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The low temperature properties of spin 1/2 one-dimensional (1D) Heisenberg 
antiferromagnetic (HAF) chains which have relatively small exchange couplings between 
the spins can be tuned using laboratory-scale magnetic fields. Magnetization 
measurements, made as a function of temperature, provide phase diagrams for these 
systems and establish the quantum critical point (QCP). The evolution of the spin 
dynamics behavior with temperature and applied field in the quantum critical (QC) 
region, near the QCP, is of particular interest and has been experimentally investigated in 
a number of 1D HAFs using neutron scattering and nuclear magnetic resonance as the 
preferred techniques. In the QC phase both quantum and thermal spin fluctuations are 
present. As a result of extended spin correlations in the chains, magnon excitations are 
important at finite temperatures. An expression for the NMR spin-lattice relaxation rate 
1/T1 of probe nuclei in the QC phase of 1D HAFs is obtained by considering Raman 
scattering processes which induce nuclear spin flips. The relaxation rate expression, 
which involves the temperature and the chemical potential, predicts scaling behavior of 
1/T1 consistent with recent experimental findings for quasi-1D HAF systems. A simple 
relationship between 1/T1 and the deviation of the magnetization from saturation (MS-M) 
is predicted for the QC region. 
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The intriguing physical properties of one-dimensional (1D) Heisenberg antiferromagnet (HAF) systems 

which display quantum critical (QC) behavior and a quantum critical point (QCP) have been extensively 

discussed in the literature [1-5]. The ground state of a1D HAF spin S =1/2 chain, in a field somewhat 

lower than the QCP value 0 CHμ , is identified as aTomanaga-Luttinger-liquid (TLL). The TLL phase is 

characterized by spinon quasiparticles and spin correlation functions which exhibit quasi-long-range 

power law decay [6-9]. In addition, a TLL state is found in the gap-closed phase of the spin S = 1 Haldane 

chain. The QC phase, which is present at finite temperatures in the vicinity of the QCP, is of particular 

interest. In the QC region magnon excitations are important in accounting for changes in the magnetic and 

thermal properties with temperature and applied field. QC scaling behavior of the magnetization and other 

thermodynamic quantities is expected as a consequence of the key role played by the temperature in 

determining the energy scale [7-9].  

 

Experimental investigations of the magnetization near the QCP have been carried out on a number of 1D 

HAF prototype systems such as Cu(C4H4N2)(NO2)3 (CuPzN) [8, 9] and the results are found to be 

consistent with scaling predictions. In addition, the dynamical properties of systems of this type have 

been studied using, primarily, neutron scattering [10-13] and nuclear magnetic resonance (NMR) [7,14-

23]. These techniques provide information on changes in the spin dynamics close to the QCP. Low 

temperature NMR relaxation rates 1/T1 have, in particular, been shown to exhibit scaling based on a 

relationship involving empirical exponents which are determined in the data fit process [7]. In this note an 

expression is obtained for the temperature and magnetic field dependence of 1/T1 for a probe nucleus in a 

1D HAF near the QCP by considering Raman magnon scattering processes in the QC phase. For a fixed 

applied field a scaling relationship for 1/T1 follows from the analysis. 

The Hamiltonian for a 1D spin1/2 HAF is given by 

            1 0
z

i i B ii i
J g H Sμ μ+= ⋅ −∑ ∑SH S S ,                                                                                                 (1) 
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where J is the nearest neighbor (NN) intrachain exchange interaction for spins labeled i and j, Bμ is the 

Bohr magneton, and g the electron g-factor.  Figure 1 shows a generic phase diagram for a HAF system of 

the type described by Eq. (1). The diagram is plotted using dimensionless reduced field H/HC , and 

reduced temperature kBT/J, variables where 0 CHμ is the critical field. The straight lines separating the 

various regions represent crossovers between the TLL and QC phases for H < HC and between gapped 

and QC phases for H > HC. For kBT/J > 0.5 the quantum fluctuations become less important and the 

system transitions to paramagnetic behavior with increasing temperature. A detailed treatment of cross-

over behavior in antiferromagnetic (AF) systems is given in Ref.24. The phase diagram in Fig. 1 does not 

include possible 3D AF order that may occur at low temperature, in low applied fields, as a result of weak 

interchain interactions with inter intraJ J . The Nćel temperature is suppressed in large applied fields 

which approach the saturation field in the vicinity of the QCP. Interchain interactions are therefore not 

considered in the present work which focuses on the QC phase. 

