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A generic edge dislocation with superfluid core in solid 4He represents a non-Luttinger Liquid
according to the elementary scaling dimensional analysis because its compressibility is giant – that
is, it diverges as square of the dislocation length. Monte Carlo simulations, however, reveal that
such a dislocation develops finite compressibility as temperature is lowered. Furthermore, for certain
parameters the dislocation can undergo a transition into insulating state regardless of the filling fac-
tor. External macroscopically small bias by chemical potential can restore the giant compressibility.
Experimental verifications of these features are proposed in connection with the ongoing efforts to
understand the superflow-through-solid as well as the syringe effects in solid 4He.

PACS numbers: 67.80.bd, 67.80.bf

I. INTRODUCTION

Emergence1 is the topic drawing a lot of attention for
the last 50 years, with the most prominent examples be-
ing the charge fractionalization in fractional quantum
Hall effect2 and dynamical enlargement of the underlying
symmetry at the point of continuous phase transitions3.

Luttinger Liquid (LL) is the universal description for
1D conducting quantum systems. Both fermionic and
bosonic quantum wires are generically described by the
harmonic model of collective sound-like excitations4. Es-
sentially the same approach applies to spin S = 1/2
chains too (see in Ref.5). The concept of LL turns out
to be relevant to solid 4He too. As found in ab initio
simulations6, screw dislocation with Burgers vector along
the high symmetry axis possesses superfluid core. This
1D topological structural defect is essentially the bosonic
LL. There is, however, a significant difference between a
dislocation with superfluid core and a conducting wire.
Dislocation is a dynamical string able to change its shape
and to move within crystal. In quantum crystals the
string dynamics must be treated quantum mechanically.
This raises a plethora of questions traditionally more rel-
evant to high energy physics. One key question is about
how the dislocation dynamics interacts with its core su-
perfluidity.

This question is especially relevant in connection with
the superflow through solid 4He observed first in the
UMASS group7 and then confirmed by other groups8–10.
There is one strikingly unexpected feature serendipi-
tously observed in the UMASS group7: during the su-
perflow events the solid exhibits the response on external
chemical potential, practically, the same way as liquid
does – absorbs or expels a macroscopic fraction of atoms.
This effect, which was called giant isochoric compressibil-
ity (or syringe effect) in Ref.11, represents a mechanism
of crystal growth from inside out. Both effects are now
at the focus of the experimental and theoretical efforts
in the field of superfluidity and quantum crystals.

It is important to realize that a dislocation with su-
perfluid core in a crystal represents a supersolid state of
matter – that is, the coexistence of superfluidity with

crystalline symmetry both formed by the same atoms
(see the discussion about various types of supersolidity
in12). Indeed, despite breaking the hexagonal close pack-
ing symmetry (hcp) of the ideal crystal, the dislocation6

aligned with the high symmetry axis preserves perfect pe-
riodicity of the crystal along this axis. It also retains the
C6 symmetry of rotations with respect to the dislocation
core. This supersolid, however, is quite different from the
supersolid phase of ideal crystal confining a condensate
of zero point vacancies contemplated by Andreev and
Lifshitz13. As has been shown in Ref.14, vacancies in solid
4He attract each other and, therefore, cannot form sta-
ble Bose-Einstein condensate at zero temperature (T ) in
ideal crystal – they tend to agglomerate into dislocation
loops. The situation is completely different in vicinity
of topological defects where local strain is topologically
protected and, thus, induces stable low-D superfluidity15

along some dislocations6,11 and some grain boundaries16.

There is a new property emerges due to the core super-
fluidity: such a dislocation can perform non-conservative
motion, that is, climb17,18. In Ref.11 this effect has
been called superclimb – climb supported by superflow
along the dislocation core. A pure screw dislocation
cannot perform superclimb. However, deviations of the
core orientation from the direction of the Burgers vector
transforms screw dislocation into edge dislocation (see in,
e.g.,17–19). In this case, the core retaining its superflu-
idity can perform superclimb. In this case, as discussed
in11, spectrum of excitations is no more linear in the
momentum along the core. Thus, a superclimbing dislo-
cation is not expected to be LL and should be classified
as non-LL.

The superclimb has been proposed in Ref.11 as a pos-
sible explanation for the syringe effect. In other words,
edge dislocations with superfluid core can supply matter
into (from) the solid by building (dissolving) incomplete
atomic planes. The syringe effect has also been seen by
the Univ. of Alberta group,8, and very recently con-
firmed in its most conspicuous form in Ref.9. At the mo-
ment, however, there is no direct proof that the syringe
effect is due to the superclimb of dislocations. Thus, it
is important to find features of the dislocation scenario
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which can be tested experimentally.
The main prediction about superclimb put forward

in11 is about edge dislocation aligned with single Peierls
potential (see in17–19) valley. Such a dislocation be-
comes self-trapped by the potential at T = 0. Thus,
if all the edge dislocations with superfluid core were self-
trapped, the syringe effect should vanish. However, a
generic dislocation network in real crystals is mostly dis-
ordered. Thus, there should be dislocations which are not
aligned with the Peierls valleys. Accordingly, such dis-
locations are characterized by finite density of jogs (see
in18) which form a quantum fluid supporting superclimb
even at T = 020.

Here we revise the conjecture20 based on the standard
analysis of the relevance of Peierls potential. Our main
result is that, as temperature decreases, superclimb of
a generic edge dislocation (that is, not aligned with one
Peierls valley) with superfluid core must be suppressed.
This reinstates the linear excitation spectrum and, con-
sequently, the LL character of the superfluidity along the
core. Below we will, first, briefly review the superclimb
effect. Then, we will discuss the results of large scale
simulations of the model of the superclimbing dislocation
and will present the evidence for the emergence of the LL
behavior as well as its destruction by bias. Finally, we
will discuss the features to look for in experiment in or-
der to test the dislocation scenario for the superflow and
the syringe effects.

II. SUPERCLIMB AND THE GIANT
ISOCHORIC COMPRESSIBILITY

Dislocations are most typical 1D structural topological
defects in crystals (see in Refs.17–19 ). These are char-
acterized by position and shape of its core as well as by
the Burgers vector which is determined by the crystalline
symmetry. Symmetry relevant to solid 4He is the hexag-
onal close packed (hcp) structure (see in Ref.17,18 ). Its
highest symmetry axis is called C-axis and it has C6 sym-
metry. It is perpendicular to the basal planes which are
triangular 2D lattices. The hcp structure has two basic
types of dislocations – with Burgers vector belonging to
the basal plane and along the C-axis.

