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Abstract	

While	high-throughput	Density	Functional	Theory	(DFT)	has	become	a	prevalent	tool	for	

materials	discovery,	it	is	limited	by	the	relatively	large	computational	cost.	In	this	paper,	we	

explore	using	DFT	data	from	high-throughput	calculations	to	create	faster,	surrogate	models	

with	machine	learning	(ML)	that	can	be	used	to	guide	new	searches.	Our	method	works	by	

using	decision	tree	models	to	map	DFT-calculated	formation	enthalpies	to	a	set	of	attributes	

consisting	of	two	distinct	types:	(i)	composition-dependent	attributes	of	elemental	properties	

(as	have	been	used	in	previous	ML	models	of	DFT	formation	energies),	combined	with	(ii)	

attributes	derived	from	the	Voronoi	tessellation	of	the	compound’s	crystal	structure.	ML	

models	created	using	this	method	have	half	the	cross-validation	error	and	similar	training	and	

evaluation	speeds	to	models	created	with	the	Coulomb	matrix	and	Pair	Radial	Distribution	

Function	(PRDF)	methods.	For	a	dataset	of	435,000	formation	energies	taken	from	the	Open	

Quantum	Materials	Database	(OQMD),	our	model	achieves	a	mean	absolute	error	(MAE)	of	

80	meV/atom	in	cross-validation,	which	is	lower	than	the	approximate	error	between	DFT-

computed	and	experimentally-measured	formation	enthalpies	and	below	15%	of	the	mean	

absolute	deviation	of	the	training	set.	We	also	demonstrate	our	method	can	accurately	

estimate	the	formation	energy	of	materials	outside	of	the	training	set	and	be	used	to	identify	

materials	with	especially-large	formation	enthalpies.	We	propose	that	our	models	can	be	used	

to	accelerate	the	discovery	of	new	materials	by	identifying	the	most	promising	materials	to	

study	with	DFT	at	little	additional	computational	cost.	



I. Introduction		

Especially	in	the	past	decade,	high-throughput	atomistic	calculation	methods	have	proven	

to	be	powerful	tools	for	discovering	new	materials.1–6	These	methods	generally	work	by	

employing	an	accurate	computational	tool,	often	Density	Functional	Theory	(DFT),	to	predict	

the	properties	of	large	numbers	of	experimentally-observed	and	hypothetical	inorganic	

compounds	created	by	substituting	different	elements	into	known	crystal	structure	types.	The	

results	of	these	predictions	are	often	stored	in	publicly-accessible	databases,1,5–11	which	makes	

it	possible	for	many	researchers	to	quickly	search	for	materials	that	warrant	further	

investigation	(e.g.,	via	more	accurate	and	expensive	computational	methods	or	via	

experimental	synthesis).	This	strategy	of	combinatorial	replacement	and	high-throughput	

calculations	has	already	enabled	the	discovery	of	new	materials	for	a	host	of	applications,	

including	Li-ion	batteries,	thermoelectrics,	water	splitting	materials,	and	structural	alloys.2,12–21	

While	combinatorial	searches	are	evidently	useful,	they	are	intrinsically	limited	by	available	

computational	power.	Evaluating	only	the	zero	temperature,	ground	state	properties	of	a	

material	using	DFT	can	require	hours	of	processor	time	per	compound.	Consequently,	the	space	

of	possible	combinations	is	too	large	to	evaluate	every	candidate	for	some	types	of	compounds.	

For	example,	the	combinations	of	every	element	in	a	quaternary	crystal	structure	results	in	at	

least	2	million	possible	compound	compositions	(more	if	there	are	inequivalent	sites	in	the	

crystal),	which	outstrips	the	capability	of	today’s	computational	resources.	For	more	complex	

properties	(e.g.,	elastic	constants,	vibrational	properties,	defects),	evaluating	2	million	

compounds	is	certainly	impractical.	At	some	point,	it	is	necessary	to	selectively	evaluate	only	

the	parts	of	the	search	space	that	are	likely	to	contain	promising	candidates.		

Machine	learning	(ML)	offers	a	route	for	creating	fast	surrogate	models	from	databases,	

and	has	proven	to	be	a	viable	route	for	estimating	the	results	of	DFT	calculations.22–36	These	

approaches	have	recently	been	reviewed	in	Ref.	37.	One	of	first	studies	in	this	area,	by	

Curtarolo	et	al.	in	2003,	built	a	machine	learning	model	that	predicts	the	formation	enthalpy	of	

binary	compound	based	on	the	formation	enthalpies	of	the	same	pair	of	elements	in	several	

other	structures.22-While	the	model	was	successfully	used	to	identify	previously-undiscovered	



intermetallics,22	it	is	limited	to	making	predictions	to	compounds	whose	structural	type	appears	

frequently	in	available	datasets.	Later	work	demonstrated	methods	for	creating	ML	models	

from	inputs	derived	from	the	composition	of	each	training	entry23,27,28,	which	allow	for	greater	

flexibility	in	using	the	model	but	require	expensive	crystal-structure	prediction	algorithms	to	

determine	the	structure	of	the	material	when	validating	the	predictions	(e.g.,	using	DFT	of	the	

predicted	compositions).23	There	has	also	been	work	showing	how	to	predict	some	

computationally	expensive	properties,	including	elastic	constants,32–34	thermal	conductivity,24,25	

and	melting	temperature,38	more	quickly	by	using	the	results	from	faster	DFT	calculations	as	

input	into	a	machine	learning	model.	Additionally,	several	studies	have	predicted	new	materials	

with	a	desired	crystal	structure	by	training	a	model	on	a	dataset	of	compounds	with	the	same	

stoichiometry	or	same	crystal	structure,	and	using	that	to	identify	materials	that	are	likely	to	be	

stable	in	a	much	larger	set.29,39,40	However,	to	fully	leverage	the	amount	of	information	

available	in	high-throughput	databases	to	discover	new	materials,	one	needs	a	reliable	and	fast	

method	for	predicting	properties	given	any	crystal	structure	–	and	such	a	method	remains	

elusive.	

Several	different	strategies	for	building	ML	models	based	on	the	crystal	structure	of	a	

material	have	already	been	proposed.	These	methods	are	composed	of	two	main	components:	

(1)	a	numerical	representation	that	describes	each	compound’s	crystal	structure	and	

composition,	and	(2)	a	choice	of	machine	learning	algorithm.	These	methods	include	work	by	

Faber	et	al.30,	Schütt	et	al.41,	and	Seko	et	al.42	that	each	constructed	Kernel	Ridge	Regression	

(KRR)	models	using	several	different	representations.	Faber	et	al.	trained	a	machine	learning	

model	on	3938	entries	taken	from	Materials	Project	with	a	Coulomb-matrix-based	

representation	and	achieved	a	370	meV/atom	Mean	Absolute	Error	(MAE)	in	cross-validation.30	

Schütt	et	al.	constructed	a	machine	learning	model	to	predict	the	Density	of	States	at	the	Fermi	

Level	with	a	representation	based	on	the	Partial	Radial	Distribution	Function	(PRDF),	and	

showed	that	it	could	be	used	to	predict	this	quantity	for	crystal	structures	outside	of	the	

original	training	set.41	More	recently,	Seko	et	al.	created	a	model	for	cohesive	energy	using	a	

representation	based	on	4	different	kinds	of	structural	descriptors	and	observed	a	Root	Mean	

Squared	Error	(RMSE)	of	41	meV/atom	in	cross-validation	using	a	dataset	of	18903	entries	



consisting	only	of	compounds	based	on	a	select	set	of	49	different	structures	and	35	

elements.42	These	methods	are	quite	promising,	the	best	cross-validation	accuracies	reported	

to	date	are	comparable	to	or	lower	than	various	estimates	for	the	error	between	DFT	and	

experiment	for	formation	enthalpies	(50-100	meV/atom4,43)	and	reaction	energies	of	oxides	

(~25	meV/atom44).	However,	such	exceptional	accuracy	has	yet	to	be	demonstrated	on	

datasets	that	include	as	diverse	a	range	of	structures	and	compositions	as	those	in	modern	DFT	

databases.	Additionally,	as	we	will	demonstrate	in	this	manuscript,	these	existing	methods	are	

impractical	to	use	with	the	datasets	as	large	as	those	currently	available.	Overall,	while	

promising,	there	is	a	need	for	improvements	in	methods	that	can	link	crystal	structure	and	

properties	with	machine	learning.		

