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Abstract

In magnetic materials, both electrons and magnons are capable of carrying angular momentum

currents. An external electric field can efficiently drive a charge and spin current of electrons, but it

is unable to directly produce a charge-less magnon current. The generation of the magnon current is

conventionally achieved via thermal gradients or the electron spin injection from interfaces. Here

we investigate the magnon current induced by the momentum and angular momentum transfer

from conduction electrons in magnetic layered systems. By using the generic exchange interaction

between electrons and magnons, we derive the coupled diffusion equations for electron spins and

magnons and we find, a) the ratio between the magnon current and the electric charge current is

substantial at room temperature for conventional conducting ferromagnets, b) the spin diffusion

length of electrons is significantly modified by the presence of the non-equilibrium magnon density,

and c) the giant magnetoresistance of the magnetic multilayers for the current perpendicular to the

plane of layers is reduced compared to the prior theory without taking into account the magnon

current.
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I. INTRODUCTION

One of the most important issues in spintronics is to identify and manipulate spin currents.

Both electron spins and magnons have intrinsic angular momenta, and the translational flow

of these particles (or quasiparticles) lead to a spin current or angular momentum current.

Most of studies on the spin current has been focused on the electron spin current due to direct

connections between the electron spin current and measurable physical phenomena. For

example, the giant magnetoresistance (GMR)1,2 and the spin transfer torque (STT)3–5 are

proportional to the spin current or spin polarization of conduction electrons in the magnetic

multilayers and at the interfaces. By experimentally measuring GMR and STT for a given

structure, the quantitative values of electron spin current can be obtained. The magnon

current, on the other hand, is much harder to experimentally quantify. Since magnon is

charge-less and it does not couple with the external electrical field, both generation and

detection of magnon accumulation and magnon current are experimentally challenging.

At present, the magnon current has been generated by two methods. The spin Seebeck

effect6–9 utilizes a temperature gradient in a ferromagnetic material such that the thermal

magnon density is non-uniform and magnons would diffuse from high to low temperature

region, leading to a diffusive magnon current. While the thermal gradient could in principle

works for all ferromagnetic materials, it is usually less efficient for magnetic metals due to

practical difficulties in maintaining a large thermal gradient with a well-defined heat flow

direction10. Another method is to utilize spin injection from the neighboring layer. For

example, in a bilayer consisting of a heavy metal and a magnetic insulator, e.g., Pt/YIG

bilayer, an in-plane electron charge current in the Pt layer could induce a magnon current in

YIG layer via the conversion of the electron spin current to the magnon current11–14. In this

case, the electron spin current and the magnon current are located in different spatial regions

(electron spin current in Pt and magnon current in YIG, respectively), and the interaction

between electron spin and magnon occurs only at the interface.

We shall first clarify that the magnon current we study here is the translational flow of

quasi-particle magnons. The direction of the angular momentum of the magnon current is

always parallel to the magnetization (or order parameter) because the magnon is defined as

a quantum state without a transverse component relative to the quantization axis (magneti-

zation direction). The spin-wave spin-current15, sometimes referred as spin supercurrent16,
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considers spatial and temporal dependence of the classical magnetization which is described

by Landau-Lifshitz-Gilbert equation for transverse magnetization dynamics. A clear dis-

tinction of these magnon currents was discussed in Ref.17.

In this paper, we theoretically formulate the spin-magnon transport by explicitly tak-

ing into account the exchange coupling between the electron spin and magnon in magnetic

metals. The intrinsic strong exchange coupling in itinerant ferromagnets inevitably leads to

substantial magnon current. Even for a uniformly magnetized conducting ferromagnet, an

electric charge current is always accompanied with a magnon current at finite temperature.

Up until now, the study of electric and spin transport has mostly neglected the role of the

magnon current. Experimentally, several measured phenomena such as the spin accumu-

lation and spin transfer directly depend on the total angular momentum current in which

the magnon current is a part of. Other phenomena, such as the GMR and spin Hall effect,

are sensitive to the electron spin current and seemingly independent of the magnon current.

However, we will show that the presence of the magnon current could indirectly modify key

parameters for electron spin transport. Thus, a schematic investigation on the correlation

between spin current and magnon current would lead to a better understanding of angular

momentum transport in general. At present, theoretical studies on the coupling and conver-

sion between magnon and electron spin currents are mostly focused on the interface11,18–22.

