as

eE,m*sin 6
2h2k?

The spin current operator (in the y direction) is given

by jZ = 4(s.vy + vys.) = (h?k,/m)s.. In the eigenstate

basis, we have s, = (h/2)o,. With the use of the ex-

pression for the off-diagonal part of the density matrix

g0ert _ 5(k — kp) . (61)

(47), the spin-Hall current is given by jZ = Tr[jng),i],

where ng = Sg),zmt + ngem. We find that the spin-
Hall current contributions from the intrinsic driving term
Dk [j;(Dek) = eE,/(87)] and the extrinsic (anoma-
lous) driving term D', [j#(Dgy,) = —eE./(87)] cancel
out, yielding a zero total spin-Hall current

je =0, (62)

as expected [37].

B. Anomalous Hall effect in paramagnetic
semiconductors with linear Rashba spin-orbit
coupling

We now consider the case in which a magnetization
M exists in the system, pointing along the z-axis. The
Hamiltonian of the system reads

Hop, = b2k /2m* + ook, — o k) + Mo,.  (63)

The energies are af = RhZk?/2m* £ N\ with N\ =
Va?k? + M2, where M for simplicity has units of energy.
We define the two Fermi wave vectors kry by setting
52,: =e¢ep. As M — 0 they both tend to a common value
referred to as kr. Below we will assume akp, M < e,
but no assumptions are made about the relative size of

akp and M. The eigenvectors are

ak —1i6
ujt) = 1 {\W—M e ] ,
V2N =iV — M (64)
ak —i6
= e | P |-
V2 VA +M
The Berry connection is
6 M ak
Re=—|14+—0,+—0: . 65
k 2k(+)\k0+)\ko> (65)
The intrinsic off-diagonal driving term becomes
cE -0 ak _
Dk T [folex) = foler)] oy, (66)

from which the intrinsic off-diagonal density matrix is
obtained as

eE - 0a
4)%

St = [foleid) = folex)] 0w (67)
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Without loss of generality consider E || &. Then the in-
trinsic anomalous Hall conductivity from the Berry phase
term is calculated to be

a0, = Tr[(—e)v, Son™/ B,

B _62M ( 1 B 1 )
Y I VY (S MV
(68)
In the regime M < akp, we get
0 _ e?M 2a*m* (69)

Tev T o WA,

where A\, = M\i(k = kp), vy, = OHo/0k, is the veloc-
ity operator in the eigenstate basis, and kpy — kp— =~
2am* /h?.

Next we compute the contribution to the anoma-
lous Hall conductivity from the anomalous driving term
Dy = —Jod[ngkl)]. We consider a short-range (on-site)
disorder of the form U(r) = U >, (r — r;), and assume
that the correlation function satisfies (U(r)U(r')) =
n;U3 6(r—r') with n; the impurity density. The diagonal
part of the density matrix takes the form

(=1),nn _ eFE - I;tTn 682 5

n
(€k —€F)-
Once more we write the relaxation times as a matrix

* 2
T =10 <H—Laz), (71)
h2V/a2k? + M?

where 79 = h%/(n;m*UZ). This tends to the result for
the non-magnetic case when M = 0, and to the correct,
M-independent result when o = 0. Intuitively, for a =0
and M # 0 the eigenstates are pure spin up and down,
and the scalar potential cannot give interband scatter-
ing, which would be equivalent to spin-flip. In that limit
U** tends to a constant and U*T = 0. The anomalous
driving term can be evaluated in the same way as Eq.
(60) by expanding the delta functions and retaining the
terms up to linear order in \;. The final form reads

ieE,am* sin 0

kh3

_ eE,aMm* cost
Jod[n(Ekl)]Jr - ( A kh3

(72)
from which the extrinsic off-diagonal density matrix is
obtained as

0)ext eF,am™M cosf eE,am™*sinf
Sia "' = ~0(k—kr) { YT R YWY
(73)

This extrinsic off-diagonal density matrix contributes to
the anomalous Hall conductivity as

e 202m* M

_ (Oeaty ) _
O'/ = Tr[(—e)vySEk ]/Ez = —%W

(74)

S(k—kr),

.l



In the regime M < akp, we have vanishing total anoma-
lous Hall conductivity due to the cancellation of the in-
trinsic and extrinsic contributions

0 _
Opy + O’;y =0, (75)

as expected [21, 121].

VIII. CONCLUSIONS

We have described a general way of evaluating the lin-
ear response of a crystal to an electric field, accounting
for both the intra-band and inter-band response. The
intra-band response is captured by the band-diagonal
part of the density matrix, in the Born approximation
is inversely proportional to the strength of the disorder
potential to leading order, and is responsible for prop-
erties such as the longitudinal conductivity and current-
induced spin polarizations in spin-orbit coupled systems.
Inter-band coherence makes a sizable contribution to the
linear response of crystals. It is captured by the band
off-diagonal part of the density matrix, it has strong in-
trinsic as well as extrinsic contributions, and its leading
contribution is of zeroth order in the disorder potential.
It is responsible for properties such as the spin-Hall ef-
fect, the anomalous Hall effect, the minimum conductiv-
ity of massless Dirac fermions. In particular, our theory
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can capture correctly chiral-anomaly-induced transport
phenomena such as the negative magnetoresistance of
Weyl semimetals [115]. The interplay of the diagonal
and off-diagonal parts of the density matrix is impor-
tant in determining the linear response of ferromagnets
to an electric field, including contributions such as spin-
orbit torques. The method described in this work can
be generalized to include extrinsic spin-dependent scat-
tering effects [102, 118] and these will be the topic of a
future publication.
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Appendix A: Complete expressions for the scattering term