 

In the QC region of a 1D HAF it is straightforward to derive an expression for the number of magnons, 

Nm , in a chain of length L in terms of the temperature and the chemical potential ( )0 B Cg H Hμ μ μ= − . 

Introducing the wave vector k, the magnon number is given by 
0

( ) ( )m kN dk k fρ ε μ
∞

= −∫ . The Fermi 

distribution function ( )kf ε μ− is used because of the equivalence of a dilute1D Bose gas of magnons to 

a Fermi gas [5, 8]. The quadratic dispersion relation 2 2( ) 2k k mε = h  applies, with 2m J= h the 

effective mass [8]. The 1D density of states is given by ( )k Lρ π= . In terms of the variable 

2 2 2 Bx k m k T= h the following expression for the magnon density mN L  is obtained: 

                            20

2
1B

m B
x k T

N k T dx
L J e μπ −

∞

−
=

+∫ .                                                                                          (2) 
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The magnon contribution to the magnetization M is linked to mN  and this connection leads to the 

following expression for the difference between M and the saturation magnetization MS  [5, 8, 9],  

              ( ) 20

2
1B

B
S x k T

k T dxM M
J e μπ −

∞

−
− =

+∫  .                                                                                 (3) 

Equation (3) provides the basis for scaled plots of ( )SM M T−  vs. Bk Tμ  in the QC region for a 

particular system as shown recently for Cu(C4H4)(NO3)2 [9]. 

 

The bounds of the QC phase, which are indicated by the crossover lines in Fig.1, are established in terms 

of the chemical potential μ as follows. For H < HC the magnon density given in Eq.(2) passes through an 

extremum at temperature Tm = 0.76238 Bkμ which determines the QC –TLL crossover [6,8]. For H > HC 

an excitation gap is established and the crossover temperature to the QC region, as shown in Fig. 1, is 

taken as g BT kμ= corresponding to significant occupation of states above the gap for T > Tg . 

 

A scaling relationship for the NMR spin-lattice relaxation rate, 1/T1, is readily obtained for the QC phase 

of a 1D HAF if it is assumed that magnon scattering processes provide the relaxation mechanism in this 

region. The result obtained applies close to the QCP where 0Hμ  produces quasi-ferromagnetic spin 

order. The Hamiltonian for electron spins S is given in Eq. (1) and that for nuclear spins I in an applied 

field 0B Hμ=  is I I nn
γ= − ⋅∑hH  nB I  with Iγ the nuclear gyromagnetic ratio. The field nB  is the 

vector sum of the applied field B and the average local hyperfine field at nucleus n. It is convenient to 

assume that the general form of the Hamiltonian ⋅ ⋅S A I , in which A is the hyperfine tensor describing 

the electron-nucleus spin interaction, can be replaced by the scalar form A ⋅I S  with the effective 
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hyperfine field making an angle θ with respect to the applied field direction. In this description, it is 

thermally induced fluctuations in the hyperfine component sinA A θ⊥ =  that gives rise to transitions 

between the nuclear spin states [25-27]. For spins S = 1/2, the anisotropy can arise as a result of dipolar 

interactions between I and S spins as discussed below. 

