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Entanglement is usually quantified by von Neumann entropy, but its properties are much more complex
than what can be expressed with a single number. We show that the three distinct dynamical phases known
as thermalization, Anderson localization, and many-body localization are marked by different patterns of the
spectrum of the reduced density matrix for a state evolved after a quantum quench. While the entanglement
spectrum displays Poisson statistics for the case of Anderson localization, it displays universal Wigner-Dyson
statistics for both the cases of many-body localization and thermalization, albeit the universal distribution is
asymptotically reached within very different time scales in these two cases. We further show that the complexity
of entanglement, revealed by the possibility of disentangling the state through a Metropolis-like algorithm, is
signaled by whether the entanglement spectrum level spacing is Poisson or Wigner-Dyson distributed.

Introduction.— Entanglement is usually quantified by a
number, the entanglement entropy, defined as the von Neu-
mann entropy of the reduced density matrix ρA of a subsys-
tem, and it is a key concept in many different physical set-
tings, from novel phases of quantum matter [1–4] to cosmol-
ogy [5, 6]. However, there is a lot more information in the
entanglement spectrum of ρA, namely the full set of its eigen-
values (or its logarithms) [7]. Recently, a measurement proto-
col to access the entanglement spectrum of many-body states
using cold atoms has been proposed [8]. The main goal of
this letter is to explore the relationship between entanglement
spectrum and dynamical behavior of a quantum many-body
system.

In Refs. [9, 10] it was shown that the entanglement of a
state generated by a quantum circuit can be simple or com-
plex, in the sense that the state either can or cannot be dis-
entangled by an entanglement cooling algorithm that resem-
bles the Metropolis algorithm for finding the ground state of
a Hamiltonian. The success or failure of the disentangling
procedure is signaled by the so called entanglement spectrum
statistics (ESS) [9, 10], namely the distribution of the spacings
between consecutive eigenvalues of ρA. When such a dis-
tribution is Wigner-Dyson (WD), the cooling algorithm fails.
This situation occurs when the gates in the circuit are suffi-
cient for universal computing, either classical or quantum. On
the other hand, for circuits that are not capable of universal
computing, the states can be disentangled and they feature a
(semi-)Poisson ESS.

In this letter, we focus on systems whose dynamics is con-
trolled by a time-independent quantum many-body Hamilto-
nian, as opposed to a random circuit. We study the entangle-
ment complexity revealed by the ESS of the time-evolved state
for Hamiltonians whose eigenstates yield one of three behav-
iors: 1) eigenstate thermalization (ETH) [11–16], 2) Anderson
localization (AL), or 3) many-body localization (MBL) [17–
19]. We find that the time-evolved states under Hamiltonians
that feature AL follow a Poisson ESS, and that they can be
disentangled by applying the entanglement cooling algorithm
which uses only the unitaries generated from one-and two-

body terms in the Hamiltonian. On the other hand, the time-
evolved states under Hamiltonians that satisfy ETH follow
a WD distribution, and the entanglement cooling algorithm
fails. Remarkably, the dynamics generated by MBL Hamil-
tonians results in ESS approaching asymptotically in time
a WD distribution, the same distribution that time-evolved
states with ETH Hamiltonians reach in shorter times. We find
that the rate of such approach to WD scales with the inverse of
the logarithm of time. We further find that the state generated
by MBL Hamiltonians cannot be disentangled using a cooling
algorithm.

Quantum Quench of the Heisenberg spin chain.— We shall
focus on a quantum state that is time-evolved after a quantum
quench, namely, a sudden switch of the Hamiltonian so as to
throw the initial state away from equilibrium. We consider the
XXZ spin-1/2 chain of L sites with open boundary conditions,

H = J
L−1
∑

i=1
(σxi σ
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We consider three distinct regimes of parameters: (i) In the ab-
sence of a transverse field and interaction (∆ = xi = 0, zi ≠ 0),
the Hamiltonian in Eq. (1) maps onto free fermions via a
Jordan-Wigner transformation [20, 21]. The complexity of
the problem is reduced from that of diagonalizing a 2L × 2L

matrix to that of diagonalizing a L×Lmatrix. In the limit case
of no disorder, zi = const, the system is completely integrable
while in the presence of disorder it shows AL [22]. In the case
of AL, the Hamiltonian is noninteracting in the basis of local
conserved quantities. The presence of constants of motion
prevents the system from thermalizing. (ii) In the presence of
interactions and weakly disordered external fields (zi ∈ [−1,1]
and ∆ = 0.5), the Hamiltonian in Eq. (1) is nonintegrable and
thermalizes. Its eigenstates obey ETH. (iii) Finally, in the
presence of interactions and strong disorder (zi ∈ [−10,10]
and ∆ = 0.5), the system features MBL: Even the high-energy
eigenstates of such a system are weakly entangled, obey an
area law and thus do not follow ETH [14, 23, 24]. The dy-
namical behavior of the MBL phase is also apparent in the
fact that during the evolution, the entanglement grows only
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Dynamical phases
Features AL ETH MBL