Here we give the complete expressions for the scattering term Ji({p)) [Eq. (25)]. The complete expression for the

energy-conserving d-function scattering terms is

mm'" T mm’ rrm/m”’ mm!
Js((P))ke ) Z {<Ukk’ Uge™ )Pk
m'm!' k'’

/

(U UB oy ™ S(epy — e

s

’ "

— )+ Um U Y e S (e —e)

where we have used Js = Jy + Joq, as in Eq. (27). The principal part terms take the form

nr 1 ’ ’ " "
Il = 5P S {ww v e
m/m//k/
’ 17 "t ’ 1" 1
_<UIZIT U™ ><P>$m W
k’ k

(A1)
) — (U U ) oy ™ 8 e — e}
1 m'm! 5 rm! m! mm’ 1
T (Uee™ U™ Mol T
kT Ek k ~Ck (A2)

!’ 1" 11 !’ 1" 1
— (Ugr" Ughe™ Y oder ™ U}
kl

€k

To get the corresponding expressions for the band off-diagonal part of the density matrix, S}c”m/, one simply replaces

(p) — Sk in the above.

Appendix B: Detailed derivation of the anomalous driving term in the Rashba model

Here we show a detailed derivation of Eq. (60), the anomalous driving term D%, = —Jod[n(Ef)] in the Rashba
model. The spin-Hall conductivity comes from the off-diagonal part of the density matrix. The anomalous driving
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term arises from the following scattering term [Eq. (27)]

Tl 1* = 5 2 Uk { [ = ale =)+ (ol i oo - )
+ Z U Ui { [ma " = ™| 0(ef = e + [l ™™ =l ™) 0k — =)}
We use Eq. (52) for ngkl)’ii, and the matrix elements of the scattering potential are o
Ubd Ul = g sin~, Ut Ui = —g sin~, (B2)

where v = 6’ — 0, and we have used ULE = U/2(e™™ + 1) and ULT = U/2(e~" — 1). Only the terms with n(E b)++
survive the angular integration:

zwnl _ _ _ _ _
Todnjp 1"~ = Zsmv{nw 06 = ei0) +3(eis — )] — o T 1(ek — <) + 3l — )]}

(B3)
We substitute explicit forms of nl> Ek, * from Eq. (52), yielding

i nZU 22 O o, _ _ _ _
Jod[n(Ekl)] _m Zsm'y{ ok 6(5k’_5F)[6(5;g_5k’)+5(5k — )]
(B4)
+T+W §(ef —er)6(ef —ef)) + (e, — az,)]} )

We can turn the summations into integrations, and do the integrals over angle first, taking E || & and noting that

/— cos @ siny = —ﬂ (B5)

This gives

. X 2 . —
oDyt = il cEsing / K’k {T Pu 5 — en)d(ed — ) +3(cx — 0]

8mh h — Ok
(B6)
Oziy 50+ +_ ot - _ ¢t
EEST (e —er)lb(eg — ) + (e — )] -
Let us evaluate the 7_ term in Eq. (B6):
imn;U?To eE'sin g 2k m*a m*a _ 4 _ _ _
Toa(r-) = 8mh h /dk/ (1 - th’> (1 - W) (e —er)[0(eg — ) +6(e) — )] -

ie RS sin 0
- % /dk/ k2 6(ey —ep)[0(ef, — ) +6(ef — €x)] + O(0?).

We expand the delta functions up to the first order in the spin-orbit coupling strength « as

(e — ) +alk + k) g2 d (el — o),
(k= &) —alk — k) gard (=} — eR),

S(ef —ep) + (e — ) = 25(e0 — %)) + 2ak’ @5(% —%),
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We only need to evaluate the terms of first order in « out of the above expression, which gives

. 3 .
Jod(T—) = M /dk’k 3 {6(8%/ _ EF) iog(g

Oe

4m*2

B ieEah®sing [ 0

a 4m*2 35%

B ieEah®sin m_*3 12

a 4m*2 RS | k Ok
teFam™*sin 6

= o, Ok —kR).

k
— /dk' K3 6(eY, —ep)o(e) — )} — /dk' k3 o) — 5%)%5(62, — sp)}

0
{ - o)~ 068 - o) oy oleh — 2r)

5" (B9)

/dk’ KoK — kp) ok —k)} — /dk’ K25(k — Bz kp)}

We can easily see that the 74 term in Eq. (B6) will give the same result as the 7_ term. Thus we arrive at Eq. (60):

teFEam™* sin 0

Joalnioe V™ = =7

5(k - kF)u

ieEam*sin 0

Tl = =

5(k — k), (B10)

(=1

where we have used the Hermiticity of the scattering term to get Joa[nyg, ']~ .
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