 

Time dependent perturbation theory gives the following expression for the transition rate W between 

electron-nuclear spin states i and f produced by an interaction intH : 

                    '

2

int
2 ( )i f

f

W f iπ δ ε ε= −∑
h

H .                                                                                    (4) 

The δ function ensures energy conservation with neglect of the small energy ( 1 eVμ ) associated with a 

nuclear spin flip induced by the magnon scattering process. An expression for the spin-lattice relaxation 

rate is obtained by adapting the approach used in discussing nuclear spin-lattice relaxation due to Raman 

magnon scattering processes in three dimensions [25-27]. This involves use of the Holstein-Primakoff 

transformation with retention of just the term in the interaction which corresponds to the creation of a spin 

wave with wave vector ′k and the destruction of a spin wave with wave vector k . This approach gives 

the interaction Hamiltonian as [27], 

                 ( ) '
†

int ,
exp[ ]

2 kk

A I i a a
N

+⊥= ⋅∑H   ' ik k
k - k' r ,                                                                                    (5) 

where N is the number of spins in a chain, I + the nuclear spin raising operator, ir the position of spin i and 

'
†
k

a and ka , the spin wave creation and annihilation operators respectively.  
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For a 3D FM material the number of magnons, nk, in a given energy state is given by the Bose-Eistein 

(BE) distribution function. In marked contrast, 1D HAF chains in the QC phase have the magnon number 

given by the Fermi-Dirac (FD) distribution as pointed out above. A given energy state for a QC 1D HAF  

can be either empty or singly occupied. In a nuclear relaxation magnon scattering process the change in k 

is extremely small and, to a very good approximation, k k ′= . It follows that the exponential factor in Eq. 

(4) reduces to unity with the final state taken as equivalent to the initial state. The FD distribution is used 

together with the density of states in the sum over states in Eq.(4).  

 

Using Eqs. (4) and (5), with summations over k replaced by integrals, the following expression for W in 

a1D HAF close to the QCP is obtained:  

                
max max

'

2
' '

0 0

2 ( ) ( ) ( ) ( )
2

k k

k k k

AW dkdk k k f
L

π ρ ρ ε μ δ ε ε⊥⎛ ⎞= − −⎜ ⎟
⎝ ⎠ ∫ ∫h

.                                         (6) 

Much of the notation is the same as that used in obtaining Eq.(2) with maxk the band edge value of k. 

Making use of the relation 1 21 T W= gives the relaxation rate as:  

                 2

2

0
1

41
1B

B
x k T

A k T dx
T J J e μπ

∞
⊥

−
=

+∫h
,                                                                                                        (7) 

with 2 2 2 Bx k m k T= h as before. The upper limit in the integral has been extended to infinity by 

assuming Bk T J< . It is convenient to introduce the frequencies E Jω = h and I Aω ⊥= h in order to 

write Eq. (7) in the form: 

              
2

1

41 I B

E B

k T F
T J k T

ω μ
πω

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
.                                                                                                                    (8) 
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Equation (8) allows estimates to be made of 1/T1 in 1D HAFs as described below. Values of the function, 

2

0
( ) ( 1)Bx k T

BF k T dx e μμ
∞ −= +∫ , are obtained by numerical integration. 

 

In order to make estimates of the parameter Iω in a particular HAF system it is necessary to consider the 

electron-nucleus interaction component A⊥ . In AF insulators it is often found that NMR experiments 

involve nuclei in non-magnetic spectator ions and not the nuclei of the magnetic ions themslves. This is 

because the magnetic ion nuclei experience fluctuations in the large contact hyperfine field and therefore 

have very short transverse and longitudinal relaxation times which make them unobservable in spin echo 

experiments. For NMR measurements involving spectator nuclei the electron spins S and the nuclear 

spins I may be coupled by transferred hyperfine interactions, with the form as given above in terms of A⊥

. In cases where the probe nuclei are not in the exchange path it is likely that the dipolar interaction is of 

dominant importance. It is possible that a combination of both transferred hyperfine and dipolar 

mechanisms apply in a particular material. In the dipolar case nuclear spin flips induced by the terms in 

the dipolar Hamiltonian dipH  which involve the raising or lowering I spin operators I + and I − . These 

terms have the form ( ) 33
2 sin cos expB I zg i S I rμ γ θ θ φ ±− −h where θ and φ specify the orientation of 

the vector of length r connecting the spins [28, 29]. A summation over S spins is in general required in 

order to obtain an estimate of the fluctuating hyperfine field in a particular system. Procedures of this kind 

have been used, for example, for CuPzN [15]. In the present general discussion of magnon-induced 

nuclear relaxation Iω is treated as a parameter. 