The paper is organized as follows. In Sec. II, we derive the coupled electron and magnon

diffusion equations by using the generalized Boltzmann equations for electrons and magnons.

In Sec. III, we apply the diffusion equations to magnetic multilayers. We conclude the paper

in Sec. IV.

II. DERIVATION OF MAGNON AND ELECTRON SPIN DIFFUSION EQUA-

TIONS

We start with a magnetic metal in which the exchange interaction between conduction

electron spin σ and localized magnetic moment Si at site i takes an isotropic form Vint =

−Jsd
∑
i

σ ·Si , where Jsd is given by the exchange integral. In the spin-wave approximation,

Vint is written as23,24

Vint = −

(
Jsd

√
S

2N

)∑
kq

(
a†qc
†
k↑ck+q↓ + aqc

†
k+q↓ck↑

)
, (1)
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where N is the number of atomic sites, S is the spin per site, ck

(
c†k

)
and aq

(
a†q
)

represent

the annihilation(creation) operators for the electron and the magnon. The linearized Boltz-

mann equation for the electrons in a layered structure, in which the spatial dependence is

only one-dimensional, is25,26

vkz
∂fσ (z,k)

∂z
−eE (z) vkz

∂f 0

∂εk
= −fσ (z,k)− fσ (z)

τσ
− fσ (z,k)− fσ′ (z)

τ↑↓
+

[
∂fσ (z,k)

∂t

]
sd

(2)

where fσ (z,k) is the electron distribution function for spin σ =↑, ↓ (or ±), z is the coordi-

nation normal to the plane of the layers, τσ and τ↑↓ represent spin conserving and spin-flip

scattering relaxation times, the overbar on the distribution function is the average over the

momentum k, and the last term is due to the exchange interaction Vint
27–29,[

∂f↑ (z,k)

∂t

]
sd

= J2
sd

πS

N~
∑
q

β
[
1− f 0 (εk+q)

]
f 0 (εk)N0

m

(
εmq
)
δ
(
εk + εmq − εk+q

)
× {[δµ↓ (z)− δµ↑ (z)− δµm (z)] + [g↓ (z,k + q)− g↑ (z,k)− gm (z,q)]}[

∂f↓ (z,k)

∂t

]
sd

= J2
sd

πS

N~
∑
q

β
[
1− f 0 (εk−q)

]
f 0 (εk)

[
N0
m

(
εmq
)

+ 1
]
δ
(
εk − εk−q − εmq

)
× {[δµ↑ (z)− δµ↓ (z) + δµm (z)] + [g↑ (z,k− q)− g↓ (z,k) + gm (z,q)]}

where β = (kBT )−1 is the inverse of the temperature, f 0 and N0
m are the equilibrium

distribution functions of the electron and the magnon, εk and εmq are the dispersion relations

for the electron and for the magnon, and we have separated the distribution functions into

the sum of the equilibrium and non-equilibrium parts

fσ (z,k) = f 0 (k)− ∂f 0(k)

∂εk
[δµσ (z) + gσ (z,k)]

Nm (z,q) = N0
m (q)− ∂N0

m(q)

∂εmq
[δµm (z) + gm (z,q)]

in which non-equilibrium parts are further separated into the isotropic term δµσ,m(z) and

anisotropic term gσ(z,k)[gm(z,q)] with respect to the momentum, i.e.,
∫
dkgσ(z,k) =∫

dqgm(z,q) = 0. We should point out that in the conventional Boltzmann equation for

electrons, the spin-magnon interaction is phenomenologically included as a part of relaxation

times (τs and τ↑↓)
30. The explicit spin-magnon scattering in Eq. (2) would allow us to fully

address both spin and magnon currents.

Similar, the Boltzmann equation for the magnon is

vqz
∂Nm (z,q)

∂z
= −Nm (z,q)−Nm (z)

τm
− Nm (z,q)−N0

m

τth
+

[
∂Nm (z,q)

∂t

]
sd

(3)
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where τm and τth represent the magnon number conserving and non-conserving relaxation

times31, respectively, and the last term is the momentum transfer between electron and

magnon,[
∂Nm(z,q)

∂t

]
sd

= J2
sd

πS

N~
∑
k

β
[
1− f 0 (εk+q)

]
f 0 (εk)N0

m

(
εmq
)
δ
(
εk+q − εk − εmq

)
× {[δµ↓ (z)− δµ↑ (z)− δµm (z)] + [g↓ (z,k + q)− g↑ (z,k)− gm (z,q)]}

Comparing Eq. (2) and (3), we notice that there is no drift term in Eq. (3); this is

because the magnon has no charge and the electric field does not drive the magnon motion.