Ab initio simulations of dislocations with the Burgers
vector along the C-axis have found that these disloca-
tions in solid 4He have superfluid core. Superfluidity of
the screw dislocation (with the core and the Burgers vec-
tor being along the C-axis) has been reported in Ref.6.
Similarly, the superfluid core has been found in the edge
dislocation with the Burgers along C-axis, and it has been
reported in Ref.11.

There is a significant difference between the two
dislocations – while the edge dislocation can perform
superclimb11 as a linear response on chemical potential
µ, the screw one cannot. Thus, a dislocation with su-
perfluid core meandering through solid should consist of
edge and screw segments. A possible resulting network
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FIG. 1: (Color online) A forest of dislocations with Burgers
along the hcp axis (Z-axis) containing edge superclimbing seg-
ments (thick solid lines aligned with X-axis) and pure screw
ones (dashed lines along Z-axis). Superclimb of the edge seg-
ments occurs in the XY-planes along the Y-axis.

of such dislocations is shown in Fig. 1. One superlimb-
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FIG. 2: (Color online) Superclimbing dislocation (solid ragged
line) as indicated by the edge of an incomplete atomic basal
plane (dashed lines). The double arrow shows the directions
of the superflow along the core.

ing segment of length L of the network is schematically
shown in Fig. 2. The matter can be fed into the dislo-
cation from its ends contacting other dislocations with
superfluid core or a reservoir with superfluid. As a re-
sult, extra matter is supplied to or taken away from an
incomplete basal plane of atoms. Accordingly, the dislo-
cation core (depicted by the ragged solid line in Fig. 2)
can shift (up or down).

It is important to discuss the role of external bias by
chemical potential µ. A small changes of chemical po-
tential imposed on a liquid results in a small change of
the liquid density ρ. The corresponding dependence ρ
versus µ is smooth with the finite slope dρ/dµ which is
the isochoric compressibility. In a standard LL liquid
this quantity is independent of the length L. The situ-
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ation is very different in the case of the superclimbing
dislocation: imposing a finite bias by µ does not produce
any significant change of the superfluid density inside the
core. Instead, the core shifts (up or down as sketched in
Fig. 2) by the amount exactly determined by the num-
ber of atoms N traveled along the core to build an in-
complete atomic plane (shown by dashed lines in Fig. 2).
In this case the isochoric compressibility κ = L−1dN/dµ
becomes ”giant”11 – that is, κ ∝ L2. For consistency
this feature reported in Ref.11 will be explained in detail
below.

A superclimbing dislocation11 is modeled as an elastic
string of length L. In the absence of the Peierls potential
it is represented by the action in imaginary time τ :

S =

∫ β

0

dτ

∫ L

0

dx[−i(y + n0)∂τφ+
ρ0
2

(∂xφ)2

+
κ0
2

(∂τφ)2 +
G

2
(∂xy)2 − µy], (1)

(in units h̄ = 1,KB = 1), where all distances (here and
below) are measured in terms of a typical interatomic dis-
tance. This action describes the displacement y = y(x, τ)
of the dislocation, depicted in Fig.2, from its equilibrium
position, y = 0. As mentioned above, y(x, τ) determines
the total amount of atoms DN entered (exited) through
the dislocation ends. This implies

∆N(τ) =

∫ L

0

dxy(x, τ). (2)

The quantity φ = φ(x, τ) represents the superfluid phase
defined along the superfluid core. Here β = 1/T , ρ0 and
κ0 are bare superfluid stiffness and superfluid compress-
ibility, respectively; G stands for the effective tension of
the dislocation (∼ shear modulus); and the last term ac-
counts for the bias by chemical potential µ. The quantity
n0 describes average (linear) density of bosons. We con-
sider the limit ω → 0, q → 0. Thus, ∼ (∂τy)2 represent-
ing kinetic energy of the dislocation is omitted from Eq.
(1). To exclude the zero mode where the uniform shift of
the dislocation as a whole costs no energy, the boundary
condition y(x = 0, τ) = y(x = L, τ) = 0 is used. This
condition is, in particular, relevant to the type of a net-
work shown in Fig. 1, where the meeting region of the
screw and edge segments plays the role of the pinning
point for superclimb – because the screw segment cannot
perform superclimb for arbitrary small bias µ.

If there were no climb (that is, y = 0), the model
(1) would represent the standard LL characterized by

the linear excitation spectrum ω =
√
ρ0/κ0 · q with re-

spect to the wavevector q along the dislocation4. The
situation changes dramatically in the presence of the
climb: The imaginary term in Eq.(1) (the Berry term)
counts how many particles passed through the disloca-
tion core and ended up in an extra row of atoms advanc-
ing dislocation by y. This effect changes the spectrum
from linear to parabolic. Indeed, variational equations
δS/δφ = 0, δS/δy = 0 following from the action (1)
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FIG. 3: (Color online) One block of the dislocation network
built by dislocations with superfluid core. Superclimbing dis-
locations – the edges along X and Z directions – bend in
response to the bias by chemical potential µ, as shown by the
bulging line. The added matter is depicted by dashed lines
(only one edge is shown to bulge).

give ∂2τy − Gρ0∂4xy = 0 in the long wave limit. In real
time t = iτ this corresponds to the parabolic spectrum
ω =

√
Gρ0 · q2 as q → 0. Thus, the action (1) describes

a non-LL.

A. Giant isochoric compressibility

If the superfluid stiffness ρ0 in Eq.(1) is finite and the
dislocation ends are connected to a superfluid reservoir,
biasing by finite µ will result in the dislocation bowing
by y ∼ L2µ/G. More accurately, the solution minimizing
the action (1) is y(x) = x(L−x)µ/2G which corresponds
to DN =

∫
dxy = µL3/12G. Accordingly, the compress-

ibility

κ =
d∆N

Ldµ
→ κg =

L2

12G
∝ L2 (3)

becomes giant as opposed to κ = κ0 ∝ L0 in the absence
of the variable y in Eq.(1).