In	this	work,	we	demonstrate	an	approach	for	predicting	properties	of	crystalline	

compounds	using	a	representation	consisting	of	attributes	derived	from	the	Voronoi	

tessellation	of	its	structure	that	is	both	twice	as	accurate	as	existing	methods	and	can	scale	to	

large	training	set	sizes.	Additionally,	we	designed	our	representations	to	be	insensitive	to	

changes	in	the	volume	of	a	crystal,	which	makes	it	possible	to	predict	the	properties	of	the	

crystal	without	needing	to	compute	the	DFT-relaxed	geometry	as	input	into	the	model.	In	this	

manuscript,	we	use	a	large	dataset	from	the	OQMD	to	benchmark	this	new	method	against	

existing	representations	used	in	the	literature	(the	Coulomb	matrix	and	PRDF	methods)	using	

cross-validation.	Then,	to	understand	limitations	of	our	approach,	we	employ	cross-validation	

to	assess	whether	the	new	structural	descriptors	impact	the	accuracy	of	our	machine	learning	

models	and	to	determine	which	types	of	compounds	yield	the	highest	error	rates.	Finally,	we	

validate	the	ability	of	our	model	to	make	predictions	of	the	formation	enthalpy	of	materials	

outside	our	currently-available	training	data	and	to	identify	materials	with	strongly-negative	

formation	enthalpies	given	only	the	structure	prototype	and	composition	but	not	the	DFT-

relaxed	equilibrium	geometry	and	lattice	parameters.	We	envision	that	this	model	can	be	used	

to	screen	potential	materials	based	on	stability	before	more	expensive	calculation	techniques	

are	used	and,	thereby,	enable	faster	high-throughput	searches	for	new	materials.	



II. Methodology	–	Constructing	the	Machine	Learning	Model	

Our	approach	is	composed	of	two	distinct	steps,	(1)	representing	a	compound’s	

composition	and	crystal	structure	as	a	set	of	quantitative	attributes,	and	(2)	using	machine	

learning	to	extract	patterns	that	relate	those	attributes	to	the	property	of	interest.	We	describe	

both	steps	in	this	section,	along	with	the	resource	used	to	provide	training	data	for	these	

models.	

A. Training	Data	

All	training	data	for	the	machine	learning	models	created	in	this	work	was	extracted	from	

the	Open	Quantum	Materials	Database	(OQMD).4,5	At	the	time	the	data	used	here	was	

collected,	the	OQMD	contained	the	results	of	DFT	calculations	for	435,792	unique	compounds	

(i.e.,	unique	combinations	of	composition	and	crystal	structure)	all	performed	with	the	Vienna	

Ab	Initio	Simulation	Package	(VASP).45,46	We	employed	the	crystal-structure	matching	tools	in	

qmpy	to	ensure	that	each	entry	in	the	dataset	is	unique.47	Detailed	settings	used	in	these	

calculations	are	described	in	Ref.	4.	The	OQMD	contains	over	30k	entries	corresponding	to	

entries	from	the	Inorganic	Crystal	Structure	Database	(ICSD)48	and	the	remainder	are	

predominantly	hypothetical	structures	created	by	replacing	elements	in	known	crystal	

structures	with	different	elements.	As	described	in	later	subsections,	we	use	several	unique	

subsets	of	this	database,	which	include	using	only	the	entries	from	the	ICSD.	This	dataset	is	

available	in	the	Supplementary	Information	for	this	paper.	

B. Representation	of	Crystalline	Compounds	-	Crystal	Structure	and	Composition	

The	representation	of	a	crystalline	compound	is	designed	to	transform	the	composition	

and	crystal	structure	of	the	compound	into	a	list	of	quantitative	attributes	that	serve	as	input	

into	a	machine	learning	model.	Following	previous	discussions	of	the	desired	features	of	

representations	for	materials,29,41,49–52	we	also	assert	that	representations	for	crystalline	

compounds	should	be	quick	to	compute	and	capture	all	relevant	features	of	a	

composition+structure	in	a	compact	list	of	attributes.	Additionally,	we	suggest	several	other	

desirable	features	specific	to	building	representations	for	crystal	structures.	First,	these	

attributes	should	also	be	insensitive	to	the	choice	of	a	unit	cell	(i.e.,	primitive	cells,	conventional	



cells,	and	supercells	of	the	same	structure	should	all	have	the	same	representation).	

Additionally,	as	our	goal	in	using	these	models	is	to	estimate	the	stability	of	a	crystal	structure	

before	employing	DFT,	we	also	assert	that	representation	should	fulfill	two	other	requirements	

to	be	predictive.	For	one,	the	representation	should	not	rely	on	knowledge	of	the	DFT-relaxed	

lattice	parameters	and	internal	degrees	of	freedom	and	at	least	be	invariant	to	changes	due	to	

simple	dilation	or	contraction	of	the	lattice.	Also,	the	representation	should	be	designed	such	

that	small	changes	in	the	structure	(e.g.,	perturbations	in	atomic	position)	do	not	result	in	

unphysical,	discontinuous	changes	in	attributes.	

Considering	all	of	these	constraints,	we	created	a	representation	for	crystalline	compounds	

based	on	the	Voronoi	tessellation	of	the	structure.53	The	Voronoi	tessellation	of	a	crystal	

partitions	space	into	the	so-called	Wigner-Seitz	cells	of	each	atom,	which	encompass	the	region	

closer	to	that	atom	than	any	other	atom.54	This	tessellation	is	uniquely	defined	for	a	crystal	

structure	and	is	insensitive	to	the	choice	of	unit	cell	(e.g.,	primitive	or	conventional).	The	faces	

of	a	Voronoi	polyhedron	correspond	to	the	nearest	neighbors	of	an	atom,	which	provides	an	

unambiguous	way	of	describing	its	local	environment.	To	create	attributes,	we	compute	many	

characteristics	of	the	local	environment	of	each	atom	(described	below)	and	then	measure	

statistics	about	the	distribution	of	these	characteristics	across	all	atoms	in	the	unit	cell.	These	

attributes	are	designed	in	such	a	way	that	they	are	unaffected	by	unit	cell	selection	or	by	

changing	the	volume	of	the	unit	cell.	Our	attributes	are	dependent	on	changes	in	the	ratios	

between	lattice	parameters	(e.g.,	c/a	for	tetragonal	structures)	and	internal	degrees	of	

freedom.	However,	as	we	will	demonstrate	later,	the	effect	of	changes	in	these	parameters	

upon	relaxation	on	the	output	of	a	machine	learning	model	is	often	minor.	Furthermore,	we	

also	weigh	the	contribution	of	each	neighboring	atom	to	each	attribute	according	to	the	area	of	

its	corresponding	face	on	the	Voronoi	cell.	In	this	way,	the	attributes	are	stable	against	

discontinuities	caused	by	addition	or	removal	of	facets	in	the	tessellation	caused	by	small	

deformations	in	the	structure,	as	shown	in	Figure	S1	in	the	Supplementary	information.	

We	use	the	Voronoi	tessellation	and	composition	of	the	structure	to	create	several	

different	categories	of	attributes.	In	these	descriptions,	𝑛	is	an	index	to	a	face	of	a	single	cell	in	

the	tessellation.	Each	cell	corresponds	to	the	volume	around	a	single	atom,	and	each	face	of	the	



cell	corresponds	to	a	specific	nearest	neighbor	to	that	atom.	To	generate	attributes,	we	

consider	both	properties	of	the	face	(e.g.,	area),	which	are	not	dependent	on	composition,	and	

the	identities	of	the	neighboring	atom,	which	are	affected	by	both	composition:	

1. Effective	Coordination	Number	Attributes	based	on	the	mean,	maximum,	

minimum,	and	mean	absolute	deviation	in	the	effective	coordination	number	of	each	

atom,	which	is	computed	using	the	equation	

	 𝐶𝑁!"" =
!!!

!

!!!  !
	 (1)	

where	𝐴!	is	the	surface	area	to	face	𝑛,	and	the	sum	𝛴!	is	over	all	faces	of	the	Voronoi	

cell.	This	formula	reverts	to	the	number	of	faces	on	the	cell	for	cells	with	equally-sized	

faces	(e.g.,	12	for	FCC)	and	leads	to	smaller	coordination	numbers	for	structures	with	

unequal	faces	(ex:	11.96	rather	than	14	for	BCC).	

2. Structural	Heterogeneity	Attributes	that	measure	the	variation	in	local	

environments	around	each	atom.	Includes	statistics	regarding	the	mean	bond	length	

about	each	atom,	the	variation	in	bond	length	between	each	neighbor	of	an	atom,	and	

variation	the	volume	between	each	Voronoi	cell.	To	make	these	attributes	insensitive	to	

volume	changes,	the	bond	lengths	are	normalized	by	the	mean	bond	length	of	all	atoms	

and	the	cell	volumes	normalized	by	the	mean	cell	volume.	

3. Chemical	Ordering	Attributes	that	are	computed	using	Warren-Cowley-like	

ordering	parameters55	of	the	first,	second,	and	third	neighbor	shells,	weighted	according	

to	face	sizes	of	each	neighboring	atom.	We	define	the	ordering	parameter	to	be	specific	

to	each	type	of	atom	in	the	structure.	For	the	first	shell,	the	ordering	parameter	is	

defined	as	



	 𝛼 𝑡 = 1− !!!(!!!!)!
!! !!!