 

From Eq. (8), the predicted behavior of 1/T1 as a function of T and B in the QC phase of a 1D HAF can be 

examined. Figure 2 is a dimensionless plot of C/T1 vs. H/HC where 24E IC πω ω= , and 
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01C B CH H g Hμ μ μ= − , with 0 ( )CH Hμ − in the range 0.3 to -0.3T. The plot takes BJ k = 10 K 

and E Jω = h = 1.3 x1012 s-1. The critical field 2C BB J gμ=  is ~15 T for a spin1/2 HAF. An estimate 

of the order of magnitude of Iω is obtained by assuming that the dipolar interaction between I and S spins 

is of dominant importance in the nuclear relaxation process. Taking 2Iγ π ~ 10 MHz T-1 leads to 

6 7~ 10 10Iω − s-1. For convenience a value C = 1 is used in the plot. Thus, knowledge of J , together 

with an estimate of Iω , provides the basis for quantitatively predicting NMR relaxation rate behavior 

with temperature  in the QC phase near the QCP of a 1D HAF chain. 

 

It is interesting to note that the predicted forms for the relaxation rate variation with temperature given in 

Fig. 2 are very similar to the experimental behavior  obtained in the vicinity of the QCP for the  quasi-1D 

systems  NiCl2-4SC(NH2)2  (DTN) and (C5H12N)2CuBr4 (BPCB) presented in Ref.7. DTN has spin 1 

chains while BPCB is a spin -1/2 ladder. It is argued that both systems are effectively spin-1/2 XXZ 

chains with anisotropic coupling JZ/JXY = 0.5 [7]. The scaling procedure which is applied to the DTN 

proton relaxation rate data in Ref.7 involves a plot of 11 T T α  vs. ( )CB B T β−  using empirical 

exponents α and β . Best fit procedures give α = 0.46 ± 0.12 and 1.00 0.24β = ± . It follows from the 

form of Eq. (8) that the 1/T1 values in the QC phase of a 1D HAF should exhibit scaling behavior with T 

using ( )BF k Tμ as the scaling function. The experimental results are therefore consistent with the 

magnon scattering model in which the exponents are determined asα =1 /2 and β = 1. 

 

Figure 3 shows the magnon-induced behavior of 1/T1 as a function of Bk Tμ given by Eq. (8), again for 

24E IC πω ω= = 1 and J / kB = 10 K. A particular value of μ is used corresponding to a field slightly 
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below 0 CHμ . The values obtained for 1 / T1 are ~ 0.15 – 0.3 s-1 for the constant C that is used. A smaller 

value for C (larger 2
Iω ) will increase the relaxation rate. The inset in Fig. 3 is a plot of values of the 

scaling function ( )BF k Tμ  vs. Bk Tμ .  

 

 It is interesting to compare the relaxation rates for the two quasi-1D systems discussed in Ref. 7. At 1 K 

for B ~ BC , the protons in DTN have 1/T1~100 s-1 while for 14N  in BPCB 1/T1~1 s-1  . Assuming that 

dipolar interactions are of primary importance for spin-lattice relaxation in both systems, it follows that 

the square of the ratio of the proton and carbon-13 gamma values 1 14 2( / )γ γ ≈  600 is sufficiently large 

to more than account for the ratio of the measured 1/T1 values. It is necessary to bear in mind in testing 

data collapse predictions, involving temperature scaled data plots for a particular system, that it is 

implicitly assumed that the frequency Iω , which is proportional to the amplitude of the fluctuating 

hyperfine field at the nuclear sites, remains constant for the limited range of fields and temperatures 

considered in the QC region.  This assumption may not hold sufficiently well in some cases.  