It is important to realize that a sample of bulk solid
4He permeated by a uniform network of such dislocations
must show a finite 3D compressibility κ3D – very similar
to that of a 3D liquid. In other words, κ3D is indepen-
dent of the dislocation density (as long as this density is
small in units of interatomic distance). Let’s demonstrate
this using a simplistic example of a network consisting of
rectangular parallelepipeds with edges of typical lengths
Lx, Ly, Lz. One element of such a network is sketched in
Fig.3. Let’s presume that the edges of length Lx along X
direction represent edge (superclimbing) segments of dis-
locations with superfluid core. The distance Ly charac-
terizes a typical separation between such segments. The
distance Lz characterizes a typical length of the screw
(non-superclimbing) segments (as sketched in Fig. 1).
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Biasing the network by µ results in bowing the edge
segments by y ∼ µL2

x/G. This implies an additional
amount of atoms ∆N ∼ yLx ∼ µL3

x/G per each element.
Consequently, the bulk density δn changes as

δn ≈ ∆N

LxLyLz
∼ L2

x

LyLz

µ

G
. (4)

Thus, κ3D = δn/δµ depends only on the ratio of the free
segment lengths. In other words, uniformly increasing
all lengths Lx, Ly, Lz by the same factor, say, 2 does not
change the above result (4), while decreasing the dislo-
cation density by the factor of 4.

It is important to note that it is enough to apply µ
just at a point contact with the network to introduce the
density change (4). This is the same outcome as if µ were
applied to a fluid. In contrast, applying µ (at any point)
to an ideal solid (without dislocations) does not cause any
detectable change of its overall density. In this sense the
response (4) of the real solid should be viewed as giant.
Clearly, if the superclimbing segments are to evolve into
LLs and, thus, to loose their giant compressibility (3), the
response (4) of the solid (the syringe effect) will vanish,
that is κ3D = 0.

As a matter of fact, the response on µ is not completely
that of a liquid, where in equilibrium pressure variation
distributes uniformly over the whole liquid – in accor-
dance with the Pascal law. Viewing this property from
the perspective of chemical potential, a pressure change
∆P in a liquid in response on applying a change µ of
chemical potential must be exactly equal to µ. This con-
stitutes a maximum possible syringe effect. In a solid
permeated by the dislocation network, while the com-
pressibility κ3D is finite as described above, the resulting
pressure change ∆P 6= µ.

B. Collective effects

As described in Ref.21, presence of an ensemble of
dislocations modifies the isochoric compressibility. The
main effect comes from the overall compression of the
solid as extra matter ∆N enters (exits) it. Referring
to one element of the network, Fig. 2, the energy of
the bowing with account for the compression energy
∼ KelLxLyLz∆N

2/2N2, where N ∼ LxLyLz stands for
the total number of atoms in the volume of one cell and
Kel stands for the compression modulus, can be written
as

E ∼ Gy2

2Lx
+
Kel∆N

2

2LxLyLz
− µyLx, ∆N ∼ yLx. (5)

The equilibrium value for y follows from the minimization
of E. This gives the fractional density change ∆N/N
and the corresponding pressure change in the solid as
∆P ∼ Kel∆N/N :

∆P ≈ Kel

GLyLzL
−2
x +Kel

· µ. (6)

If the shear modulus were zero, that is, G = 0, the pres-
sure change would be exactly that of a liquid. This limit
can also be reached in the case of a highly asymmetric
network with Lx >>

√
LyLz.

C. Compressibility and dislocation excitation
spectrum

Concluding this section, we emphasize that the renor-
malized compressibility κ and the superfluid stiffness ρs
both determine the spectrum of excitations of the dislo-
cation as ω =

√
ρs/κ q, with q being a wavevector along

the dislocation. In the case of the screw dislocation both
κ and ρs are finite (that is independent of q) and, thus,
the spectrum is sound-like. This implies the LL behav-
ior. In the case of the superclimbing edge dislocation κ
depends on the wavelength as κ ∼ 1/q2 (up to the dis-
location length κ ∼ L2), and this leads to the parabolic
spectrum ω ∝ q2 as mentioned previously. This why su-
perclimbing dislocation represents non-LL. If superclimb
is suppressed by, say, Peierls potential or impurities, κ be-
comes finite and the linear spectrum is recovered – that
is, the LL is restored. This effect spontaneously occurring
as T → 0 will be reported in the following section.

III. SUPERCLIMB BEYOND THE GAUSSIAN
APPROXIMATION

The discussion in the previous section was based on the
gaussian approximation, that is, it ignored the compact
nature of the phase φ in the action (1). In other words,
the possibility of instantons in the D = 1 + 1 space-
time was not taken into account. Furthermore, there
is no term corresponding to the Peierls potential in the
action (1). In its simplest form ∼

∫
dτ
∫
dx cos(2πy) this

term takes into account the periodic potential imposed by
the lattice and seen by the dislocation during its climbs.
As discussed in11 this term suppresses the superclimb at
T = 0, if the equilibrium configuration corresponds to
y(x) = 0 (or any other minimum y = n, n = ±1,±2, ...).
Then, the compressibility becomes finite (with respect to
L→∞), and the spectrum of excitations becomes sound-
like. In other words, the LL behavior of the dislocation
core superflow is restored as long as the dislocation is
aligned with one of the Peierls valleys.

Generically, however, dislocations form a network con-
taining dislocations not aligned with Peierls valleys.
More specifically, the dislocation end at x = 0 may be
pinned at, say, y(x = 0, τ) = 0 and the other one at
y(x = L, τ) = n with n 6= 0. This dislocation is said to
be tilted in the Peierls potential. Accordingly, it has n
jogs even at T = 0. Such geometrical jogs can be taken
into account by shifting y → y + n · x/L in the action
and accordingly in the Peierls energy

∫
dx cos(2πy/a)→∫

dx cos(2πy + 2πnx/L), where now the boundary con-
dition becomes y(0, τ) = y(L, τ) = 0.
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The standard approach to treating the cos(...) poten-
tial (see, e.g., in Ref.19) is based on the assumption that
the term 2πnx/L washes out the potential. As suggested
in20 this implies that the geometrical jogs form quantum
fluid of jogs which protect the superclimb from suppres-
sion at T = 0. In other words, the compressibility κ
should remain giant as given by Eq.(3) at T = 0. Ac-
cordingly the excitation spectrum remains quadratic in
q, that is, the superfluidity along the core is of the non-
LL type. This argument, however, has not been verified
numerically.