If no thermal gradient is applied, the magnon current would come from the momentum

transfer from the electron, i.e., the last term in Eq. (3) becomes a source term for the

magnon current.

The solutions of the above Boltzmann equations in multilayered structures depend on

many parameters including the band dispersions, momentum and spin relaxations for elec-

trons and magnons, and also detailed boundary conditions at the interface. Thus, it would

be less physical rewarding to numerically solve the equations. A more physically meaningful

approach is to simplify Eqs. (2) and (3) to a set of macroscopic equations such that the

experimentally measurable quantities can be directly compared with. In the absence of the

electron-magnon coupling, such simplifications have led to a set of spin diffusion equations

of electrons32 which provide a powerful tool to analyze experimental data for the GMR

of magnetic multilayers with the current perpendicular to the plane of the layers33. We

should extend this approach by explicitly taking into account the coupling between spin and

magnon.

Four macroscopic variables are: spin accumulation δns(z), electron spin current js(z),

magnon accumulation δnm(z) and magnon current jm(z).

δns(z) ≡ (2π)−3
∫
dk [f↑ (z,k)− f↓ (z,k)]

js(z) ≡ (2π)−3
∫
dkvkz [f↑ (z,k)− f↓ (z,k)]

δnm(z) ≡ (2π)−3
∫
dq
[
Nm (z,q)−N0

m (q)
]

jm(z) ≡ (2π)−3
∫
dqvqzNm(z,q)

Note that we have used the spin/magnon accumulation in the unit of the particle number

per volume, and spin/magnon current in the unit of the particle number density current.
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To convert into the angular momentum current, charge current, or accumulation, one can

simply multiply the resulting variables by ~, e, or µB. To obtain the macroscopic equa-

tions for these variables, a number of approximations are needed. We provide the detail

of these approximations in Appendix A. The resulting spin-magnon diffusion equations and

the extended Ohm’s law are,

d2

dz2

(
δns (z)

δnm (z)

)
=

 λ−2s λ−2sm

λ−2ms λ
−2
m

( δns (z)

δnm (z)

)
(4)

and (
js (z)

jm (z)

)
= je

(
Ps
Pm

)
+

 −σs σms

σsm −σm

 d

dz

(
δns (z)

δnm (z)

)
(5)

where all coefficients in the above equations are given in the Appendix A. We shall briefly

discuss the physical meaning of these coefficients here. The two lengths λs and λm in Eq.

(4) are spin and magnon diffusion lengths. As usual, λs are related to the geometry mean of

the momentum and spin-flip relaxation times
√
τeτ↑↓ (τ−1e = τ−1↑ + τ−1↓ ) and λm is similarly

related to
√
τthτm. However, due to coupling between spins and magnons, these lengths

are modified by the interactions, see Appendix A. The off-diagonal matrix elements λsm

and λms describe the conversions between the spin and magnon accumulations, and both

λsm and λms are inversely proportional to J2
sd, as expected. The generalized Ohm’s law,

Eq. (5), describes the drift spin/magnon current (first term) by an applied charge cur-

rent je (≡ j↑ + j↓) and the diffusive spin/magnon current (second term) due to spin-magnon

accumulation in an inhomogeneous structure. Clearly, in the absence of spin-magnon cou-

pling, σms = σsm = 0 and Pm = 0 since the electric field cannot drive a magnon current,

and Ps = P0 ≡ (τ↑ − τ↓)/(τ↑ + τ↓) is the spin polarization of the ferromagnet. With the

spin-magnon coupling, both Ps and Pm depend on a number of scattering parameters, e.g.

Jsd, τe, τm, see Appendix A in detail. Finally, the spin-magnon conductivity is a 2×2 matrix

whose diagonal elements are the electron spin conductivity σs and the magnon conductivity

σm, and the off-diagonal element σms (σsm) is the inter-conductivity induced by the exchange

coupling and is proportional to J2
sd.

