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We study the dynamics of an ordered hexagonal monolayer of polystyrene microspheres adhered
to a glass substrate coated with a thin aluminum layer. A laser-induced transient grating technique
is employed to generate and detect three types of acoustic modes across the entire Brillouin zone
in the Γ-K direction: low-frequency contact-based modes of the granular monolayer, high-frequency
modes originating from spheroidal vibrations of the microspheres, and surface Rayleigh waves. The
dispersion relation of contact-based and spheroidal modes indicates that they are collective modes of
the microgranular crystal controlled by particle-particle contacts. We observe a spheroidal resonance
splitting caused by the symmetry breaking due to the substrate, as well as an avoided crossing
between the Rayleigh and spheroidal modes. The measurements are found to be in agreement with
our analytical model.

I. INTRODUCTION

Vibrations of periodic arrays of spheres interacting
via Hertzian contacts initially attracted attention fol-
lowing the discovery of solitary wave propagation in the
“sonic vacuum” regime of a 1D chain of uncompressed
spheres1,2. Subsequent studies were extended to 2D
and 3D systems and yielded an array of novel acoustic
phenomena3. Granular crystals, as these systems became
known, can be considered a class of phononic crystal4

with unique behavior specific to granular media. For in-
stance, in addition to nonlinear effects such as solitons
and discrete breathers2,3, unusual linear phenomena such
as the existence of rotational acoustic modes have been
revealed5,6. Due to the nonlinearity of Hertzian contacts,
the acoustic properties of granular crystals can be easily
tuned, for example by applying static compression, which
makes them attractive for potential applications3.
Until very recently, granular crystal studies were con-

ducted with macroscopic particles such as ball bearings.
A new frontier was opened by laser-based experiments
on 2D self-assembled monolayers of micron-sized parti-
cles on a solid substrate7–11. These experiments revealed
the crucial role of adhesion, which is negligible for large
particles but becomes an important factor in determin-
ing the contact stiffness at the microscale. The initial
efforts focused on the vertical contact resonance of mi-
crospheres, arising due to contact with the substrate,
and its interaction with surface acoustic waves (SAWs).
In these initial studies, the observed phenomena, such
as an avoided crossing in the Rayleigh SAW dispersion7

and the resonant attenuation of SAWs by microspheres9,
could be well accounted for by a simple model where mi-
crospheres did not interact with each other7. Refined
measurements of the resonant attenuation of SAWs re-
vealed horizontal-rotational modes enabled by interpar-
ticle interactions10. However, none of the experiments
performed on self-assembled microgranular monolayers

were done on a “single crystal” sample with long-range
order extending over distances comparable to the mea-
surement spot size. The observed phenomena were lim-
ited to the regime in which the acoustic wavelength was
much greater than the sphere size and the long-range pe-
riodic order was not essential. The purpose of this work
is to study vibrational properties of a well-ordered “single
crystal” lattice of microspheres, i.e., a true 2D microscale
granular crystal.
An analogy can be drawn between a 2D granular crys-

tal and a 2D lattice of atoms such as graphene. How-
ever, there is an important difference, as vibrations of a
granular monolayer involve rotations of the spheres10,12.
Spheres also have internal mechanical degrees of free-
dom; consequently, in addition to contact-based modes,
one would expect to see collective modes originating
from spheroidal vibrations of the spheres13. The pres-
ence of the substrate significantly alters the dispersion
of contact-based modes14 and adds Rayleigh SAWs in
the substrate, which interact with the vibrational modes
of the monolayer10,14. In this work, we characterize the
dispersion of these three types of modes (contact-based,
spheroidal, and Rayleigh) and their interaction across the
entire Brillouin zone (BZ) for a chosen high symmetry di-
rection of a 2D microgranular crystal.

II. METHODOLOGY

A. Sample description

Our sample is a 2D monolayer of 1.5±0.023µm diame-
ter polystyrene spheres adhered to a float glass substrate
coated with a 100 nm aluminum film. The microspheres
are arranged in a highly ordered hexagonal lattice shown
in Fig. 1(a). The sample preparation followed the ap-
proach described by Retsch et al.15. Briefly, a 3 wt% dis-
persion of particles in ultrapure (MiliQ) water was spin
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coated on a cationically functionalized glass slide at a
speed of 4000 rpm. The particle-coated substrate was
slowly immersed into a 0.1 mM SDS solution in MiliQ
water, which was adjusted to pH 12 with aqueous amo-
nium hydroxide solution. The particles were assembled
at the air/water interface into a freely floating monolayer,
which was finally transferred to an aluminum coated glass
substrate and dried in air.