Here we analyze a tilted superclimbing dislocation be-
yond the guassian approximation by Monte Carlo simula-
tions of the model11 with no Peierls potential. The main
purpose of this is to understand the role of compactness
of the phase φ in the action (1). As will be shown below,
this property turns out to be crucial as T → 0 leading
to the restoration of the LL character of the core super-
fluidity by suppressing the superclimb. At this point we
also mention that the external bias µ in the action (1)
can destroy the LL and restore the superclimb as long
as µ exceeds a threshold which is macroscopically small
with respect to L. This effect will be discussed later – in
the section IV.

A. Dual representation

Here we will go beyond the gaussian approximation
in (1) and take into account the compact nature of the
phase φ by allowing vortices (instantons) to exist in the
space-time (x, τ). This, in particular, can be achieved by
discretizing the space-time so that

∫
dτ
∫
dx... transforms

into a sum over the space-time lattice. The discretization
of space is justified by the presence of the crystalline 3D
lattice introducing the natural increment ∆x ≈ a deter-
mined by a typical interatomic distance a along the dis-
location core. Then, the continuous derivative becomes
discrete: ∂xφ(x, τ)→ ∇xφ = φ(x+ 1, τ)− φ(x, τ) where
we use a as the unit of x.

The continuous time derivative transforms as
∂τφ(x, τ) → ∇τφ = [φ(x, τ + ∆τ) − φ(x, τ)]/∆τ , where
∆τ is the unit of the time discretization ∆τ = β/Nτ → 0,
with Nτ being the number of time slices in the time
interval (0, β). Then, the compactness of φ is taken
into account by using the Villain transformation
~∇φ → ~∇φ + 2π~m22, where the vector sign refers to
the space-time directions and ~m = (mτ ,mx) stands for
integer variables defined on (and oriented along) bonds
between neighboring sites of the space-time lattice. This
approach allows treating φ as a non-compact gaussian
variable – on the expense of introducing the bond
variables ~m.

The thermodynamics of the model (1) (with the sub-

stitute ~∇φ → ~∇φ + 2π~m ) can be accounted for within

the partition function

Z =
∑
{~m}

∫
Dφ

∫
Dy exp(−S), (7)

where the action (1) takes the form

S =
∑
(τ,x)

[−i(y + n0)∇τ (φ+ 2πmτ ) +
ρ0
2

(∇xφ+ 2πmx)2

+
κ0
2

(∇τφ+ 2πmx)2 +
G

2
(∂xy)2 − µy], (8)

It is convenient to use Poisson identity
∑
m f(m) ≡∑

n

∫
dmf(m) exp(2πimn) at each bond along the line

of the derivation of the J-current model23. Then, the in-
tegrations over ~m, φ, y can be carried over exactly. This
transforms Eq.(7) into

Z =
∑

{ ~J=(Jx,Jτ )}

exp(−SJ), (9)

where the action SJ (in the long-wave limit) is

SJ =
∑
bij

[
J2
x

2ρ̃0
+
G̃

2
(∇xJτ )2 − µ̃Jτ

]
, (10)

with G̃ = G∆τ , µ̃ = µ∆τ and ρ̃0 = 1/[2 ln(2/ρ0∆τ)]
(in the limit ∆τ → 022). The integer bond oriented cur-

rents ~J (that is, | ~J | = 0, 1, 2, ...) between neighboring
sites satisfy the Kirchhoff’s conservation rule, and the
summation is performed over all bonds bij between all
pairs of neighboring sites i and j. It should be kept in

mind that ~J = (Jx, Jτ ) is oriented either along a spatial
or a temporal bond. In other words if bij is a bond along
X-direction, the current along this bond has zero tem-
poral component, Jτ = 0. Similarly, Jx = 0 on a bond
oriented along the imaginary time axis.

The action (10) is a dual representation of the model
(7,8). The boundary condition for y is transformed into
Jτ (x = 0, τ) = Jτ (x = L, τ) = 0 in addition to the

periodic boundary condition along time: ~J(x, τ + β) =
~J(x, τ), ~J(x+ L, τ) = ~J(x, τ).

The striking difference between the action (10) and the
standard one of the J-current model23 describing LL is
the absence of the term ∼ J2

τ . As we will show below,
such a term will be emerging as T → 0 and µ→ 0.

B. Linear response

. The linear response of the system is described in
terms of the renormalized stiffness along space24

ρs =
L

Nτ
〈W 2

x 〉, Wx =
1

L

∑
~bij

Jx, (11)
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and along time, which is the renormalized compressibil-
ity:

κ = −Nτ
L

∂2 lnZ

∂µ2
=
Nτ
L

[〈W 2
τ 〉 − 〈Wτ 〉2]. (12)

The quantities Wx, Wτ = N−1τ
∑
~bij
Jτ are integers and

have the geometrical meaning of windings of the lines
formed by the J-currents. We have also calculated

κ1 =
〈N〉
Lµ

=
〈Wτ 〉
Lµ

(13)

characterized by the total number of atoms 〈N〉 =
〈Wτ 〉/Nτ injected into the solid due to the superclimb.
Both quantities κ and κ1 coincide with each other as
µ→ 0. In general, these are related by the exact formula
κ = d(µκ1)/dµ. Simulations have been performed by the
Worm Algorithm25.

C. Emergence of the LL behavior

Here we will present the evidence that, as the dislo-
cation length L and the inverse temperature β both in-
crease as β ∝ L→∞, the compressibility κ crosses over
from being ”giant” (3) to κ = κeff saturating to a fi-
nite value in this limit. This implies the reconstruction
of the excitation spectrum from parabolic to linear. In
other words, the superclimb is being suppressed and the
LL behavior emerges. We will also show that the phase
diagram of the system (9,10) in the plane (ρ0, G), µ = 0,
features two phases – LL and insulator (where both ρs
and κ vanish).