Equations (4) and (5) are our main results. The diffusion equation, Eq. (4), explicitly

describes how the electron spin diffusion is affected by the magnon diffusion. When there

is no coupling, i.e., λ−1sm = λ−1ms = 0, spin and magnon have their own diffusion lengths.

When the coupling becomes strong, these two length scales become mutually dependent.
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We will study the diffusion properties of the coupled system in layered structure in the later

Sections. The extended Ohm’s law, Eq. (5), indicates a non-zero drift term for the magnon

current Pmje 6= 0. The origin comes from the momentum transfer rather than the angular

momentum transfer from the spin to the magnon. To see this, we consider the case P0 = 0

and we still have a finite magnon current since the first term in Pm would still survive. Then,

the question is how a charge current je without spin polarization induce a magnon current?

The answer becomes obvious when we consider the electron spin and magnon together: the

magnon current induced by momentum transfer of the electron will in turn create a spin

polarization of the electron and thus Ps is no longer zero, as shown in the Appendix A. The

induced Ps, though it is small, is proportional to the electron momentum relaxation time

τe, rather than the spin-flip relaxation times τ↑↓, further illustrating that the momentum

transfer is responsible for creating a magnon current even for P0 = 0.

III. APPLICATION TO THE MAGNETIC MULTILAYERS

A. Two-angular-momentum current model

The conventional two-current model in spintronics34 refers to a charge-current carried

by spin-up and spin-down conduction electrons. For a ferromagnetic conductor such as

NiFe, the spin-up and spin-down electrons have a different density of states at the Fermi

level and a different scattering rate (or relaxation time). One may define a conductivity for

each of the spin channel (up and down) such that the Ohm’s law is applied to each spin

channels. Alternatively, one can introduce a charge current, which is the sum of the two

spin channel currents, and a spin current, the difference of the two. Since the charge current

is conserved, the conventional two current model in fact reduces to just one spin current

model. In the present case, we are dealing with truly two-angular momentum current model:

both electron spin and magnon currents are carrying angular moments and neither of them

is conserved. Next, we shall estimate a relative magnitude of the spin and magnon current

in a conventional magnetic metal.

We show in Fig. 1 the spin current and the magnon current relative to the applied charge

current, Ps = js/je and Pm = jm/je for several plausible parameters closely related to the

transition magnetic metals such as Ni, Co, Fe, and their alloys. As the exchange coupling Jsd
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increases, the magnon current increases, and in a large coupling limiting case, the magnon

current becomes saturated. The saturated magnon current is limited by the magnon scatter-

ing rate: even if the transfer of the spin-magnon is efficient for a large Jsd, the steady-state

magnon current would be a balance between the magnon momentum relaxation and the

momentum transfer from the electron current. On the other hand, the electron spin current

decays as the coupling increases due to increased spin angular momentum loss from the

electron to the magnon. The spin and magnon currents are highly temperature dependent

because the number of magnon carriers increase with the temperature and thus the transfer

between the electron current and magnon current is more efficiency at high temperatures.

From Fig. 1, we conclude that the magnon current is comparable to the spin current at the

room temperature and consequently, the total angular momentum current must include the

magnon current when one studies the angular momentum transfer in multilayered systems,

which we will discuss next.

B. Spin and magnon accumulation in layered structure

In this subsection, we determine the spin/magnon accumulation for a hypothetical bilayer

where two identical ferromagnetic layers are in contact at z = 0, with their magnetization

antiparallel aligned. Experimentally, a thin nonmagnetic layer is needed to separate the

magnetic coupling between two layers such that the antiparallel of the two layers can be

achieved. This simple example would provide insights on the spatial and temperature de-

pendence of the spin and magnon distributions. We should first solve the spin-magnon

diffusion equations, Eq. (4), for each layer

δns (z) = AL exp

(
z

λ+

)
+BL exp

(
z

λ−

)
(6)

for z < 0, and

δns (z) = AR exp

(
− z

λ+

)
+BR exp

(
− z

λ−

)
(7)

for z > 0, where the two characteristic lengths are given by

1

λ2±
=

1

2

(
1

λ2s
+

1

λ2m

)
± 1

2

√(
1

λ2s
− 1

λ2m

)2

+
4

λ2smλ
2
ms

(8)