 

A comparison of Eqs.(3) and (8) shows that a relationship exists between the magnetization  deviation 

from saturation ( )SM M−  and the spin-lattice relaxation rate in the QC phase of a 1D HAF.The 

relationship has the simple form ( )11 ST M MΚ= − with Κ  a T-independent material specific 

constant. This interesting prediction, which follows from the NMR relaxation rate being proportional to 

the magnon density, should be tested by making 1/T1 and M measurements on a selected 1D HAF 

material. 
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The present analysis has focused on the NMR relaxation rate behavior in the QC region near the QCP of a 

1D HAf as shown in Fig. 2. As the temperature is raised beyond 0.5 J/kB thermally induced paramagnetic 

spin fluctuations become increasingly important giving 1 01 T T χ∝ with 0χ the static susceptibility [14]. 

In the TLL phase in which spinon excitations determine the relaxation rate it has been shown that 

0.5
11 T T −∝ [17,20, 21]. Scaling behavior of 1/T1 with T has been examined in detail for the TLL phase as 

described for example in Ref. 30. In favorable cases it should be possible to follow the changes in the 

NMR relaxation rate dependence on temperature as crossovers occur from paramagnetic to QC or TLL 

regions of the phase diagram. It is clear that in 1D systems, including spin ladders and S = 1 Haldane 

chains with closed gaps, NMR provides a powerful means for exploring the crossover behavior. The 

magnon scattering model should be useful in analyzing muon spin-relaxation results obtained in μSR

experiments on QC systems [31].  

 

In conclusion, it is shown that magnon scattering processes, accompanied by nuclear spin flips, provide 

an NMR spin-lattice relaxation mechanism which is of dominant importance in the QC phase of a 1D 

HAF. The expression obtained for the relaxation rate involves the temperature, which sets the energy 

scale, and the chemical potential which determines the proximity to the QCP. In order to make 

quantitative predictions of relaxation rates it is necessary, firstly, to determine the QCP field 0 CHμ , and 

hence the exchange interaction J , and, secondly, to make an estimate of the fluctuating hyperfine field 

experienced by the nuclei used to probe the electron spin dynamics.   Predictions based on the relaxation 

rate expression are found to be in broad agreement with experimental findings for two quasi-1D systems.  
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Figure captions 

FIG. 1 (color online). Representative phase diagram for a 1D HAFin a dimensionless representation  

kBT/J  vs. Bk Tμ where J is the exchange coupling between NN spins and 0 ( )B Cg H Hμ μ μ= − is the 

chemical potential. . The QCP occurs at 0μ = and the straight lines which meet at this point represent 

crossover boundaries between TLL, QC and gapped phases as indicated. For kBT/J  > 0.5 the system 

transitions to its paramagnetic phase with rise temperature. 

 

FIG. 2 (color online). Predicted behavior, based on Eq. (7), of the scaled NMR spin-lattice relaxation rate 

C/T1 as a function of temperature in the QC phase for a 1D HAF. A Raman scattering mechanism is used 

in deriving Eq. (8). The parameter 21 /(4 )I EC ω πω=  where I Aω ⊥= h , with A⊥ the amplitude of 

transverse component of the fluctuating hyperfine interaction, and E Jω = h . In the plot it is assumed, for 

convenience, that C = 1 and BJ k =10 K. If NMR probe nuclei do not lie in superexchange paths the 

hyperfine coupling is likely to be dominated by the dipolar interaction between S and I spins. 

 

FIG. 3 (color online).The predicted NMR spin-lattice relaxation rate 1/T1 as a function of Bk Tμ for two-

magnon scattering processes in the QC phase of a 1D HAF obtained using Eq. (8).  A particular value of

μ , just below the QCP, is used, corresponding to ( ) 0.01C CH H H− = , with C = 1, and BJ k = 10 K. 

The inset shows a plot of the scaling function ( )BF k Tμ  vs. Bk Tμ  for the same μ value.       
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