B. Experiment

A laser-induced transient grating technique16,17 was
used to excite and probe acoustic modes of the struc-
ture. Two excitation pulses derived from the same laser
source (515 nm wavelength, 60 ps pulse duration, 0.6µJ
total energy at the sample, 860µm spot diameter at 1/e2

intensity level) were overlapped at the sample as shown
in Fig. 1(b), forming an interference pattern of period
λ. Absorption of the laser light by the aluminum film in-
duced rapid thermal expansion, which generated counter-
propagating acoustic modes with wavelength λ17. The
wavelength can be varied by switching the diffraction
grating pattern used to produce the excitation beams
pair and fine-tuned by tilting it18. The detection of
acoustic vibrations was accomplished via diffraction of a
quasi-cw probe laser beam (532 nm wavelength, 200µm
spot diameter, 160mW power at the sample) with op-
tical heterodyne detection19,20. The optical diffraction
pattern from the microspheres was monitored, as shown
in Fig. 1(c), to ensure that the laser spot was located
in a highly ordered area, and to align the acoustic wave
vector along the Γ-K direction of the reciprocal lattice as
shown in Fig. 1(d).
Figure 2(a) shows typical signal waveforms measured

at three different acoustic wave vectors. The correspond-
ing Fourier spectra shown in Fig. 2(b) reveal the pres-

(b)

100 nm aluminumz

(a)

(d)

(c)

FIG. 1. (a) Scanning electron microscope image of the mi-
crosphere monolayer. (b) Schematic of the experiment. (c)
Diffraction pattern produced by the probe laser beam in re-
flection. (d) Reciprocal lattice and the first BZ of the micro-
granular crystal; red-line shows the wave vector range used in
the experiment.

ence of many acoustic modes. By plotting the identified
frequencies for each wave vector21, we obtained the dis-
persion curves shown in Fig. 2(c). Three different types
of acoustic modes can be identified: a mode labeled R
with a nearly constant dispersion slope corresponding to
the SAW velocity of the substrate; low frequency modes
(HR, V, RH) with weaker frequency dependence, which
we identify as contact-based modes14 and high frequency
nearly flat branches (S) corresponding to spheroidal vi-
brational modes of the spheres.
The Rayleigh mode dispersion is “zone-folded” at the

BZ boundary (in Fig. 2(b) this zone-folding is seen in the
presence of two Rayleigh peaks at q = 1.7µm−1). The
zone-folding of the SAW dispersion at the expected loca-
tion of the BZ boundary in the Γ-K direction confirms
the “single crystal” structure of the sample and the cor-
rect orientation of the acoustic wave vector with respect
to the microsphere lattice. Otherwise the SAW is virtu-
ally unaffected by the microspheres, with the exception
of avoided crossings discussed below.

III. CONTACT-BASED MODES

Figure 2(d) presents a more detailed view of the dis-
persion of low frequency contact-based modes. The mode
labeled V corresponding to the most prominent peak in
the spectra, as shown in Fig. 2(e), has been previously
identified as the vertical contact resonance mode7,9,10.
Fig. 2(e) also shows small peaks to either side of the
V mode peak which we assigned to horizontal-rotational
modes labeled HR and RH following Ref.14. The avoided
crossing between the vertical resonance mode and the
SAW, studied in previous works7,9, is just outside the
wave vector range of our measurements. In the absence
of inter-particle interactions, the contact resonance fre-
quency, past the avoided crossing with the SAW, is ex-
pected to be independent of the wave vector7. The inter-
action between microspheres should result in dispersion,
predicted in Ref.14 but not observed in previous studies
due to the lack of long-range order in the samples. As
can be seen in Fig. 2(d), our data clearly show the ex-
pected dispersion, indicating that we observe a collective
mode of the microgranular crystal rather than vibrations
of non-interacting particles.
A model describing vibrations of a monolayer of

spheres on a substrate accounting for both sphere-
substrate and sphere-sphere contacts has been developed
for a square lattice14 and subsequently modified for a
hexagonal lattice22. The model yields three vibrational
modes polarized in the sagittal plane23; one of them
predominantly involves vertical displacements while the
other two have primarily horizontal-rotational character.
The diffraction of the probe beam is most sensitive to the
vertical mode, which is the most prominent in the data.
The model treats the sphere-substrate and sphere-