Strictly speaking, all results of simulations of the model
(9,10) should be considered in the limit Nτ → ∞ in or-
der to achieve the continuous time result. Practically,
Nτ should be taken as large as needed to stop simulated
quantities being dependent on Nτ for a given value of β.
The result of this procedure is shown in Fig. 4. The com-
pressibility deviates from its giant value, Eq.(3), as tem-
perature decreases and asymptotically approaches some
value which is more than one order of magnitude smaller
than κg, Eq.(3), for a given size L. The question is how
the asymptotic value of κ depends on L. The result of
simulations for several sizes L are presented in Fig. 5.
As can be seen, the asymptotic values of κ (in the limit
T → 0) are independent of L for large enough L. The
asymptotic independence of κ on L is seen much more
clearly in Fig. 6 where T−1 = β is scaled as ∼ L→∞.

A comment is in order about the procedure used to
collect the data in Figs. 5,6 and from now on. We have
checked that, while changing specific values, the qualita-
tive behavior of κ remains the same for a fixed value of
Nτ for given L without formally achieving the quantum
limit of continuous time. Thus, the data in Fig. 5 and
below are presented for T = 1/Nτ , that is, for the choice

∆τ = 1 (and G̃ = G, ρ̃0 = ρ0, µ̃ = µ).
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 1 / T = 1 0 0

N τ

FIG. 4: (Color online) κ, Eq.(12), vs β = T−1 for L = 60, G =
2.3, ρ0 = 4, µ = 0. Inset: κ vs the number of time slices
Nτ for two temperatures (shown close to each curve). The
horizontal dashed line corresponds to the value of the ”giant”
compressibility, Eq.(3).
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FIG. 5: (Color online) κ vs β = T−1 for the lengths L =
40, 80, 140 (shown close to each curve). The horizontal dashed
lines are the corresponding values of the ”giant” compress-
ibility, Eq.(3). Inset: superfluid stiffness vs T−1 for the same
sizes. The model parameters are ρ0 = 4, G = 2.3, µ = 0 in
Eq.(10).

The dependence κ vs T is characterized by some typical
temperature T = TL and the range ∆L below which κ
becomes significantly suppressed. In order to evaluate
TL and the width ∆L we have found the best fit of κ
vs 1/T using TL and ∆L as the fit parameter in the fit
function taken as ln(κ) = A−B ·tanh(∆L ·(T−1−T−1L )),
with A and B chosen from the limiting values of κ at
the highest and lowest T for each L. This function has
produced fits which are acceptable within the statistical



7

1 0 1 0 01 0 - 7
1 0 - 6
1 0 - 5
1 0 - 4
1 0 - 3
1 0 - 2
1 0 - 1
1 0 0
1 0 1
1 0 2
1 0 3

 
 1 . 2
 1 . 3
 1 . 4
 1 . 5
 1 . 6
 1 . 7
 1 . 9
 2 . 1
 2 . 3
 2 . 5
 2 . 6
 2 . 7
 2 . 7 5
 2 . 8
 2 . 9

κ

L
FIG. 6: (Color online) Compressibility κ vs L = 1/T for
various values of G (shown in the legend) and ρ0 = 4, µ = 0.
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FIG. 7: (Color online) The inverse crossover temperature T−1
L

and the width ∆−1
L vs L for G = 2.3, ρ0 = 4.

errors of the data for all curves. We have found that
the crossover temperature TL ∼ 1/ lnL and its width
∆L ∼ 1/ lnL. More specifically, for G = 2.3, ρ0 = 4, µ =
0, the dependencies on L are T−1L = a lnL + b, with

a = 5.02, b = −6.27 and ∆−1L = a′ lnL + b′ with a′ =
1.53, b′ = 0.09. This dependencies are shown in Fig. 7.

The question is how the emerged compressibility in the
limit L = ∞ depends on the parameters of the model
(10). Fig. 6 presents results of simulations for various
values of G. The limiting value of κeff = κ taken from
the saturated behavior at large L from Fig. 6 turns out
to be κeff ∼ 1/Gb, b = 7.8 ± 0.1 for G < 2.6. This
dependence is shown in Fig. 8. We have tested several
values of ρ0 and didn’t find any dependence of the power
b on it.

1 1 . 2 1 . 4 1 . 6 1 . 8 2 2 . 2 2 . 4 2 . 6 2 . 80 . 0 1

0 . 1

1

1 0

1 0 0

κe f f

G
FIG. 8: (Color online) The asymptotic values κeff of κ taken
from Fig. 6 in the limit L→∞ for various G values.

The effect of emergence of finite κ occurs above some
length L∗ ( as long as T ∼ L−1). For L < L∗ the com-
pressibility behaves as ∼ L2/G, Eq. (3). For L > L∗ it
levels off at ∼ 1/Gb. Thus, the relation L∗2/G ∼ G−b

determines the crossover scale L∗ ∼ G(1−b)/2 diverging
in the limit G→ 0. Below we will discuss the deviations
from the power law seen in Fig. 8 for G ≥ 2.6.

D. Quantum phase transition (QPT).

If the parameter G exceeds a certain threshold Gc for
a given ρ0, there is no more saturation of κ, Eq.(12),
to a finite value in the limit β ∝ L → ∞. Instead it
flows to zero. This behavior is clearly exhibited by three
lower curves in Fig. 6 – corresponding to G > 2.7. The
same tendency is seen in Fig. 8 where the linear log-log
dependence is violated for the same values of G (read
off from Fig. 6 at the maximum L simulated). In fact,
both κ and ρs,Eq.(11), flow to zero for these values of G.
This behavior implies insulating state of the dislocation –
when both superclimb and superflow along the core seize
to exist.

Phase diagram mapping the two ground state phases
of the dislocation is shown in Fig. 9. In the LL region κ,
Eq.(12), and the superfluid stiffness,Eq.(11), both satu-
rate to finite values in the limit T−1 ∼ L → ∞. In the
region ”insulator” both quantities approach zero values
as T−1 ∼ L→∞.