		 (2)	

where	𝛼(𝑡, 𝑠)	is	the	weighted	ordering	parameter	for	type,	𝑥!	is	the	atomic	fraction	of	

type	t	in	the	crystal,	𝑡!	is	the	type	of	the	atom	corresponding	to	face	𝑛,	and	𝛿	is	the	

delta	function.	To	make	the	number	of	attributes	the	same	regardless	of	the	number	of	

elements	in	the	crystal	and	insensitive	to	unit	cell	choice,	we	measure	the	mean	

absolute	value	of	ordering	parameters	for	each	atom	in	the	lattice	for	each	type	in	the	

crystal.	Consequently,	crystals	with	ordered	arrangements	(e.g.,	rocksalt)	will	have	

values	of	these	attributes	closer	to	1,	and	more	random	arrangements	will	be	closer	

to	zero.		

To	compute	this	ordering	attribute	for	the	second	and	third	neighbor	shells,	we	first	

compute	all	non-backtracking	paths	of	length	2	or	3,	respectively,	through	the	network	

defined	by	the	atoms	whose	cells	share	faces	in	the	tessellation.	We	then	assign	each	

step	in	each	path	a	weight	proportional	to	the	fraction	of	surface	area	corresponding	to	

the	Voronoi	face	associated	with	that	step	(e.g.,	a	face	that	takes	up	10%	of	the	surface	

area	of	a	cell	has	a	weight	of	10%),	and	each	path	is	assigned	a	weight	equal	to	the	

product	the	weights	of	each	of	its	step.	The	ordering	parameter	is	then	computed	using	

a	similar	formula	to	Equation	2,		

	 𝛼 𝑡, 𝑠 = 1− !!!(!!!!)!

!!
	 (3)	

where	𝑠	is	the	index	of	the	shell,	Σ!	is	over	all	𝑠-length	paths,		𝑤!	is	the	weight	of	each	

path,	and	𝑡!	is	the	type	of	the	atom	at	the	end	of	the	path.	In	this	way,	paths	that	



involve	small	faces	have	a	small	contribution	to	the	ordering	attribute,	which	ensures	

that	it	is	stable	against	small	deformations.	Full	details	of	this	calculation	are	available	in	

the	Supplementary	Information.	

4. Maximum	Packing	Efficiency,	which	can	be	computed	by	finding	the	largest	

sphere	that	fits	inside	each	Voronoi	cell.	For	example,	the	maximum	packing	efficiency	

for	FCC	is	0.74	by	this	definition.	

5. Local	Environment	Attributes	that	are	computed	by	comparing	the	elemental	

properties	of	the	element	of	each	atom	to	those	of	its	nearest	neighbors	using	the	

relationship	

	 𝛿! =
!!∗|!!!!!|!

!!!
	 (4)	

where	𝑝!	and	𝑝! 	are	the	value	of	an	elemental	property	(e.g.,	electronegativity)	of	the	

atom	corresponding	to	face	𝑛	and	central	atom,	respectively.	For	this	study,	we	

compute	the	mean,	mean	absolute	deviation,	maximum,	minimum,	and	range	of	this	

value	for	all	atoms	in	a	structure	for	22	different	elemental	properties	(e.g.,	atomic	

number),	which	are	listed	in	Table	S1.	For	example,	each	atom	in	rocksalt	NaCl	is	

surrounded	by	only	atoms	of	the	opposite	type.	The	absolute	difference	between	the	

electronegativity	of	each	atom	and	its	neighbors	is	therefore	2.23	(the	difference	

between	Na	and	Cl)	and	the	mean	across	the	entire	structure	is	also	2.23.	As	all	atoms	

have	the	same	value	for	this	property,	the	range	and	mean	absolute	deviation	are	both	

zero.		



6. Composition-Based	Attributes	based	on	the	fractions	of	each	element	present	in	

the	structure.	These	attributes	are	described	in	recent	work	by	Ward	et	al.	27:	

a. Stoichiometric	attributes	that	depend	on	the	fractions	of	each	element	and	not	

what	those	elements	are	

b. Elemental-property-based	attributes	that	are	based	on	statistics	of	the	

elemental	properties	of	all	atoms	in	the	crystal.	

c. Electronic	structure	attributes,	which	depend	on	the	fraction	of	electrons	in	the	

s,	p,	d,	and	f	shells	of	the	constituent	elements,	normalized	by	the	total	number	

of	electrons	in	the	system	rather	than	by	the	element	fractions	(as	in	6b).	These	

are	based	on	work	by	Meredig	et	al.23	

d. Ionicity	attributes	derived	from	differences	in	electronegativity	between	

constituent	elements	and	whether	the	material	can	form	a	charge-balanced	

ionic	compound	if	all	elements	have	on	common	oxidation	states	

Further	details	about	the	attributes	are	described	in	the	Supplementary	Information.	In	

total,	our	method	describes	each	material	with	271	attributes.	Each	of	these	attributes	can	be	

computed	using	the	Materials-Agnostic	Platform	for	Informatics	and	Exploration	(Magpie)	and	

the	Versatile	Atomic-Scale	Structure	Analysis	Library	(Vassal),	which	are	both	freely	available	

under	open	source	licenses.56,57	Example	input	files	and	the	datasets	used	in	this	work	are	also	

included	as	Supplementary	Information.	

C. Machine	Learning	Technique	

For	the	machine	learning	algorithm,	we	chose	to	use	the	Random	Forests	(RF)	algorithm	

proposed	by	Breiman	due	to	its	superior	performance	and	robustness	against	overfitting.58	The	

RF	algorithm	works	by	aggregating	the	results	of	several	decision	trees,	each	built	from	a	

random	subset	of	training	examples	and	attributes.	Each	decision	tree	is	composed	of	a	series	



of	decision	rules	(e.g.,	Packing	Efficiency	>	0.5)	learned	by	partitioning	data	into	subsets	that	

minimizes	intra-subset	variation	of	class	values,	which	are	formation	enthalpies	in	this	case.	

This	partitioning	process	is	repeated	recursively	(i.e.,	on	each	subset	generated	by	the	previous	

rule),	forming	a	tree	where	each	branch	is	a	different	decision	rule.	The	leaves	of	the	tree	are	

each	assigned	a	value	of	formation	enthalpy	that	maximizes	fitness	to	the	training	set.	In	the	RF	

algorithm,	this	decision	tree	generation	process	is	repeated	several	times	with	a	different	

subset	of	the	training	set,	and	the	predictions	made	from	all	decisions	trees	are	averaged	to	

predict	the	class	value	of	new	data.		

In	modeling	our	problem,	we	used	an	ensemble	of	50	decision	trees	for	all	machine	

learning	models	created	based	on	the	ICSD	dataset	and	100	decisions	trees	for	machine	

learning	models	created	with	the	full	OQMD	dataset.	We	also	investigated	increasing	the	

number	of	trees	as	the	training	data	increases	but	no	notable	improvement	was	observed.	

Models	were	constructed	using	the	Scikit-Learn	library	in	Python59	and	the	Weka	machine	

learning	library	in	Java.60	

D. Alternate	Representations	-	Coulomb	Matrix	and	Pair	Radial	Distribution	Function		

In	this	work,	we	compare	our	new	representation	against	the	Coulomb	Matrix30	(CM)	and	

Partial	Radial	Distribution	Function41	Matrix	(PRDF)	approaches.	Both	methods	utilize	Kernel	

Ridge	Regression	(KRR)	as	the	base	machine	learning	algorithm,	which	performs	linear	

regression	where	the	inputs	into	the	linear	model	are	based	on	the	similarity	between	a	new	

observation	and	each	entry	in	the	training	set.	This	similarity	metric	is	often	designed	

specifically	for	each	problem,	and	the	CM	and	PRDF	methods	primarily	vary	in	the	choice	of	

metric	used	to	compare	two	crystal	structures.		

The	PRDF	method	expresses	the	similarity	between	two	structures	based	on	a	matrix	

defined	by	Partial	Radial	Distribution	Functions.41	Each	row	of	this	matrix	corresponds	to	the	

radial	distribution	function	between	a	different	pair	of	elements,	and	the	matrix	contains	all	

possible	pairs	of	elements.	For	instance,	one	row	is	the	Li-Cl	RDF,	which	describes	the	frequency	

of	Li	and	Cl	atoms	a	certain	distance	apart	in	the	structure.	To	compute	the	difference	between	



two	structures,	one	generates	this	matrix	for	both	structures	and	computes	the	Frobenius	norm	

of	the	difference	between	the	two	matrices.	

The	Coulomb	Matrix	method	is	based	on	a	representation	that	was	originally	developed	for	

molecules.61	In	this	representation,	one	computes	a	matrix	that	is	related	to	the	Coulomb	

repulsion	between	the	atomic	nuclei	in	the	material	

	 𝐶!" =
0.5𝑍!!.! if 𝑖 = 𝑗
!!!!
!!"

if 𝑖 ≠ 𝑗	 (7)	

where	𝑍! 	is	the	atomic	number	of	atom	𝑖	and	𝑟!" 	is	the	distance	between	atoms	𝑖	and	𝑗.	To	

compare	two	structures,	one	first	computes	the	eigenvalues	of	the	Coulomb	matrix	for	both	

structures	and	then	subtracts	the	two	lists	of	eigenvalues	(padding	with	zeros	to	make	them	the	

same	length).	More	recently,	Faber	et	al.	proposed	several	modifications	to	the	Coulomb	matrix	

to	account	for	periodic	boundary	conditions.30	Of	their	proposed	modifications,	we	use	the	Sine	

Matrix	approximation,	which	they	found	to	lead	to	the	lowest	cross-validation	error	when	

predicting	formation	enthalpy.		