sphere contacts as normal and shear springs, with spring
constantsKN , KS corresponding to sphere-substrate and
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FIG. 2. (a) Signal waveforms for three different wave vectors and (b) corresponding Fourier spectra. Peaks labeled V and R
correspond to the vertical contact resonance mode and SAWs, respectively. Spheroidal modes are labeled S0, S2, S3, S4 according
to their angular number L. (c) Measured dispersion of different modes labeled as in (b). Blue dashed line corresponds to SAW
velocity for the substrate, red vertical dashed line corresponds to the BZ boundary. The dashed-dotted line corresponds to the
transverse velocity of the substrate csT . (d) Dispersion in the range 0.05− 0.3GHz. Solid markers represent the predominantly
vertical V mode, smaller hollow markers the horizontal-rotational HR and RH modes. Dashed-dotted lines are theoretical
calculations. Horizontal arrow indicates the maximum SAW attenuation. (e) Fourier spectra for two representative wave
vectors showing the HR and RH peaks.

GN , GS to sphere-sphere contacts, where subscripts N
and S refer to normal and shear, respectively. For a
Hertz-Mindlin contact24, the ratio of normal and shear
spring constants is determined by the elastic constants of
the contacting materials22. Thus the model only has two
independent parameters, KN and GN .
We calculated the dispersion by fitting the experimen-

tal data of the V mode with the theoretical model22,
using the contact stiffnesses KN and GN as fitting pa-
rameters. Since the HR and RH peaks are much smaller
and noisier compared to the V mode, we felt that their
assignment to the respective dispersion branches needs
to be verified. Therefore we only used the V mode in
the fitting procedure; small HR and RH peaks were not
used. The calculated results are shown in Fig. 2(d) as
dashed-dotted curves25.
The fitted values of the contact stiffnesses are KN =

864N/m, and GN = 135N/m. The corresponding shear
stiffness values are KS = 684N/m and GS = 106N/m.
As in prior studies10, the sphere-substrate contacts are
found to be stiffer than the sphere-sphere contacts.
The calculated dispersion curves confirm the assign-

ment of the HR and RH branches. In particular, the cal-
culated HR branch is in good agreement with the mea-
sured peaks. The calculated RH branch, on the other
hand, is lower than the measured values. As can be seen
in Fig 2(e), the RH peak is fairly broad; the discrepancy
between the calculated and measured values is within
the peak width, although the precision of the peak posi-
tion measurement that can be assessed from the point-to-
point scatter in the data is better than the peak width.
The discrepancy can be caused by inaccuracy of the
Hertz-Mindlin contact model due to, for example, sur-
face roughness or bending rigidity.

RH

HR

V

FIG. 3. Relative amplitudes of the displacements and ro-
tations for each contact-based vibrational mode. Z and X

denote the amplitudes of the vertical and horizontal displace-
ments of the spheres, while Θ denotes the amplitude of the
“rotational displacement”, i.e. the product of the rotation
angle and the sphere radius. The amplitudes are normalized
such that Z2 +X2 +Θ2 = 1.

Figure 3 shows relative contributions of the sphere dis-
placements and rotations for each contact-based mode
across the BZ. These modes correspond to the calculated
dispersion curves (V, HR, RH) shown in Fig. 2(d). It can
be observed that the V mode involves predominantly ver-
tical displacements while the HR and RH modes involve
mainly horizontal and rotational motion of the spheres.
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We also found indirect evidence of an intersection be-
tween the RH and SAW branches in the increased attenu-
ation of the latter. As shown in Fig. 4, the Rayleigh peak
width in the Fourier spectrum has a distinct maximum
at 235MHz, while the model predicts the branch crossing
at 223MHz. We note that the presence of such resonant
attenuation is consistent with previous observations10.
Having determined the sphere-substrate contact stiff-

ness, we estimate the width of the SAW bandgap at the
BZ boundary. Treating contact springs as a periodic per-
turbation, we obtained the following expression for the
width of the bandgap (see Appendix A),

∆ =
KN − χ2Ks

2ωRMAC

, (1)

where AC is the unit-cell area, ωR is the (unperturbed)
SAW frequency at the BZ boundary, χ is the elipticity
of the SAW and M is a constant defined in Ref.26. The
calculated bandgap width is 1.85MHz, which is much
smaller than the Rayleigh peak width (∼ 16MHz) and
hence cannot be resolved in our measurements; this ex-
plains why no bandgap in the SAW dispersion at the BZ
boundary is visible in Fig. 2(c).