and AL, BL, AR and BR are four constants of the integration to be determined by the

boundary conditions. The magnon accumulation δnm (z) can be similarly obtained without
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FIG. 1. (Color Online) (a) The ratio of the magnon current to the charge current and (b) The ratio

of the spin current to the charge current, as a function of the exchange coupling magnitude for

several different magnon momentum relaxation times and temperatures. The insert in (a) shows

the temperature dependence at a fixed Jsd/EF = 0.2, and the insert in (b) shows the ratio of

the magnon current to the spin current at a fixed temperature T = 300K. Other parameters are

EF = 5eV , TC = 550K, τe = 7× 10−16s.

a new constant of the integration since δnm (z) can be expressed by δns (z) from Eq. (4),

namely, δnm (z) = λ2sm[δn′′s (z) − λ−2s δns (z)]. By using the extended Ohm’s law, Eq. (5),

the spin and magnon current can also be expressed in terms of these constants. For the

perfect interface, the continuity of the spin and magnon currents and accumulations gives

four boundary equations at z = 0, and thus we are able to completely determine these four

constants (AL, BL, AR and BR) and therefore the position dependent spin and magnon

accumulations and currents. The explicit solution could be found in Appendix B.

In Figure. 2, we show the spatial distribution of the spin and magnon accumulations and
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currents near the interface. When the coupling Jsd/EF is small, the magnon accumulation

and magnon currents are small, as expected. The magnon accumulation increases as Jsd

increases since the source of the non-equilibrium is through the coupling. On the other

hand, the electron spin accumulation decreases due to additional electron relaxations to the

magnon. Interestingly, the magnon accumulation displays a non-monotonic behavior near

the interface. The origin comes from the interplay between two length scales (λ+ and λ−) in

the solution of the accumulation, see Eq. (6)-(8), and Appendix B. The supposition of the

two exponential functions leads to a local extrema at the position between these two lengths.

Similarly, the magnon current also displays a non-monotonic function. The maximum value

could even exceed the value of the uniform layer without the interface.

C. Magnetoresistance

Magnetoresistance of magnetic multilayers for the current perpendicular(CPP) to the

layers has been theoretically modeled using Valet-Fert’s32 spin diffusion equations for elec-

trons at zero temperature where the electron-magnon spin-flip scattering is frozen out. The

essential physics picture is that the spin accumulation creates an additional interface resis-

tance. Since the spin accumulation depends on the magnetization configuration in magnetic

multilayers, the resulting resistance varies with the relative magnetization of each layer. In

the above example of the bilayer, there is no spin accumulation when the magnetizations

of the two magnetic layers are parallel. The maximum spin accumulation is created for the

antiparallel magnetization. Without taking into count the coupling between electrons and

magnons, Valet-Fert’s model immediately leads to a magnetoresistance ∆R, defined as the

resistance difference between the antiparallel and parallel aligned magnetization,

∆R = P 2
0 λsρF (9)

where ρF is the resistivity of the magnetic layer. The above Valet-Fert spin diffusion the-

ory successfully provides an essential method for analyzing the CPP magnetoresistance at

low temperatures33. At higher temperatures, the magnons become important and the above

simple expression breaks down. Indeed, the experimental findings on strong temperature de-

pendence of the CPP GMR35,36 have not been satisfactorily explained. With our formalism,

the electron spin accumulation would be decreased due to electron-magnon angular momen-
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FIG. 2. (Color Online) (a) The position dependence of the spin and magnon accumulation. (b)

the position dependence of the spin current and magnon current. The parameters are the same as

used in Fig. 1.

tum transfer and thus provides a plausible explanation for the temperature dependent GMR.

Unfortunately, the analytical expression of CPP GMR becomes rather cumbersome due to

the multiple diffusion lengths as well as additional scattering channels involving magnons,

see Appendix B. However, the essential physical picture remains intact: the magnetoresis-

tance comes from the additional resistance generated by the spin accumulation which is

strongly affected by the electron-magnon coupling at high temperatures. In Fig. 3, we show

the magnetoresistance as function of the exchange coupling at several temperatures.
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FIG. 3. (Color Online) Magnetoresistance of the magnetic bilayer, normalized to the classical value

without the spin-magnon coupling, as a function of the exchange coupling for several different

temperatures. We have used a temperature-independent relaxation time in order to single out the

temperature dependent contribution from the magnon accumulation.