For	both	methods,	we	optimized	the	metaparameters	for	the	KRR	learning	algorithm	and,	

for	the	PRDF	matrix,	the	cutoff	radius	and	bin	size	used	for	the	RDF.	In	both	cases,	we	used	a	

grid	search	technique.	All	parameters	were	varied	to	maximize	the	performance	of	each	model	

at	a	training	set	size	of	3000	entries.	With	this	technique,	we	were	able	to	reproduce	the	

observed	cross-validation	error	of	the	Coulomb	matrix	reported	in	Ref.	30.	Our	implementation	

for	both	of	these	methods	is	available	as	part	of	Magpie.56	

III. Results	-	Characterizing	Model	Performance	

In	this	section,	we	characterize	several	different	aspects	of	our	new	machine	learning	

technique.	First,	we	benchmark	our	technique	to	existing	methods	by	comparing	their	cross-

validation	accuracy.	Then,	we	analyze	the	predictions	where	our	model	performs	least	

accurately	to	determine	where	this	model	can	be	best	applied.	Finally,	we	study	the	effect	of	

structural	information	in	our	representation	to	determine	whether	the	model	is	learning	the	

effect	of	structural	traits	on	formation	energy.		



A. Comparison	of	the	Voronoi	Method	to	Existing	Techniques		

We	first	use	cross-validation	to	study	the	ability	of	our	technique	to	model	the	formation	

energy	of	inorganic	compounds	and	compare	its	performance	to	existing	methods.	As	a	training	

set,	we	use	the	DFT-relaxed	structures	and	formation	energies	of	compounds	in	the	Inorganic	

Crystal	Structure	Database	(ICSD)62	that	are	available	in	the	Open	Quantum	Materials	Database	

(OQMD).4,5	Our	dataset	includes	32111	compounds	and	represents	an	unbiased	sampling	of	all	

known	compounds	with	a	primitive	cell	size	smaller	than	40	atoms.		To	assess	the	effect	of	

increasing	training	set	size,	we	constructed	models	using	randomly-selected	training	sets	with	

between	1	to	30,000	entries	and	evaluated	the	performance	of	the	model	on	a	distinct	set	of	

1,000	entries.	This	test	strategy	was	selected	to	assess	the	effect	of	training	set	size	on	model	

performance.	Each	cross-validation	test	was	repeated	20	times,	and	the	performance	of	the	

model	was	taken	to	be	the	average	over	all	20	tests.	

The	comparison	of	cross	validation	error	for	out	Voronoi	method	with	the	CM	and	PRDF	

models	is	shown	in	Fig.	1.		We	find	that	the	models	created	using	our	approach	were	more	

accurate	than	those	based	on	the	CM	and	PRDF	methods	for	all	training	sets	larger	than	3	

entries.	As	shown	in	Figure	1,	models	based	on	our	method	have	an	MAE	of	170	meV/atom	at	a	

training	set	size	of	3000	entries.	In	contrast,	we	find	the	CM	and	PRDFs	models	to	have	2.2x	and	

2.8x	larger	errors,	respectively.	At	a	training	set	size	of	30000	entries,	the	MAE	of	our	model	

(88	meV/atom)	is	still	significantly	lower	than	those	from	the	other	two	methods.	Since	the	

error	of	our	models	decreases	with	increasing	training	set	size	at	a	similar	rate	to	those	of	the	

CM	method	and	faster	than	those	from	the	PRDF	method,	we	expect	our	models	to	be	more	

accurate	even	when	trained	with	the	largest	available	DFT	formation	energy	datasets	of	

between	105	–	106	compounds.5,7	

Beyond	having	a	lower	MAE,	models	created	using	our	new	method	also	perform	better	

according	to	more	outlier-sensitive	performance	metrics.	We	measured	the	Pearson’s	

correlation	coefficient,	Root	Mean	Squared	Error	(RMSE),	and	maximum	absolute	error	for	

models	produced	using	each	method	trained	identical	30000-entry	training	sets,	and	evaluated	

each	model	with	the	same	1000-entry	validation	set.	As	shown	in	Figure	3,	each	metric	is	better	

for	our	method	than	both	the	PRDF	and	CM	methods.	What	the	better	performance	according	



to	these	metrics	suggests	is	that	our	method	achieves	superior	accuracy	without	introducing	a	

larger	fraction	of	outliers.	

To	determine	whether	the	increased	accuracy	is	a	result	of	the	new	representation	or	the	

use	of	the	RF	algorithm,	we	repeated	the	comparison	between	the	Coulomb	Matrix	and	our	

Voronoi	representations	using	the	same	ML	algorithm	for	both.		We	first	test	both	

representations	using	KRR,	and	subsequently	we	test	both	using	RF.	For	the	KRR	test,	the	error	

for	the	model	using	our	new	representation	is	significantly	higher	than	when	we	used	the	RF	

algorithm,	but	still	lower	than	the	CM+KRR	model	(see	Figure	3).	In	contrast,	the	error	rate	of	

models	created	using	our	representation	is	lower	than	those	using	the	CM	by	a	factor	of	2	when	

we	employed	RF	as	the	learning	algorithm.	Consequently,	we	conclude	the	improved	accuracy	

of	our	models	is	a	result	of	the	new	representation	and	not	only	the	choice	of	machine	learning	

algorithm.	

Additionally,	we	find	that	the	training	time	of	our	method	scales	better	with	increasing	

training	set	size	and	has	similar	evaluation	speed	than	the	PRDF	and	CM	methods.	As	shown	in	

Figure	4,	as	the	size	of	the	training	set	reaches	10000	and	more,	the	time	taken	to	train	and	run	

models	created	using	our	method	is	comparable	to	the	PRDF	and	CM	methods.	The	training	and	

run	time	of	our	model	is	dominated	by	the	time	required	to	compute	the	Voronoi	tessellation	

used	to	generate	the	attributes,	which	requires	approximately	0.1	s	per	compound	on	our	test	

system	and	accounts	for	~98%	of	the	model	training	time	and	>99%	of	the	run	time.	For	our	

training	set	sizes,	we	observe	an	𝑂 𝑁 	scaling	(N	is	the	number	of	compounds	in	the	training	

set)	for	training	time	due	to	the	large,	but	𝑂 𝑁 ,	calculation	time	for	the	construction	of	the	

representation.		The	Random	Forest	ML	algorithm	scales	with	𝑂(𝑁 log𝑁)		and,	hence,	we	

would	eventually	expect	𝑂 𝑁 log𝑁  scaling	for	large	dataset	sizes.	For	small	dataset	sizes,	the	

time	to	compute	the	Voronoi	attributes	makes	it	slower	to	train	and	run	than	both	competing	

methods.	However,	this	is	not	true	for	large	datasets	and	we	observe	parity	between	the	two	

methods	for	training	set	sizes	around	104.	Considering	that	the	training	time	for	the	CM	and	

PRDF	scale	at	the	faster	rate	of		𝑂(𝑁!)	for	KRR,	our	approach	will	remain	more	feasible	to	train	

for	even	larger	datasets.	For	datasets	with	only	30000	entries	in	the	training	set,	our	method	is	

faster	to	train	by	approximately	a	factor	of	10	and	is	only	slightly	slower	to	run	than	the	



Coulomb	Matrix	model	–	although	we	find	(see	Figure	3)	differences	in	run	speed	are	also	likely	

to	close	with	increasing	training	set	size.	

B. Testing	for	Systematic	Errors	in	Voronoi	Models	

To	understand	where	our	machine	learning	model	can	be	used	the	most	effectively,	we	ran	

a	cross-validation	test	and	studied	the	compounds	where	the	model	had	the	highest	error	rates.	