IV. SPHEROIDAL VIBRATIONAL MODES

A. Sphere-substrate interaction

Turning our attention to the flat branches in the
frequency range 600 - 1500MHz, we attribute them to
spheroidal vibrations of the microspheres27–29, corre-
sponding to four spheroidal modes labeled SL with angu-
lar numbers L = 0, 2, 3, 4, and radial number n = 0. Ta-
ble I shows measured and calculated frequencies of these
modes averaged over the entire wave vector range. The
calculations were done for an isolated sphere on a sub-
strate: we start by calculating the spheroidal mode of
a free-sphere27,28, then account for the contact with the
substrate using a perturbation approach22. The calcula-
tions required the density and acoustic velocities (longi-
tudinal and transverse) of polystyrene, as well as sphere-

(a) (b)

FIG. 4. (a) SAW Fourier peaks in the frequency range
200 - 270MHz. (b) FWHM of Fourier peaks versus SAW fre-
quency. Peak broadening indicates resonant absorption of
SAWs centered at 235MHZ.

TABLE I. Measured frequencies (in MHz) for observed
spheroidal modes and calculated frequencies for an isolated
sphere with and without interaction with the substrate.

Mode Measured freq. Sphere/substrate Free-sphere

S0 1351±4 1351 1347

Sm=0
2 700± 5 689 660

Sm=1
2 662± 2 667 660

S3 1007 ± 5 1020 983

S4 1295 ± 4 1305 1262

substrate spring constants KN and KS, previously ob-
tained from the dispersion of the vertical contact mode.
The density of polystyrene ρ = 1.04 g/cm

3
was provided

by the particle supplier, but the precise values of acous-
tic velocities were unknown, as for a polymer these may
depend on the manufacturing procedure. Therefore, we
treated the acoustic velocities as fitting parameters. Our
fitted values cL = 2323m/s and cT = 1174m/s are in
agreement with previously reported values29.

B. Mode splitting

As shown in Table I, the calculations including the
substrate effect are quite close (within 1.5%) to the mea-
sured values. Our calculations account for the splitting
of the S2 mode seen at large wave vectors in Fig. 2(c)
and shown in detail in Fig. 5. We ascribe this split-
ting to degeneracy lifting between modes with different
azimuthal numbers m due to interaction with the sub-
strate. In the case of free-sphere vibrations, a mode SL

has 2L + 1 fold degeneracy with an azimuthal number
m = −L, ..., L for each degenerate mode. The n = 0, S2

mode of the free-sphere yields 5 degenerate modes with
m = 0, ±1, ±2. For Sm=0

2 , the sphere surface displace-
ment at the contact point is vertical, for Sm=1

2 (for the
purpose of this discussion, we treat m = ±1 modes as a
single mode) the displacement is horizontal, and for Sm=2

2

the displacement at the contact is zero, hence the latter
mode is unaffected by the substrate. Since the spheres
are optically transparent at the excitation wavelength,
spheroidal vibrations can only be excited through the in-
teraction with the substrate. The vertical motion of the
substrate surface in the small wave vector limit can only
excite the mode Sm=0

2 . The substrate horizontal motion
occurs on the time scale λ/cR, where cR is the Rayleigh
velocity, and is too slow to excite the spheroidal mode
at small wave vectors. Therefore, we expect the Sm=1

2

mode to become observable only at higher wave vectors.
Thus, we identify the main S2 peak as the Sm=0

2 mode
whereas a smaller lower frequency peak emerging at high
wave vectors is ascribed to the Sm=1

2 mode; as seen in Ta-
ble I, this assignment agrees with the calculations. Such
spheroidal mode splitting due to symmetry breaking by
the substrate is not unexpected but has not been previ-
ously reported. Indeed, in a more typical measurement
with the laser spot centered on an individual particle30–32
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only the Sm=0
L modes can be excited due to symmetry

constraints. We expect similar mode splitting to take
place for S3 and S4 modes; however, the signal from those
modes is too weak to detect this phenomenon.