A presence of the transition in the model (9), (10)
is unexpected because the Kosterlitz-Thouless (KT) ar-
gument (see in Ref.19) indicates that there should be
no proliferation of the vortex pairs. Let’s demonstrate
this by performing duality transformation on the model

(10). The Kirchhoff’s constraint on the currents ~∇ ~J = 0,

where ~∇ stands for discrete gradient, can be satisfied by
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FIG. 9: (Color online) The phase diagram of the model (9,10).
Dashed straight line connects 3 data points with smallest ρ0
and the origin.

the substitute Jx = ∇τΦ, Jτ = −∇xΦ, where Φ are in-
tegers defined at sites of the dual lattice26. Using this
in Eq.(10) and utilizing the Poisson summation identity
(along the same line how the action (10) was derived
from the original one (1)), we obtain the lattice gas model
Z =

∑
{ni} e−Sg , Sg = 1

2

∑
~r,~r′ U(~r−~r′)n(~r)n(~r′)), where

n(~r) are integers defined on the sites of the dual lattice
and U is the interaction potential with Fourier compo-
nents Ũ = (2π)2/[ρ−10 ω2 + Gq4] in the limit ω → 0 and
q → 0. The integers n describe vortices. In contrast with
the standard superfluid, where vortices interact by log-
arithmic potential (see in Ref.19), here the potential is
much stronger than logarithm. It is also strongly asym-
metric: along space it is increasing with separation be-
tween two points (x, τ) and (x′, τ ′) as ∼ |x−x′| and along

time as ∼
√
|τ − τ ′|. Thus, according to the KT argu-

ment a vortex-antivortex pair cannot proliferate to de-
stroy the algebraic order along the dislocation. However,
in spite of this criterion, our simulations of the model
(10) show that there is a transition into insulating state.

As more detailed analysis presented in the Appendix
A shows, the transition corresponds to the Berezinskii-
Kosterlitz-Thouless (BKT) transition (see in Ref.19) with
the universal jump 2/π in the effective Luttinger param-
eter K =

√
ρsκ. It is also important to notice that

the transition is insensitive to the filling factor n0 in the
model (1) – simply because it cancels out from the dual
representation (10).

IV. ROUGHENING INDUCED BY CHEMICAL
POTENTIAL

The above results indicate that, in the absence of the
bias by chemical potential µ, the model (9,10) has only

1 0 - 3 1 0 - 2 1 0 - 11

1 0

1 0 0

1 0 0 0 1 8 0
1 4 0

1 0 0
8 0

6 0
4 0

κ1

µ
FIG. 10: (Color online) κ1 vs µ for sizes L shown close to
the corresponding plot , G = 2.3, ρ0 = 4, T = 0.0556, TH ≈
0.0435. Dashed lines show the ”giant” values (3) for the cor-
responding size L.

two ground states – either insulator or Luttinger Liquid
marked by ”insulator” and ”LL” in Fig. 9), respectively.
As temperature increases the compressibility crosses over
to the ”giant” value (3).

The LL state corresponds to smooth dislocation (with
κ = κeff ) because fluctuations of the dislocation shape
y(x, τ) are strongly suppressed. This situation changes
quite dramatically in the presence of finite µ in the ac-
tion (10). Namely, the smooth state of the dislocation
can be destroyed by the bias µ 6= 0. As a result, the
giant compressibility is restored. This implies the rough-
ening transition of the dislocation – fluctuations of the
dislocation shape become diverging as∼ lnL in the rough
phase, where κ = κg, Eq.3.

Simulations of the model (9,10) at finite µ have re-
vealed two regimes: i) a crossover from smooth to rough
dislocation at T > TH ; ii) A jump-like behavior charac-
terized by strong hysteresis at T < TH featuring a coexis-
tence of the smooth and rough phases of the dislocation.

A. The smooth-rough crossover

The crossover behavior at T > TH is shown in Fig. 10.
As can be seen, the width of the crossover becomes
smaller for larger L. To characterize this dependence,
we have measured the value µ0.5 of µ where κ1 reaches
1/2 of its ”giant” value (3) for a given size L. This de-
pendence turns out to be µ0.5 ∼ L−c, c = 1.21 ± 0.05,
and it is shown in Fig. 11.
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FIG. 11: (Color online) The log-log plot of the crossover value
of µ0.5 vs L taken from the data in Fig. 10.
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µ
FIG. 12: (Color online) Hysteretic behavior of the compress-
ibility κ1, Eq. (13), vs µ. The dashed line shows the ”giant”
value, Eq.(3), for L = 100, T = 0.025, ρ0 = 4, G = 2.3. The
arrows show the direction of the hysteretic loop: each point
corresponds to simulations for 2 · 1010 MC steps for a given
value of µ.

B. Hysteretic behavior of the smooth-rough
dislocation

At temperatures T < TH the roughening transforma-
tion behaves alike Ist order phase transition because it
shows strong hysteresis, Fig. 12. The width ∆µ of the
hysteresis, Fig. 13, saturates to a finite value as T → 0
(determined by purely quantum fluctuations). Hystere-
sis vanishes at T = TH ≈ 0.0435 (for the chosen param-
eters).

We should emphasize that the existence of a phase
transition in 1D system characterized by a local order

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 00 . 0 0
0 . 0 1
0 . 0 2
0 . 0 3
0 . 0 4
0 . 0 5
0 . 0 6
0 . 0 7

1 / T

∆µ

FIG. 13: (Color online) Width ∆µ of the hysteretic loop vs
1/T for L = 100, G = 2.3, ρ0 = 4. Solid line is the fit by
∆µ = µ0 ln(TH/T ), µ0 = 0.0346, TH = 0.0436.

parameter is forbidden at finite T 27. In particular, Ist
order transition should be a crossover characterized by
activation with a typical finite energy given by the width
of the domain wall between two phases. Thus, the inter-
pretation of the strong hysteresis at finite T requires cau-
tion. In this respect we note that, similarly to the disloca-
tion roughening in the presence of the Peierls potential28,
there is no local description of the rough state because
it is a global property of the whole dislocation. Thus,
the ”no-go theorem”27 does not actually apply. Further
studies are required in order to see if the observed hys-
teresis features a true finite-T transition characterized by
extensive energy barrier (rather than an intensive one in
the case of the crossover).

V. DISCUSSION AND EXPERIMENT
PROPOSALS

The effect of emergence of LL behavior in a model
which should be a non-LL according to the standard anal-
ysis can be viewed from another perspective. The original
model (1) features a strong asymmetry between space
and time because its excitation spectrum is parabolic
– changing unit of space by a factor of two requires
changing the unit of time by the factor of four in or-
der to keep the spectrum unchanged. In the LL phase
(smooth phase) the spectrum becomes linear which im-
plies restoration of the space-time symmetry. Further-
more, the nature of the QPT is also consistent with the
space-time symmetry. Thus, the edge dislocation with
superfluid core features the emergence of the symmetry
between space and time (in D = 1+1) in its ground state
in thermodynamic limit.