IV. DISCUSSION AND CONCLUSION

We have established the macroscopic diffusion equations for non-equilibrium electron

spins and magnons of conducting ferromagnets. The essential conclusion is that the magnon

current is always accompanied with the charge and spin electron current. The magnon cur-

rent is the result of the momentum and angular momentum transfer from the conducting

electrons. In magnetic multilayers, both spins and magnons are accumulated near the inter-

faces. As a result, the spin and magnon currents are spatially varying on length scales deter-

mined by multiple scattering mechanisms and by the coupling between spins and magnons.

The spin-magnon diffusion equations can be broadly applied to various spintronics systems.

Experimental determination of our predicted magnon accumulation and magnon currents are

certainly challenging due to the lack of proper experimental tools that can directly couple to

the magnon accumulation. Aside from the indirect methods such as converting the magnon

current to the spin current or the spin transfer torques, directly measuring the magnon ac-

cumulation might be possible as well because the magnon accumulation is much larger than

the electron spin accumulation. At present, the electron or hole spin accumulation is only

measured in a semiconductor system37. For metallic magnets, the spin accumulation is too
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small even for the current density as high as 108A/cm2. The magnon accumulation might

offer a possible route for directly observing the accumulation of the magnetic moment.

This work was partially supported by National Science Foundation under Grant No.

ECCS-1404542.

Appendix A: Spin-Magnon Diffusion Equations and the Extended Ohm’s Law

In this Appendix, we specify approximations and calculations leading to Eqs. (4) and

(5). As shown in [32], a key approximation to obtain a closed form for the macroscopic

diffusion equations is to expand the non-equilibrium distribution functions into polynomial

series Pn, namely, gσ(z,k) =
∑

n g
(n)
σ (z, k)Pn(kz/k) and gm(z,q) =

∑
n g

(n)
m (z, q)Pn(qz/q),

and only keeping the lowest order in expansion(n = 1). In the same limiting cases, such

approximations are justifiable21,31. By summing over k in Eq. (2) for each spin channel, and

by summing over q in Eq. (3), we find, after tedious but straightforward calculations,

d

dz

(
js(z)

jm (z)

)
= −

 τ−111 τ−112

τ−121 τ−122

( δns (z)

δnm (z)

)
(A1)

where the off-diagonal matrix elements of Eq. (A1) depend on the coupling between spin

and magnon and density of states of both quasiparticles. At the temperature much lower

than the Curie temperature, the expression reduces to

τ−112 =

(
Jsd
kBTF

)2
kBT

~

(
TC
T

)1/2

Sα1

and

τ−121 =

(
Jsd
kBTC

)2
kBTC
~

(
T

TF

)1/2

Sα2

where α1 and α2 are numerical constants. The diagonal parts of the matrix elements are

τ−111 = 2
(
τ−1↑↓ + τ−121

)
, τ−122 =

(
τ−1th +

1

2
τ−112

)
.

Next, we multiply vkz on both sides of Eq. (2) and vqz on both sides of Eq. (3) and sum

over momentum, and we find

d

dz

(
δns (z)

δnm (z)

)
=

(
ζ1
ζ2

)
je −

 ζ11 ζ12

ζ21 ζ22

 js(z)

jm (z)

 (A2)
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where

ζ1 =
3

v2F

(
P0τ

−1
e + τ−1em

)
, ζ2 =

1

2Im
τ−1em

ζ11 =
3

v2F

(
τ−1e + τ−1em

TF
T

)
, ζ22 =

1

Im

(
τ−1m + τ−1me

)
ζ12 =

3

v2F
τ−1me , ζ21 =

1

2Im
τ−1em

TC
TF

where

τ−1em =
J2
sd

~ (kBTC)

(
T

TF

)1/2

Sα3

τ−1me =
J2
sd

~ (kBTF )

(
TTC
T 2
F

)1/2

Sα4

and vF is Fermi velocity, the integral is defined as Im =
∫
dq
(
−∂N0

m/∂ε
m
q

)
/
∫
dq
(
−∂N0

m/∂ε
m
q

)
v2qz ,

α3 and α4 are other two numerical constants. From these four equations above we could

easily arrive at the spin-magnon diffusion equations, Eq. (4) and the extended Ohm’s law,