In	this	cross-validation	test,	we	withheld	a	random	selection	of	25%	of	the	ICSD	dataset	used	in	

the	previous	section	for	a	test	set	and	trained	the	model	on	the	remaining	75%	of	the	data.	We	

repeated	this	test	100	times,	and	measured	the	MAE	for	each	compound	over	all	times	it	

appeared	in	the	test	set.	Then,	we	selected	the	643	compounds	with	highest	2%	of	MAE	values	

(above	446	meV/atom)	to	determine	which	compounds	our	model	are	persistently	the	most	

difficult	to	predict	accurately.	We	find	that	many	of	these	outliers	are	compounds	with	positive	

formation	enthalpies	(see	Figure	4a).	In	other	words,	many	of	these	difficult-to-predict	

compounds	are	unstable	with	respect	to	decomposition	into	the	elements.	The	fact	our	model	

performs	poorly	for	very	unstable	compounds	is	unsurprising,	since	their	formation	energies	

are	outliers	compared	to	the	rest	of	the	ICSD	training	set,	which	are	mostly	stable	

We	also	find	that	compounds	containing	elements	that	appear	least	frequently	in	our	

training	set	are	overrepresented	in	the	compounds	with	the	worst	MAEs.	Figure	4b	shows	the	

probability	of	finding	a	compound	containing	a	certain	element	in	our	entire	dataset	(𝑃(ICSD))	

and	the	ratio	between	the	probability	of	finding	that	element	in	the	entries	with	the	highest	

MAE	(𝑃(Worst))	and	the	probability	of	finding	it	in	the	entire	dataset.	Of	all	elements	present	

in	the	training	set,	Kr,	Xe,	and	Pa	have	the	highest	overrepresentation	(a	ratio	of	14	for	Kr)	and	

are	among	the	least	frequently	appearing	elements	in	the	original	dataset.63	From	these	results,	

we	conclude	our	model	performance	is	expected	to	be	least	predictive	for	compounds	

containing	elements	which	appear	infrequently	in	the	training	data	(e.g.,	Tc,	actinides).	

The	two	elements	that	are	both	frequently	occurring	and	most	overrepresented	in	our	

worst-performing	materials	are	C	and	N.	Out	of	the	643	compounds	with	the	highest	error,	

there	are	43	that	contain	either	C	or	N.	This	list	of	43	C-	or	N-containing	compounds	includes	

many	compounds	of	C	or	N	with	rarely-observed	elements	(e.g.,	ThCN),	whose	presence	in	the	



list	can	be	explained	due	to	the	few	training	examples	with	the	rarely-observed	elements.	Many	

of	the	other	compounds	include	C	or	N	covalently	bonded	with	another	element,	such	as	

materials	containing	carbonate	and	nitrate	ions.	Carbonate	ions,	for	example,	are	slightly	over-

represented	in	the	list	of	compounds	with	the	highest	errors,	where	0.77%	of	entries	in	this	list	

(5/643	compounds)	contain	carbonate	ions	compared	to	only	0.46%	compounds	in	the	training	

set	at	large.	This	prevalence	of	certain	classes	of	materials	containing	covalent	bonds	in	the	

worst	predictions	suggests	that	our	model	could	be	improved	by	including	attributes	that	

capture	characteristics	such	as	bond	angles	or	using	electron	counting	rules	to	characterize	the	

types	of	bonds	present	in	the	structure.	Beyond	identifying	regions	to	improve	this	model,	our	

analysis	of	its	failures	also	identifies	where	it	can	be	applied	with	the	greatest	likelihood	of	

predictive	accuracy:	compounds	with	commonly-occurring	elements	(a	significant	amount	of	

training	data).	

C. Assessing	the	Importance	of	Structural	Information	in	the	ML	Model	

As	many	of	the	attributes	employed	in	our	representation	are	not	dependent	on	structure,	

it	is	important	to	determine	the	impact	of	the	structure-dependent	attributes	on	the	accuracy	

of	our	ML	models.	If	these	structural	attributes	have	a	negligible	effect,	it	is	possible	that	the	

model	is	only	learning	from	the	structurally-invariant	(i.e.,	composition-based)	attributes.	To	

test	the	effect	of	including	structure-dependent	attributes,	we	replicated	the	cross-validation	

described	in	the	previous	section	and	trained	a	Random	Forest	algorithm	with	three	sets	of	

attributes:	(i)	only	the	composition-based	(i.e.,	structure-independent)	attributes,	(ii)	only	the	

Voronoi-tessellation-based	attributes,	and	(iii)	all	271.	As	a	reference,	we	also	include	the	

results	of	a	Random	Forest	using	the	Coulomb	Matrix	representation.	As	shown	in	Figure	5a,	

there	is	little	difference	between	the	error	rate	of	a	model	trained	using	all	the	attributes	and	

the	structure-independent	ones.	We	also	find	that	models	created	using	only	the	Voronoi-

tessellation-based	attributes,	(ii),	have	superior	performance	to	the	Coulomb	Matrix	

representation.	Consequently,	we	conclude	that	the	Voronoi-based	attributes	carry	useful	

information	about	a	material.	However,	given	the	equivalent	performance	for	the	composition-

only	(i)	and	all-attributes	model	(iii)	in	this	test,	it	is	not	possible	to	determine	whether	



including	structural	attributes	can	lead	to	an	improved	model	compared	to	a	purely	

composition-dependent	model.	

One	explanation	for	the	similar	performance	between	model	trained	on	composition-only	

and	composition-and-structure	representations	is	that	the	ICSD	dataset	contains	too	few	

examples	of	multiple	structures	at	the	same	composition.	Consequently,	there	could	be	

insufficient	training	data	to	build	a	model	that	benefits	from	the	additional	structural	

information.	To	test	this	hypothesis,	we	repeated	the	cross-validation	test	using	a	dataset	

comprised	of	all	non-duplicate	entries	from	the	entire	OQMD	(435792	entries),	which	contains	

dramatically	more	examples	of	multiple	structures	at	a	single	composition.	Only	51%	of	the	

training	entries	in	this	dataset	lack	another	structure	at	the	same	composition,	which	is	lower	

than	the	70%	of	entries	without	another	example	structure	in	the	ICSD	dataset	used	previously.	

With	the	larger	dataset,	we	observed	a	significant	improvement	when	using	both	the	structure-	

and	composition-based	attributes	rather	than	either	subset	of	attributes	alone	(as	shown	in	

Figure	5b).	At	a	training	set	size	of	400000	entries,	the	model	using	structural	and	composition-

based	attributes	has	an	error	rate	around	35%	lower	than	the	composition	only	models	–	

showing	that	there	is	an	advantage	to	including	crystal-structure	information	into	machine	

learning	models.	

The	increased	accuracy	of	the	“all	attributes”	model	on	the	OQMD	dataset	is	not	merely	an	

effect	of	training	set	size.	At	a	training	set	size	of	104,	the	composition-only	model	trained	on	

the	OQMD	dataset	(with	fewer	compositions	with	only	1	structure)	has	a	7%	larger	MAE	than	

the	“all	attributes”	model	(185±3.5	vs	174±2.0	meV/atom).	For	the	same	training	set	size	and	

the	ICSD	training	set,	the	composition-only	and	“all	attributes”	model	have	approximately	the	

same	MAE	(125±2.2	vs	126±1.8	meV/atom,	respectively).	The	difference	between	the	

composition-only	and	“all	attributes”	model	in	our	full	OQMD	test	only	becomes	larger	with	

increasing	sample	size.	To	further	test	this	hypothesis,	we	performed	a	cross-validation	test	

using	a	dataset	containing	only	compositions	with	multiple	structures,	and	find	the	MAE	of	the	

“all	attributes”	model	to	be	significantly	lower	than	the	“composition	only”	model	(105±0.4	vs	

158±0.9	meV/atom,	respectively).	This	lower	error	demonstrates	there	is	indeed	an	advantage	

to	introducing	structure-based	attributes	into	our	machine	learning	models.	Given	the	results	of	



our	previous	tests,	the	improvement	is	only	significant	in	datasets	where	there	are	sufficient	

training	examples	of	multiple	structures	at	a	single	composition.		

IV. Applying	Method	to	Predicting	New	Materials	

In	this	section,	we	explore	using	this	model	to	assess	the	performance	of	our	machine	

learning	models	in	two	applications:	(1)	predicting	the	formation	enthalpy	of	experimentally-

observed	compounds	yet	to	be	included	in	the	OQMD,	and	(2)	identifying	which	materials	are	

most	likely	to	be	stable	out	of	a	list	of	compounds	studied	via	a	high-throughput	search.	In	both	

cases,	we	also	seek	to	determine	whether	our	models	can	perform	well	when	provided	with	

only	the	unrelaxed	structures	that	serve	as	input	into	DFT	calculations.	In	contrast,	we	used	the	

fully-relaxed	structures	generated	as	output	from	a	DFT	calculation	as	input	into	our	machine	

learning	model	in	the	cross-validation	tests	in	the	previous	section.	

A. Validation	with	Yet-Unevaluated	Materials	

One	unresolved	question	from	our	cross-validation	test	is	whether	our	models	can	predict	

the	formation	enthalpy	of	a	material	without	knowledge	of	the	equilibrium	structure.	To	

answer	this	question,	we	used	our	model	to	predict	the	formation	enthalpies	of	compounds	

from	the	ICSD	that	have	yet	to	be	included	in	the	OQMD.	The	compounds	we	tested	generally	

have	large	unit	cell	sizes,	which	leads	to	high	computational	costs	to	evaluate	with	DFT	and	

makes	the	ability	to	predict	their	energies	with	machine	learning	particularly	useful.64	To	make	

our	model	as	accurate	as	possible,	we	trained	a	machine	learning	model	on	the	full	OQMD	

dataset.	We	then	used	this	model	to	evaluate	the	12667	entries	from	the	ICSD	that	had	not	yet	

been	added	to	the	OQMD,	which	required	less	than	2	hours	on	a	2.2	GHz	CPU.	We	then	

selected	a	total	of	45	entries	from	this	list	to	validate	with	DFT	using	three	different	strategies:	

(1)	randomly-selecting	entries,	(2)	selecting	entries	predicted	to	have	the	most	negative	Δ𝐻!,	

and	(3)	selecting	those	predicted	have	the	largest	stability	(farthest	below	the	energy	of	the	

OQMD	convex	hull	at	that	composition65).	By	studying	these	three	different	strategies	

separately,	we	can	also	assess	how	best	to	use	our	machine	learning	model	in	practice.	