The question to answer is why the emergence of the LL
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is not ”seen” by the elementary dimensional analysis, and
also why there is the BKT transition despite that the KT
argument predicts none. The qualitative explanation29

comes naturally in terms of the loops in Eq.(10). As the

weight of each element ~J becomes larger, its discreteness
becomes more and more important so that more con-
figurations will have currents Jτ with no neighbors. In
such a situation the discrete gradient (∇xJτ )2 becomes
essentially J2

τ . This transforms the action (10) effectively
into the form typical for the standard J-current model23

describing LL as well as the BKT transition at integer
filling.

It would be useful to find an argument for the effect in
terms of the fields. One insight can be gained from the
following consideration: one jog passing along the length
Lx of the dislocation carries a string of atoms ∆N = Lx
(which advances an incomplete basal plane by one in-
teratomic distance). This means that each jog is essen-
tially a macroscopically heavy particle which as long as
Lx >> 1. Thus, such a particle can be localized easily
at low T which automatically implies suppression of the
superclimb.

Below we will outline proposals for the experiments
aimed at testing the most important features of the
model. If observed these would be a proof for the dis-
location scenario for the superflow-through-solid and the
syringe effects.

A. Stress anisotropy induced by superclimb.

The superclimb effect results in injecting (removing)
basal atomic planes. For a single hcp crystal confined in
a rigid box this implies additional average deformation
along the C-axis. If DN atoms were injected to form DM
basal layers in a 4He crystal made of M basal layers, the
created average strain can be estimated as uzz ≈ DM/M .
This will produce an average stress σzz ≈ CzzzzDM/M
and σxx = σyy ≈ CxxzzDM/M , where z− axis is along
the hcp axis and x, y are orthogonal coordinates along the
basal plane. Here σij is the stress tensor17 and Cijkl are
elastic constants of hcp solid 4He. Thus the asymmetry of
the stress becomes ασ = σzz/σxx ≈ Czzzz/Cxxzz. Mea-
suring the asymmetry and comparing with the known
elastic moduli will provide a crucial information on the
mechanism of the syringe effect. In polycrystals there
could also be some asymmetry if the C-axis of the crys-
tallites is not fully randomly oriented.

B. Threshold for superclimb

Important aspect of our discussion is the existence of
the threshold for superclimb: The syringe effect should
vanish in the limit T → 0 and µ → 0 even in samples
free from 3He impurities. [3He suppresses superflow and
the syringe7–9]. At this juncture it is important to em-
phasize that stopping the syringe effect does not imply

stopping the superflow along the core. Thus, observ-
ing a suppression of the syringe effect without suppress-
ing superflow would be a ”smoking gun” for the super-
climb mechanism11 and for the emergence of LL. Accord-
ingly, studying the syringe and the superflow effects in
extremely clean samples of solid 4He at very low temper-
atures and biases becomes of crucial importance.

There is, however, a significant obstacle. As men-
tioned in Ref.21, the current experiments7,8 and also9

are likely to be in the regime of large µ, that is, in
the dislocation rough state induced by the bias where
κ = κ1 = κg, Eq.(3), even at T = 0. The analysis21 fo-
cuses on the geometrical instability of dislocations with
superfluid core: once chemical potential bias exceeds the
threshold µc ∼ GL−1, such dislocations become unstable
with respect the inflation which constitutes a mechanism
of the crystal growth from inside out. In this case a sin-
gle inflating dislocation builds one whole atomic extra
plane. As described in Sec. IV A, there is even stronger
condition for the destruction of the LL behavior – char-
acterized by the threshold µc ∼ L−1.2 << L−1 in the
limit L → ∞. Practically, for dislocations with a typ-
ical length L ∼ 1µm and larger the threshold becomes
smaller than ∼ 10 mbar. Translating the temperature
scale from Fig. 5, to the temperatures in the units ∼ 1 K,
relevant to superfluidity of the dislocations in solid 4He,
gives the range T ≤ 1 − 10mK where the suppression
of the syringe effect should be looked for. Furthermore,
as described in Sec.IV B, there should be strongly hys-
teretic behavior at low T . Searching for the hysteresis
may also provide a crucial information. To what extent
such measurements at low T and µ are feasible remains
to be seen.

C. Equilibrium syringe fraction.

As mentioned above, syringe effect implies a liquid-like
response of solid on chemical potential. The question is
if anything specific can be said about the nature of the
conducting network of dislocations. In this respect an
important insight can be gained from Ref.9. In this ex-
periment the upper part of solid 4He (see Fig.1 of Ref.9),
which is about 0.3 mm thick, was deformed by about 1
µm. This resulted in an immediate elastic response ∼ 10
mbar at the other end of the sample (about 10 mm away)
followed by much slower and stronger pressure increase
reaching (equilibrium) values about 0.2 bar (see Fig.2a
in Ref.9). It is instructive to compare this number with
the pressure imposed in the upper chamber ∼ 0.3−1 bar
which resulted from strain ∼ 3 · 10−3. Since these val-
ues are only a factor of 2-5 different, some information
can be drawn about the asymmetry between the lengths
of the dislocation network with the help of the relation
(6). More consistent studies of the dependence of ∆P vs
imposed strain and in situ measurements of the compres-
sion modulus may shed more light on the nature of the
syringe effect.
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We also suggest focusing on interaction between glide
(see in Refs.17,18) and superclimb of dislocations as a test
for the dislocation scenario. The question is to what ex-
tent the giant plasticity of solid 4He30 may affect the su-
perflow and/or superclimb. The effect30 consists of soft-
ening of the shear modulus Gel as temperature increases
above ∼ 20 − 100mK. While in polycrystalline samples
the softening is about 10-20% of the zero temperature
value, in a monocrystal it can reach 80-90%. The main
reason for this effect is glide of basal plane dislocations.
It is important to note that these dislocations are not su-
perfluid, and, therefore, they cannot contribute directly
to the superclimb. They, however, can affect the syringe
response through modifying the shear modulus. We see
the main channel for this through contributing to the ef-
fective compression modulus Kel of the polycrystalline
medium as Kel = K0 + γGel(T ), with γ > 0 being a
geometrical coefficient determining how averaging of the
crystallites orientation contributes to the average Kel.
Obviously, as Gel softens with increasing T , the com-
pression modulus should soften too. In accordance with
Eq.(6) this implies a decreasing ∆P with temperature. In
this regard we note that, as Fig.2a of Ref.9 indicates, the
equilibrium pressure change is indeed a decreasing func-
tion of temperature. More comparative studies of this
dependence with the shear softening data30 will be very
useful. [At this point we note that the core tension G
of a particular superclimbing segment (see in Eqs.(1,10))
should not be significantly affected by the plasticity effect
in the case of low density of basal dislocations because
core of a particular superclimbing edge segment ”sees”
the ideal crystal in its close vicinity].