(b)(a)

Frequency (MHz)

(b)

m=0

BZ

FIG. 5. (a) Representative spectral peaks of the spheroidal
mode S2 for three wave vectors, showing the mode splitting
which becomes apparent at large wave vectors. (b) Dispersion
of the S2 mode. Open circles show the measured frequencies.
Blue dashed line corresponds to SAW velocity for the sub-
strate, red solid lines corresponds to theoretical calculation
for a monolayer of interacting spheres, red dashed lines show
calculated frequencies for an isolated sphere.

C. Spheroidal dispersion and interaction with

surface Rayleigh waves

Further examination of the Sm=0
2 mode data shown

in Fig. 5(b) reveals a small but appreciable dispersion
across the BZ as well as a narrow avoided crossing with
the SAW. The dispersion indicates that we are dealing
with a collective mode of a microgranular crystal rather
than vibrations of individual particles as was assumed in
the calculations shown in Table I. The particle-particle
interaction can be taken into account using a perturba-
tion approach22 to obtain an equation relating the fre-
quency ω1 of the Sm=0

2 mode to the wave vector q:

ω2
1 = ω2

0 + CN

KN

M0

+ SN

4GN

M0

[

2 + cos
(

qD
√
3/2

)

]

, (2)

where ω0 is the free-sphere frequency, D is the sphere
diameter, M0 is the sphere mass, CN and SN are di-
mensionless constants calculated based on the displace-
ment pattern in the free-sphere mode22: CN = 3.32,
SN = 0.83. The second term represents the frequency
shift due to the sphere-substrate contact while the third
describes the dispersion due to the sphere-sphere contact.

Next we modified the effective medium model7 to de-
scribe the interaction of spheroidal vibrations with the
SAW in the substrate. This resulted in the following dis-

persion relation (see Appendix B):

(ω2
1 − ω2)

[(

2−
ω2

q2c2sT

)

− 4

√

1−
ω2

q2c2sT

√

1−
ω2

q2c2sL

]

=
KNω2(ω2

1 − CN
KN

M0

− ω2)
√

1− ω2

q2c2
sL

q3Acρsc4sT
,

(3)

where ρs = 2.44 g/cm3, csT = 3438m/s and csL =
5711m/s are the density, transverse and longitudinal
wave speeds of the substrate, respectively. ω1 is the
spheroidal mode frequency given by Eq. (2). The term in
brackets in the left-hand side is the Rayleigh determinant
yielding the frequency of the Rayleigh SAW27. The right
side of Eq. 3 represents the coupling term between the
Rayleigh wave and the spheroidal vibrations, effectively
determining the width of the avoided crossing.
Figure 5(b) shows the calculated dispersion relation to

be in good agreement with the experimental data. This
is achieved without any fitting parameters, as the contact
spring constants GN and KN used in Eqs. (2, 3) were
previously determined from the dispersion of the vertical
contact mode.

V. CONCLUSIONS

In summary, we studied the linear dynamics of a
fully ordered 2D microgranular crystal in the frequency
range 0.05 − 2GHz and investigated the behavior of
three kinds of acoustic modes (contact-based, spheroidal,
and Rayleigh) across the entire BZ. A range of pre-
viously unexplored phenomena have been revealed, in-
cluding the dispersion of contact-based and spheroidal
modes due to particle-particle interactions, the split-
ting of a spheroidal resonance due to symmetry break-
ing by the substrate, and the avoided crossing between
a spheroidal mode and the SAW. The experimental re-
sults are well described by our analytical models. The
two contact stiffnesses obtained from the vertical contact
mode dispersion have been shown to describe the ob-
servations involving the spheroidal mode dispersion, the
Rayleigh-spheroidal avoided crossing, and the absence of
the Rayleigh bandgap at the BZ boundary.
We hope this report will stimulate further studies of

wave phenomena in ordered microgranular lattices. Non-
linear propagation of high-amplitude waves, 2D lattices
with more complicated unit-cells and 3D lattices, dissi-
pation in microgranular systems and thermal transport
properties at low temperatures (when low-frequency vi-
brations control heat transport) present rich opportuni-
ties for exploration. The interaction of contact-based and
spheroidal modes with SAWs may enable applications in
SAW devices and sensors. Another avenue for future re-
search is scaling the particle size down to nanometers,
eventually leading to the borderline between granular and
molecular crystals.
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APPENDIX A: BRAGG BAND GAP OF THE