As	shown	in	Figure	7	and	Table	1,	we	observed	the	best	performance	of	the	model	in	the	

entries	that	were	randomly	selected	from	the	dataset	–	a	MAE	of	119	±	47	meV/atom.	This	is	



excellent	accuracy	when	considering	that	these	predictions	were	made	before	determining	the	

equilibrium	structure	of	the	material.	The	change	in	the	predicted	formation	enthalpy	between	

the	model	given	the	input	structure	and	fully-relaxed	structure	was	below	25	meV/atom	for	13	

out	of	15	materials	–	far	below	the	MAE	of	80	meV/atom	observed	in	cross-validation.	These	

results	show	that	our	machine	learning	model	can	predict	the	formation	enthalpy	of	unstudied	

compounds	with	an	accuracy	on	the	order	of	100	meV/atom	and	the	predictions	of	our	model	

are	relatively	insensitive	to	structural	relaxations.	

	The	MAE	for	materials	selected	by	finding	those	with	minimal	Δ𝐻!	was	generally	higher,	

177	±	64	meV/atom,	but	our	model	was	successful	in	locating	materials	with	especially-large	

formation	enthalpies.	The	worst-performing	entry	in	this	dataset,	CeF4,	is	likely	is	an	outlier	

because	the	DFT	calculations	in	the	OQMD	treat	Ce	with	only	3	valence	electrons.4	

Consequently,	the	Ce4+	is	not	modeled	correctly	and	formation	enthalpy	for	CeF4	will	be	more	

positive	than	what	might	be	expected	based	on	Ce	in	other	oxidation	states	and	the	behavior	of	

other	metal-fluoride	salts.	There	are	four	examples	of	Ce4+	in	the	list	of	the	worst	2%	of	

predictions	described	in	Section	III.B	(CeO2,	BaCeN2,	Li2CeN2,	and	Ce2SeN2)	and	the	ML	predicts	

a	more	negative	formation	enthalpy	than	DFT	in	all	cases,	just	as	observed	for	CeF4.	Provided	

enough	training	examples,	it	is	possible	for	our	model	to	learn	the	abnormal	behavior	of	Ce4+	

but	it	apparently	lacks	the	ability	with	the	current	training	set.	If	we	exclude	this	compound	

from	the	analysis,	the	error	rate	in	our	test	is	only	148	±	41	meV/atom.	Regardless,	the	accuracy	

levels	observed	in	these	test	is	sufficiently	high	to	successfully	identify	materials	with	

exceptionally	low	Δ𝐻!.	All	compounds	selected	based	on	minimal	formation	enthalpy	are	

within	the	97th	percentile	(99.4th	without	CeF4)	and,	on	average,	above	the	99.5th	percentile	of	

all	compounds	in	the	ICSD.	While	the	numerical	accuracy	of	predictions	is	slightly	worse	when	

preferentially	selecting	large	formation	enthalpy	materials	than	when	randomly-selecting	

materials,	we	do	find	it	sufficient	to	identify	which	materials	are	most	likely	to	have	a	large,	

negative	formation	enthalpy	out	of	a	large	dataset.	

Of	our	three	selection	strategies,	the	accuracy	of	our	predictions	was	worst	when	selecting	

materials	predicted	to	be	the	most	stable	relative	to	other	compounds.	In	this	test	case,	our	

error	rates	were	766	±	125	meV/atom,	which	is	approximately	the	error	expected	when	



guessing	the	mean	formation	enthalpy	of	the	OQMD	training	set	for	all	compounds.	This	poor	

performance	could	be	a	result	of	the	biasing	effect	described	by	Faber	et	al.29	In	their	paper,	

Faber	et	al.	observed	a	low	success	rate	when	selecting	Elpasolite	materials	based	on	the	

predicted	stability	with	reference	to	other	compounds.	They	attributed	this	low	success	rate	to	

this	strategy	of	selecting	materials	“systematically	favor[ing]	those	[predictions]	with	negative	

ML	formation	energy	errors.”29	Consistent	with	their	observation,	nearly	all	of	our	predictions	

made	with	this	strategy	have	negative	formation	enthalpy	errors	and	are	well	within	the	99th	

percentile	of	magnitude	of	errors	observed	in	our	cross-validation	test.	This	poor	performance	

suggests	that	identifying	materials	based	on	the	difference	between	ML-predicted	formation	

energy	and	the	energies	of	competing	phases	is	problematic.	Consequently,	we	recommend	

either	searching	for	new	stable	materials	by	selecting	those	with	large	formation	energies	or	

directly	predicting	the	stability	with	reference	to	other	phases.	

Overall,	this	validation	test	was	particularly	successful.	We	observed	formation	energy	

errors	of	approximately	125	meV/atom	for	randomly-selected	materials,	and	successfully	

located	materials	with	exceptionally	low	formation	enthalpies.	In	these	cases,	making	the	ML	

predictions	required	only	a	tiny	fraction	of	the	tens	of	thousands	of	CPU	hours	of	DFT	

calculations	necessary	to	validate	them	for	these	limited	test	cases.	It	is	also	worth	emphasizing	

that	these	high	accuracies	were	achieved	without	knowledge	of	the	equilibrium	DFT	geometry.	

Across	all	45	predictions,	the	mean	absolute	difference	between	the	prediction	of	our	model	

with	the	initial	guess	provided	to	DFT	and	with	the	fully-relaxed	structure	was	only	35	±	27	

meV/atom	–below	the	error	expected	in	the	prediction	from	the	cross-validation	experiment	at	

80	meV/atom	and	those	observed	in	this	Section	(354	±	87	meV/atom).	This	result	

demonstrates	that	our	models	can	be	used	effectively	when	only	an	approximate	model	of	the	

relaxed	geometry	is	known	–	a	very	important	feature	when	searching	for	new	crystalline	

materials	using	machine	learning.	

B. Application	to	Combinatorial	Searches	

To	test	how	our	models	could	be	applied	to	the	high-throughput	materials	discovery	

process,	we	simulated	the	results	of	searching	for	new	compounds	based	on	several	common	

crystal	structures.	First,	we	trained	each	model	using	data	from	all	32111	compounds	in	the	



OQMD	that	are	based	on	entries	from	the	ICSD.	We	used	only	the	ICSD	entries	as	a	training	set	

because	it	is	not	computationally-feasible	to	train	the	PRDF	and	CM	models	on	the	entire	

OQMD.	Then,	we	used	this	model	to	evaluate	the	formation	enthalpies	of	all	entries	in	the	

OQMD	with	the	B2,	L10,	and	orthorhombically-distorted	perovskite	crystal	structures.	To	

simulate	how	this	model	would	be	used	in	practice,	we	evaluated	the	formation	energy	of	the	

compound	using	the	same	input	geometry	provided	to	the	DFT	calculation:	simply	the	original	

prototype	structure	with	new	elements	substituted	in.	In	contrast	to	Section	IV.A,	the	inputs	to	

this	model	emulate	a	“structure	prediction”	use	case	for	ML,	where	no	experimental	data	about	

the	structure	is	known.	These	three	structural	prototypes	were	chosen	as	separate	test	cases	to	

sample	structures	that	have	a	variety	of	local	environments	and	that	are	known	to	be	stable	for	

compounds	with	both	metallic	and	ionic	bonding.	Furthermore,	the	B2	and	L10	datasets	were	

created	by	generating	all	possible	combinations	of	elements	into	the	structure,	which	is	useful	

for	testing	the	ability	of	the	model	to	evaluate	a	broad	range	of	chemistries.	In	contrast,	the	

orthorhombic	perovskite	dataset	is	limited	to	only	ABO3	metal	oxides	and	predominately	

includes	materials	with	negative	formation	enthalpies,	which	will	allow	us	to	evaluate	the	

performance	over	a	more-restricted	space.	Additionally,	the	orthorhombic	perovskite	is	the	

structure	with	the	largest	number	of	structural	degrees	of	freedom	available	in	the	large	

numbers	from	the	OQMD,	which	will	allow	us	to	better	test	the	effect	of	structural	relaxation	

on	prediction	accuracy.	