Eq. (5) in the main text. The explicit form of the four length scales in Eq. (4) are

λ−2s = ζ11τ
−1
11 , λ−2m = ζ22τ

−1
22

λ−2sm = ζ11τ
−1
12 + ζ12τ

−1
22

λ−2ms = ζ212τ
−1
11 + ζ22τ

−1
21

and the coefficients in extended Ohm’s law are

Ps =
P0

1 + χs
+

1

(1 + χs) (1 + χm)

τe
τem

Pm =
1

2

1

(1 + χm)

τm
τem

[
1− P0

(1 + χs)

TC
TF

]
σs =

σ0
s

(1 + χs)
, σm =

σ0
m

(1 + χm)

σms =
2

(1 + χs) (1 + χm)

τe
τme

σ0
m

σsm =
1

(1 + χs) (1 + χm)

τm
τem

TF
TC

σ0
s

2

where χs = τe
τem

TF
T

and χm = τm
τme

are unitless quantities which characterize the relative

strength of spin-magnon coupling in momentum scattering relaxation time(both proportional

to J2
sd and also temperature dependent), σ0

s = 2τev
2
F/3 and σ0

m = τmIm are electron spin

conductivity and the magnon conductivity without considering coupling.

14



Appendix B: Characteristic Lengths and Boundary Conditions

The decay length associated with the diffusion equation, Eq. (4), can be readily obtained

by taking the electron spin and magnon accumulations in the form of e±
z
λ such that λ

satisfies the eigenvalue equations,

λ−2
(
δns (z)

δnm (z)

)
=

 λ−2s λ−2sm

λ−2ms λ
−2
m

( δns (z)

δnm (z)

)
the non-zero solutions for δns and δnm lead to two new characteristic lengths in Eq. (8). If

the coupling(Jsd) is 0, λ± reduces to the original spin diffusion length λ0s =
√
v2F τeτ↑↓/3 and

magnon diffusion length λ0m =
√
Imτmτth.

In a ferromagnetic bilayers with magnetization antiparallel aligned, we take the perfect

interface condition as

δnm
(
0−
)

= δnm
(
0+
)

δns
(
0−
)

= δns
(
0+
)

js
(
0−
)

= js
(
0+
)

jm
(
0−
)

= jm
(
0+
)

(B1)

and the general solution of accumulation functions are such

δns (z) = AL exp

(
z

λ+

)
+BL exp

(
z

λ−

)
δnm (z) = αAL exp

(
z

λ+

)
+ βBL exp

(
z

λ−

)
for z < 0 and

δns (z) = AR exp

(
− z

λ+

)
+BR exp

(
− z

λ−

)
δnm (z) = αAR exp

(
− z

λ+

)
+ βBR exp

(
− z

λ−

)
for z > 0, where α = λ2sm

(
λ−2+ − λ−2s

)
, β = λ2sm

(
λ−2− − λ−2s

)
.

The coefficients could be obtained by matching the boundary conditions

AL = AR = λ+je
Ps (σsm − βσm) + Pm (σs − βσms)

(α− β)σsσm
(B2)

BL = BR = −λ−je
Pm (σs − ασms) + Ps (σsm − ασm)

(α− β)σsσm
(B3)
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then the magnon accumulation, spin current and magnon current would be further deter-

mined.

From the Boltzmann equations we could also get an expression for electron current je

as a total derivative with respect to electron accumulation δne(z) (which proportional to

the summation of electrochemical potentials of two spins), spin accumulation δns(z) and

magnon accumulation δnm(z)

je =
d

dz
[σeδne(z) + σseδns(z) + σmeδnm(z)] (B4)

By using the continuity requirement of charge current across the interface, we find the

magnetoresistance would be

δR =
σse
σe

(AL +BL) +
σme
σe

(αAL + βBL)

≈ P0

1 + χs
(AL +BL) +

1

1 + χm
(αAL + βBL) (B5)

the first term means the magnetoresistance would be largely reduced because both spin

polarization and accumulation at interface would be smaller than the case without coupling,

and the second term is high order effect coming from the magnon accumulation would in

turn convert back into electron spin accumulation.
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