RAYLEIGH MODE

In order to find the frequencies of the Rayleigh mode
at the BZ boundary, we followed the approach of Ref.26,
Sec. IV. We treat the contact springs as a perturbation
increasing the potential energy of the SAW. Since the
SAW frequency at the BZ boundary is much larger than
the contact resonance frequency, we disregard the center
of mass motion of the spheres and assume that the de-
formation of the contact springs are determined by the
SAW surface displacement.
For the even mode (all terms and notations as in

Ref.26), the perturbation of the potential energy is given
by

∆Heven =
1

2Ac

KNu2, (4)

where u is the vertical surface displacement amplitude
and Ac is the area of the unit cell. For the odd mode, it
is given by

∆Hodd =
1

2Ac

KSχ
2u2, (5)

where χ is the ellipticity of the Rayleigh wave (see Eq.
(24) of Ref.26). Consequently, the frequencies will be
given by

ωeven = ωR

(

1 +
KN

2KAc

)

,

ωodd = ωR

(

1 +
χ2KS

2KAc

)

,

(6)

where ωR is the Rayleigh frequency and K = Mω2
R,

where M is given by Eq. (23) of Ref.26. The bandgap
width is given by

∆ = ωeven − ωodd = ωR

KN − χ2KS

2KAc

. (7)

APPENDIX B: SPHEROIDAL-RAYLEIGH WAVE

INTERACTION

In order to calculate the spheroidal interaction with
the SAW we consider a vertical force F acting on a sin-
gle sphere at the contact point with the substrate. The
equation of motion for the radial displacement (ur,L,m) of
the spheroidal mode Sm

L at the sphere-substrate contact
can be expressed as

ML,mür,L,m = −KL,mur,L,m − F, (8)

where ML,m and KL,m are constants defined in Ref.22

and related by the expression KL,m = ω0ML,m where ω0

is the free sphere vibration frequency. The force exerted
by the contact spring is

F = KN (ur,L,m + uz), (9)

where uz is the vertical surface displacement due to elas-
tic waves in the substrate. Applying a Fourier-transform
in the time domain we obtain the following relationship
for the Fourier-amplitudes of the sphere displacement

ũr,L,m =
−KN ũz

KL,m +KN −ML,mω2

=
−KN ũz

ML,m(ω2
0 + CN

KN

M0

− ω2)
,

(10)

where CN = M0/ML,m is a dimensionless constant cal-
culated based on the displacement pattern in the free
sphere mode22. Using Eq. 10 we can determine the verti-
cal force acting on a unit area of the substrate, leading to
the following boundary conditions for the SAW at z = 0

σzz =
KN (ũr + ũz)

Ac

=
KN ũz(ω

2
0 − ω2)

Ac(ω2
0 + CN

KN

M0

− ω2)
,

σzx = 0,

(11)

where Ac =
√
3D2/2 is the area of the unit cell, andM0 is

the mass of the sphere. We follow the standard procedure
of deriving the Rayleigh wave dispersion34, substituting
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the stress-free boundary condition by Eq. 11 to obtain
the following dispersion relation:

[

(

2−
ω2

q2c2sT

)

− 4

√

1−
ω2

q2c2sT

√

1−
ω2

q2c2sL

]

=

KNω2(ω2
0 − ω2)

√

1− ω2

q2c2
sL

q3Acρsc4sT (ω
2
0 + CN

KN

M0

− ω2)
,

(12)

where ρs is the substrate density and csL and csT are the
longitudinal and transverse wave speeds of the substrate
respectively. In the case of interacting spheres, we include
the effect of the sphere-sphere interaction by substituting

ω2
0 → ω2

0 + SN

4GN

M0

[

2 + cos qD
√
3/2

]

, (13)

into Eq. 12, where SN is a dimensionless constant defined
in Ref.22. This leads to the following dispersion relation

(ω2
1 − ω2)

[

(

2−
ω2

q2c2sT

)

− 4

√

1−
ω2

q2c2sT

√

1−
ω2

q2c2sL

]

=
KNω2(ω2

1 − CN
KN

M0

− ω2)
√

1− ω2

q2c2
sL

q3Acρsc4sT
,

(14)

where ω1 is given by Eq. 2 of the main text. The effec-
tive medium approximation we used7 requires the SAW
wavelength to be much greater than the granular lattice
constant. In our case, the SAW wavelength amounts to
about four lattice constants.
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