To	evaluate	the	ability	of	each	machine	learning	algorithm	to	rank	compounds	from	most	

to	least	stable,	we	measured	the	Kendall	Tau	ranking	correlation	coefficient	between	the	

predicted	and	actual	formation	enthalpies	for	each	prototype	structure.	The	Kendall	Tau,	which	

is	defined	as	the	difference	in	the	fraction	of	pairs	in	a	list	that	are	correctly	and	incorrectly	

ordered,66	allows	us	to	understand	how	well	the	algorithm	could	be	employed	to	identify	

compounds	that	are	likely	to	be	stable.	As	shown	in	Figure	8a,	the	model	created	using	our	new	

method	has	the	highest-ranking	correlation	coefficient	for	all	three	considered	test	cases.	For	

the	L10	structure,	our	model	performs	twice	as	well	as	the	CM	model	and	almost	three	times	

better	than	the	PRDF	model,	and	the	differences	are	similarly	large	in	the	B2	test	case.		



The	performance	for	all	three	machine	learning	methods	was	best	for	the	perovskite	test	

case,	where	the	dataset	was	restricted	to	metal	oxides	with	mostly	(99.3%)	negative	formation	

enthalpies.	In	that	example,	our	model	had	very	strong	ranking	performance	–	an	85%	success	

rate.	This	exceptional	ranking	performance	is	likely	a	result	of	the	dataset	containing	mostly	

materials	that	have	negative	formation	enthalpies.	If	we	repeat	the	ranking	test	for	B1	and	L10	

with	only	compounds	with	negative	formation	enthalpies,	we	observe	improved	performance	

for	all	three	machine	learning	techniques.	The	improved	performance	on	a	dataset	containing	

only	materials	with	negative	formation	enthalpies	is	consistent	with	our	previous	finding	that	

the	model	performs	worst	for	materials	with	positive	formation	enthalpies	(see	Figure	5a).	

Consequently,	we	purpose	that	the	selection	performance	of	each	model	could	be	improved	by	

first	screening	the	space	based	on	heuristic	chemical	rules	(e.g.,	are	the	elements	in	reasonable	

oxidation	states?).	This	could	eliminate	compounds	that	are	more	likely	to	be	extremely	

unstable	at	the	risk	of	potentially	missing	exciting	materials	with	elements	in	surprising	

oxidation	states	(as	in	Ref.	29).	

One	factor	leading	to	improved	performance	of	our	method	is	the	insensitivity	of	our	

representation	to	changes	in	volume.	In	the	case	of	B2,	the	only	degree	of	freedom	in	the	

crystal	structure	is	the	volume.	Consequently,	our	predictions	are	not	dependent	on	the	quality	

of	the	initial	guess	for	the	equilibrium	volume.	Incidentally,	the	accuracy	of	the	CM	method	is	

also	only	negligibly	affected.	In	contrast,	the	predictive	accuracy	of	the	PRDF	method	increases	

significantly	when	we	use	the	final,	fully-relaxed	geometry	as	input	to	the	model.	For	our	other	

two	test	cases	–	𝐿1!	and	orthorhombic	perovskite	–	the	predicted	enthalpies	depend	upon	

relaxation	because	there	is	more	than	one	degree	of	freedom	in	the	structure	.	Even	so,	the	

mean	change	between	the	initial	and	final	structures	in	the	predicted	Δ𝐻!	is	approximately	

65	meV/atom	and	the	correlation	coefficient	between	the	two	predictions	is	approximately	

99%	for	both	structure	types.	Correspondingly,	the	ranking	performance	only	changes	slightly.	

Considering	both	this	fact	and	the	highest	Kendall	tau	ranking	coefficient,	we	conclude	our	

model	is	the	best	choice	for	this	ranking	task.		

In	practice,	these	machine	learning	models	might	only	be	used	to	select	the	entries	with	

the	lowest	predicted	formation	enthalpy.	To	measure	the	ability	of	each	model	to	identify	



entries	with	the	largest	formation	enthalpies,	we	measured	the	number	of	entries	predicted	by	

our	machine	learning	model	to	have	the	100	largest	formation	enthalpies	that	were	within	the	

top	100	of	the	test	set.	As	shown	in	Figure	8b,	the	model	created	using	our	method	performs	

the	best	per	this	metric	for	all	three	cases	and	over	half	of	the	predictions	made	with	our	model	

are	actually	within	the	top	100.	What	this	high	predictive	accuracy	suggests	is	that	it	is	possible	

to	use	a	machine	learning	model	trained	on	data	with	dissimilar	crystal	structures	(e.g.,	the	

entire	OQMD)	to	predict	stable	compounds	with	a	target	crystal	structure	without	having	to	

first	create	a	new,	problem-specific	training	set	–	as	is	common	practice	in	previous	machine-

learning-assisted	searches	for	stable	compounds.29,39,40,67	Our	method	can	be	also	be	used	to	

predict	the	stability	of	compounds	with	infrequently-observed	structure	types,	a	limitation	of	

crystal	structure	prediction	methods	that	search	for	correlations	between	energies	of	

commonly-occurring	prototypes.22,68–70	By	using	existing	data	and	our	machine	learning	

technique,	we	can	quickly	make	predictions	of	which	materials	are	most	likely	to	be	stable	and	

use	that	knowledge	to	accelerate	high-throughput	DFT	searches	for	new	materials.	

V. Conclusions		

In	this	work,	we	present	a	strategy	for	predicting	the	formation	energy	of	crystalline,	

inorganic	compounds	using	characteristics	derived	from	the	Voronoi	tessellation	of	its	structure	

and	machine	learning.	We	demonstrate	that	these	models	are	more	accurate	in	cross-validation	

and	better	at	ranking	unseen	compounds	from	most	to	least	stable	than	those	produced	using	

the	Coulomb	Matrix30	and	Partial	Radial	Distribution	Function41	methods,	and	equivalently	as	

fast.	Furthermore,	we	show	that	our	model	is	learning	the	effect	of	structure	on	formation	

enthalpy	and	can	accurately	predict	the	formation	enthalpy	of	materials	without	knowledge	of	

the	fully-equilibrated	crystal	structure.	Provided	the	high	predictive	accuracy	of	this	method	

and	the	ability	to	utilize	large	training	datasets,	we	envision	it	will	be	possible	to	employ	this	

method	to	identify	new,	stable	materials	at	a	low	computational	cost.	
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Figure	1.	Mean	absolute	error	(MAE)	measured	using	cross-validation	of	models	created	

using	the	PRDF,41	Coulomb	Matrix	(CM),30	and	the	method	presented	in	this	work.	Each	model	

was	trained	on	the	DFT	formation	energies	of	a	set	of	randomly-selected	compounds	from	the	

ICSD	and	used	to	evaluate	1000	distinct	compounds	that	were	also	selected	at	random.	The	

black,	dashed	line	indicates	the	expected	error	from	guessing	the	mean	formation	energy	of	the	

training	set	for	all	structures.	

	 	



	

Figure	2.	Formation	enthalpy	(Δ𝐻!)	computed	using	Density	Functional	Theory	(DFT)	and	

predicted	using	machine	learning	(ML)	with	models	created	using	the	Coulomb	Matrix	(CM),30	

the	Partial	Radial	Distribution	Function	(PRDF),41	and	the	method	proposed	in	this	work.	Each	

model	was	trained	on	the	same	set	of	30000	entries	from	the	OQMD,	and	evaluated	against	the	

same	validation	set	of	1000	compounds.	The	results	from	the	validation	set	are	shown	in	this	

figure	along	with	several	different	performance	metrics.	

	 	



	

Figure	3.	Performance	of	machine	learning	models	for	formation	enthalpy	created	with	the	

same	machine	learning	algorithm	but	different	representations.	Each	graph	shows	Mean	

Absolute	Error	(MAE)	for	(a)	Kernel	Ridge	Regression	(KRR)	model	and	(b)	Random	Forest	

algorithm	in	a	cross-validation	test	where	the	model	was	trained	on	progressively	larger	

training	sets	and	validated	against	a	separate	test	set	of	1000	entries.	For	each	algorithm,	we	

compare	the	performance	using	the	Voronoi-tessellation	based	representation	proposed	in	this	

work	is	compared	against	Coulomb	Matrix	30	and	the	Partial	Radial	Distribution	Function	(PRDF)	

Matrix	representations.	

	 	



	

Figure	4.	Comparison	of	model	training	and	running	time	of	three	different	techniques	to	

predict	the	formation	energy	of	inorganic	compounds.	Training	time	is	the	sum	of	attribute	

generation	and	model	construction	with	given	data.	Run	time	is	the	average	time	taken	to	

compute	the	required	attributes	and	evaluate	the	machine	learning	model	for	a	single	

compound.	

	 	



	

Figure	5.	(a)	The	DFT-computed	formation	enthalpy	of	a	compound	compared	to	the	mean	

absolute	error	(MAE)	between	the	DFT	and	machine-learning-predicted	formation	enthalpy	of	

that	compound	during	a	cross-validation	test.	The	red,	dashed	line	indicates	the	98th	percentile	

of	the	mean	absolute	error.	(b)	Comparison	of	the	fraction	of	compounds	that	contain	a	certain	

element	in	our	ICSD	training	set	𝑃(ICSD)	to	the	ratio	between	the	fraction	of	compounds	in	the	

98th	percentile	of	MAE	and	the	fraction	in	the	training	set.		