D. Sudden stopping of the pressure evolution

A remarkable feature presented in Fig.2a of Ref.9

reveals a sudden stopping of the pressure evolution.
Clearly this feature is inconsistent with any type of
activation behavior usually resulting in exponential
relaxation. We propose a scenario for this effect:
initially long superclimbing dislocations evolve into a
structure characterized by small lengths Lx of the free
segments. Accordingly, once the resulting chemical
potential equilibrates over the whole sample these seg-
ments may enter the LL regime – where the superclimb
is suppressed because both µ and T are below the
threshold determined by Lx. This should result in the
sudden stopping of the pressure variation. More studies
of the time evolution can provide crucial information
about the nature of this feature.

Conclusions. We have introduced the J-current type
model (10) describing tilted superclimbing dislocation.
According to the elementary scaling analysis such a dis-
location should exhibit non-LL behavior. In contrast,
Monte Carlo simulations reveal the emergence of the LL

as temperature is lowered and the system size exceeds
certain scale determined by the line tension G (bare shear
modulus). This scale is characterized by high power in-
dependent of the bare superfluid stiffness. The emerging
LL can also undergo the BKT transition into insulating
state.The LL behavior can be destroyed by macroscopi-
cally small external bias by chemical potential. As a re-
sult, the giant isochoric compressibility can be reinstated
even at T = 0. Our model provides predictions for the
corresponding bias and temperature dependencies which
can be tested experimentally.
Acknowledgements. We thank Boris Svistunov for
fruitful discussions. This work was supported by the NSF
grant PHY1314469.

Appendix A: Universality of the transition to
insulating state

Here we support our statement that the quantum tran-
sition to the insulating state of the model (9,10) is of
the BKT type. The analysis is conducted for two points
at the phase diagram line, Fig. 9, – corresponding to
ρ0 = 0.8, 1.

The model (9,10) appears to be very different from

the standard J-current model23 HXY =
∫
d2xK(~∇φ)2/2,

which describes the compact U(1) phase φ in 2D and
features the BKT transition at the critical value Kc =
2/π of the Luttinger parameter K19.

If the model (9,10) undergoes the same type of the
transition (at µ = 0), for each value of ρ0 there should
be such a critical value G = Gc that the evolution of the
renormalized Luttinger parameter K =

√
ρsκ (defined in

terms of the windings, Eqs.(11,12), should follow the so-
lution of the renormalization group (RG) equations with
the critical valueKc. Such an analysis has been pioneered
in Ref.31.

The RG equations have a form (see in Ref.19)

du

d ln l
= 2(1− g)u,

dg−1

d ln l
= gu2 , (A1)

where u stands for the vortex fugacity and g = K/Kc.
The parameter l determines typical scale of the renormal-
ization. Numerically, l can be associated with the system
size as l = L/L0 up to an arbitrary constant factor L0.

A general solution of the system (A1) can be expressed
in terms of two constants of integration, C, l0 > 0, deter-
mined by the initial values of u and g, which in their turn
are set by the microscopic model (9,10) . The solution
has a form u2 = 2[ξ2 + C],

F (ξ) = 4 ln

(
l

l0

)
, ξ =

1

g
− 1 =

Kc

K
− 1, (A2)

where for C > 0

F (ξ) = ln(ξ2(l) + C)− 2√
C

tan−1

(√
C

ξ

)
, (A3)
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FIG. 14: (Color online) The parameter
√
−C versus G for

ρ0 = 1. The solid line is the fit by
√
−C = A · (G − Gc)0.5,

Gc = 1.299, A = 2.886.

and

F (ξ) = ln(ξ2(l)− C2) +
1√
−C

ln

(
ξ(l)−

√
−C

ξ(l) +
√
−C

)
.(A4)

for C < 0. The case C = 0 describes the separatrix
u =
√

2|ξ| given by

F (ξ) = 2 ln |ξ| − 2

ξ
. (A5)

In order to check if the flow of the renormalized Lut-

tinger parameter K(l), obtained from simulations of the
model (9,10) can be described by the RG equations (A1),
we tried to fit our Monte Carlo data for K at large L
by either solution,Eqs.(A2,A4), with the properly chosen
C-constant for each G . We have analyzed the values
ρ0 = 0.8, 1.0 for which the large L behavior is almost
symmetric between space and time. Our finding is that
the data can be fit by C < 0, Eq.(A4), and ξ > 0 with
Kc = 2/π for each value of G.

It is important to note that C → 0 determines a di-
verging correlation length Lc ∼ exp(1/4

√
−C)→∞ with

C depending on the deviations from the critical param-
eter (see in Ref.19). In our case for fixed ρ0 we expect
−C ∼ G − Gc > 0 (if the data fits the RG prediction).
Practically, the data were substituted into the function
F , Eqs.(A2, A4), and plotted vs 4 lnL. The value of C
for a given G has been adjusted so that the slope of F
vs 4 lnL is unity. A good fit could only be achieved for
the solution (A4). The result of this procedure for 10
values of G is presented in Fig. 14. As can bee seen,
the data points are consistent with the RG prediction
(−C)0.5 ∼ (G − Gc)0.5 with Gc ≈ 1.30. Thus, the tran-
sition is of the BKT type.

The above analysis has been conducted for values ρ0
and G guaranteeing that the renormalized ρs and κ at
large T−1 = L are approximately equal to each other.
This choice was dictated by simplicity of the analysis and
also faster convergence of the simulations. It is natural to
assume that the universality does not change when ρs and
κ become significantly asymmetric. Thus, we conclude
that the whole line of the transitions G = Gc(ρ0) in the
space ρ0, G, Fig. 9 belongs to the BKT universality.
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