	 	



	

Figure	6.	Performance	of	machine	learning	models	trained	on	different	representations	in	

cross-validation	tests	using	data	from	the	(a)	ICSD	subset	of	the	OQMD	and	(b)	the	entire	

OQMD.	These	include	models	trained	using	all	the	attributes	in	our	proposed	representation	

and,	separately,	models	created	using	only	the	composition-dependent	terms	and	only	the	

structure-dependent	terms.	The	results	of	a	model	created	using	the	Coulomb	Matrix	and	

Random	Forest	is	shown	for	comparison.	Shaded	regions	represent	the	90%	confidence	

intervals											

	 	



	

Figure	7.	Comparison	of	formation	enthalpies	(Δ𝐻!)	predicted	using	machine	learning	(ML)	

and	computed	using	Density	Functional	Theory.	The	machine	learning	model	was	trained	on	the	

formation	enthalpies	of	all	435792	non-duplicate	entries	from	the	OQMD.	Each	material	was	

selected	from	a	list	of	12667	entries	from	the	ICSD	that	have	yet	to	be	included	in	the	OQMD	

using	three	different	strategies:	(green	squares)	random	selection,	(blue	diamonds)	predictions	

with	the	lowest	Δ𝐻!,	and	(red	circles)	with	the	largest,	negative	difference	between	the	

predicted	Δ𝐻!	and	the	OQMD	convex	hull.		 	



	

Figure	8.	Comparison	of	the	ability	of	different	machine	learning	methods	to	rank	different	

types	of	compounds	based	on	DFT	formation	energy,	measured	using	two	different	metrics.	(a)	

The	Kendall	Tau	ranking	correlation	coefficient,	which	is	based	on	how	well	the	model	ranks	the	

entire	dataset.	A	correlation	value	of	1.0	corresponds	to	perfect	ranking.	(b)	How	many	of	the	

100	compounds	with	the	lowest	DFT	formation	energy	were	predicted	by	the	model	to	be	

within	the	lowest	100	compounds.	Each	model	was	trained	on	the	DFT-predicted	formation	

energy	of	32111	inorganic	compounds	from	the	ICSD.	The	solid	bar	indicates	the	ranking	

performance	using	the	input	structure	provided	to	DFT.	Black	outline	around	each	bar	indicates	

the	ranking	accuracy	when	provided	with	the	fully-relaxed	output	from	DFT.	

	 	



Tables	

Table	1.	Performance	of	machine	learning	algorithm	in	predicting	the	formation	enthalpy	(Δ𝐻!)	of	

30	materials	outside	of	the	training	set	that	were	selected	with	three	different	strategies.	The	DFT	

computed	value	is	compared	to	the	ML	prediction	using	the	structure	provided	to	DFT	(Before	

Relaxation)	and	the	relaxed,	output	structure.		

	
Composition	

Δ𝐻!,	DFT	
(eV/atom)	

Before	Relaxation		 After	Relaxation	
Δ𝐻!,	ML	
(eV/atom)	

Error	
(eV/atom)	

Δ𝐻!,	ML	
(eV/atom)	

Change	
(eV/atom)	

Error	
(eV/atom)	

Ra
nd

om
	

CrHg3Pb2O8	 -1.139	 -1.368	 0.229	 -1.370	 -0.002	 0.231	
Y2Co14B	 -0.181	 -0.176	 0.005	 -0.174	 0.002	 0.006	
YH3C3S2O12F9	 -1.555	 -1.541	 0.014	 -1.535	 0.006	 0.021	
CuH12C5S4N	 -0.168	 -0.239	 0.071	 -0.216	 0.023	 0.048	
Rb2Tc3Se6	 -0.750	 -0.730	 0.020	 -0.727	 0.003	 0.022	
Li6CaCeO6	 -2.257	 -2.092	 0.165	 -1.373	 0.719	 0.885	
Na5Ti2VSi2O13	 -2.747	 -2.643	 0.104	 -2.656	 -0.013	 0.091	
ErP5O14	 -2.692	 -2.359	 0.334	 -2.368	 -0.009	 0.325	
Cs2USi6O15	 -3.100	 -2.868	 0.232	 -2.854	 0.014	 0.246	
NaH2PO4	 -2.055	 -1.972	 0.083	 -1.976	 -0.004	 0.079	
Na5TbW4O16	 -2.587	 -2.563	 0.024	 -2.569	 -0.006	 0.018	
NaU2H5C4O20	 -1.925	 -1.981	 0.055	 -2.019	 -0.038	 0.093	
U2MoO8	 -2.976	 -2.744	 0.232	 -2.737	 0.008	 0.240	
DyMnSn2	 -0.423	 -0.455	 0.032	 -0.454	 0.000	 0.031	
RbVP2O8	 -2.49	 -2.674	 0.184	 -2.672	 0.002	 0.182	

Mean	 -1.803	 -1.760	 0.119	 -1.713	 0.047	 0.168	
90%	CI	 0.470	 0.435	 0.047	 -0.437	 0.085	 0.102	

La
rg
es
t	𝚫
𝑯
𝒇	

SrMgF4	 -3.952	 -3.876	 0.077	 -3.862	 0.014	 0.091	
CeF4	 -3.400	 -3.982	 0.583	 -3.887	 0.095	 0.488	
Sr2ScF7	 -4.175	 -3.902	 0.273	 -3.924	 -0.022	 0.251	
RbLu3F10	 -4.275	 -3.978	 0.297	 -4.001	 -0.023	 0.274	
BaAlF5	 -3.956	 -3.936	 0.020	 -3.949	 -0.013	 0.007	
ThZrF8	 -4.223	 -4.066	 0.157	 -4.039	 0.027	 0.183	
KU2F9	 -3.800	 -3.891	 0.091	 -3.869	 0.022	 0.069	
RbTh2F9	 -4.252	 -4.091	 0.161	 -4.104	 -0.013	 0.148	
Ba2ZrF8	 -4.125	 -3.912	 0.213	 -3.914	 -0.002	 0.212	
Sr5Al2F16	 -4.089	 -3.851	 0.238	 -3.854	 -0.003	 0.235	
KYF4	 -3.976	 -3.812	 0.164	 -3.820	 -0.008	 0.156	
SrAlF5	 -4.002	 -3.849	 0.153	 -3.828	 0.021	 0.174	
BaNaZr2F11	 -3.935	 -3.848	 0.087	 -3.872	 -0.024	 0.064	
Ba6Mg11F34	 -3.931	 -3.864	 0.066	 -3.864	 0.001	 0.067	
Ba7Cl2F12	 -3.939	 -3.943	 0.004	 -3.943	 0.000	 0.004	

Mean,	 -4.005	 -3.918	 0.177	 -3.913	 0.004	 0.166	
90%	CI	 0.099	 0.038	 0.064	 0.037	 0.014	 0.056	

La
rg
es
t	S

ta
bi
lit
y	

CeTl5Fe2(NO2)12	 -0.804	 -1.782	 0.978	 -1.754	 0.028	 0.951	
YTl5Cu2(NO2)12	 -0.697	 -1.673	 0.976	 -1.652	 0.021	 0.955	
Rb2BiCl5O20	 -0.655	 -1.502	 0.847	 -1.502	 0.000	 0.847	
YTl5Co2(NO2)12	 -0.752	 -1.757	 1.005	 -1.727	 0.030	 0.974	
TmAu2F9	 -2.331	 -2.212	 0.119	 -2.211	 0.002	 0.120	
VXe2F34	 -1.348	 -1.978	 0.629	 -2.072	 -0.095	 0.724	
CeTl5Ni2N12O34	 -0.777	 -1.754	 0.977	 -1.780	 -0.026	 1.003	
CsXe3O3F36	 -0.687	 -1.776	 1.088	 -1.782	 -0.006	 1.094	



ScH3Cl2O10	 -1.058	 -1.895	 0.837	 -1.929	 -0.034	 0.872	
Lu(H2ClO3)5	 -0.974	 -1.704	 0.730	 -1.669	 0.035	 0.695	
Er5C2Br9	 -1.766	 -1.486	 0.279	 -1.459	 0.027	 0.306	
SnCl8O25	 -0.233	 -1.131	 0.898	 -1.121	 0.010	 0.888	
NiXe4F28	 -0.828	 -1.475	 0.648	 -1.385	 0.090	 0.558	
Np2H8Cl2O13	 -1.101	 -1.690	 0.590	 -1.700	 -0.009	 0.599	
CeAg6(NO3)9	 -0.794	 -1.679	 0.885	 -1.667	 0.012	 0.873	

Mean	 -0.987	 -1.700	 0.766	 -1.694	 0.006	 0.764	
90%	CI	 0.231	 0.113	 0.125	 0.123	 0.018	 0.123	

	