Entanglement spectrum Poisson WD WD

Energy spectrum Poisson Poisson
or WD Poisson

Entanglement cooling 3 7 7

TABLE I. Summary of the main results presented in the paper. The
ESS of Hamiltonians featuring AL shows a Poisson distribution,
while for both ETH and MBL Hamiltonians it displays a WD dis-
tribution. In particular, the deviation from the WD distribution in the
MBL case decays as 1/ log(t). The energy level spacing statistics
yields a Poisson distribution for both AL and MBL, while for ETH
case it can be either Poisson (in the presence of additional conserved
quantities) or WD (with no conserved quantities). Finally, the states
generated by AL Hamiltonians can be disentangled using an entan-
glement cooling algorithm, while the states generated by ETH and
MBL Hamiltonians cannot.

logarithmically in time [25–27].
The quantum evolution is studied as follows. We consider

the state ∣Ψ(t)⟩ = exp(−ı̇Ht)∣Ψ0⟩, where ∣Ψ0⟩ = ⊗j ∣ψ⟩j is
a random factorized state. By quenching to different values
of {xi, zi,∆}, we can obtain all possible dynamics we want
to study. The marginal state ρA(t) corresponds to the re-
duced density matrix of one half of the total chain. The set of
eigenvalues of ρA are then denoted by {pi}

2L/2
i=1 and ordered

in decreasing order. At the same time, we also consider the
eigenenergies {Ej}

2L

j=1 of the full Hamiltonian.
Entanglement spectrum statistics.— At t = 0, the state

contains initially no entanglement and gets entangled only
through the dynamics. After a time t0 = 1000 in units of
1/J , we study the ESS of the spectrum {pi}

2L/2
i=1 [9, 10], here

obtained from the distribution P (r) = R−1∑Ri=1⟨δ(r − ri)⟩ of
the ratios of consecutive spacings, ri = (pi−1−pi)/(pi−pi+1).
In an analogous fashion, we obtain the statistics of ratios of
the energy spectrum {Ej}

2L

j=1 and compare it to the ESS. Our
results are summarized in Table I.

We first consider case (i), the XX spin chain (∆ = xi = 0)
in the presence of a random field zi ∈ [−h,h]. This model
can be brought into the form of free fermions in one dimen-
sion and features AL for every value of h. Here, we choose
h = 1. In Fig. 1a, we show P (r) of the final states after a long
time evolution (t0J = 1000). The ESS fits the distribution ex-
pected for uncorrelated eigenvalues, PPoisson(r) = (1 + r)−2,
which can be straightforwardly derived assuming a Poisson
distribution of spacings. In Refs. [9, 10] such statistics cor-
responds to simple patterns of entanglement that are easily
reversible under the entanglement cooling algorithm. In the
quantum quench scenario, such pattern results in the failure to
reach thermalization. Indeed, the distribution of the spacings
in the energy spectrum is also Poisson (see Fig. 1b), which is
a typical feature of integrable systems [28, 29]. As we can
see, in the integrable case, the ESS and the energy level spac-
ings convey the same information. Similarly, we find that in
the completely integrable case (zi = 0) both ESS and energy

spectrum are still Poisson. However, because of the absence
of localization, entanglement propagates and fulfills volume
law like in a thermal system [30], though no thermalization
can happen. This shows that it is the finer structure of entan-
glement in the ESS that is able to diagnose dynamical phases,
instead of just the amount of entanglement.

When the interaction ∆ is switched on, the system can be
made nonintegrable by introducing a random field zi [31]. Al-
though nonintegrable, there is still a simple conserved quan-
tity in the model, namely, the total magnetization Sz in the
z direction. If the disorder is weak (we choose h = 1) we
are in case (ii): The model obeys ETH and thermalizes. At
this point we are confronted with a shortcoming of the en-
ergy level statistics. For a nonintegrable system, the distri-
bution of energy level spacings is expected to follow a WD
distribution and very accurate surmises exist in this case [32]:
PWD(r) = Z−1(r + r2)β(1 + r + r2)−1−3β/2, where Z = 8/27
for the Gaussian Orthogonal Ensemble (GOE) with β = 1,
and Z = 4π/81

√

3 for the GUE with β = 2. However, to
find such a result one needs to diagonalize the Hamiltonian
only in the subspace of fixed total magnetization [33]. If one
does not know what the conserved quantities are – and this
is a generic case – and diagonalizes the Hamiltonian in the
full Hilbert space, one would find again Poisson statistics, see
Fig. 1d. However, if one breaks the Sz conservation by a small
uniform field in the x direction, one does find the WD distri-
bution, see inset of Fig. 1d. Thus, for nonintegrable systems,
one is required to know all conserved quantities in order to
check the ETH through the energy level statistics. The pres-
ence of just one (local) constant of motion makes the system
behave as integrable (Poisson statistics) from the viewpoint of
the energy gaps if we consider the full spectrum, even though
the system indeed thermalizes, while breaking all conserva-
tion laws results in WD, see Table I.

In contrast, we find that the ESS is more robust and cap-
tures that thermalization should not be impaired by the fact
that there is one conserved quantity. We find that the ESS data
agrees well with a WD distribution with β = 2, see Fig. 1c.
Breaking the last constant of motion by introducing a small
constant field xi = 0.1 in the x direction results in the same
distribution (see inset). Therefore, it is clear that ESS already
gives us an advantage in comparison to the energy level statis-
tics, as it can discriminate between integrable and noninte-
grable models without requiring the knowledge of the local
conserved quantities.

Finally, keeping fixed ∆ = 0.5 and increasing the range
of zi we enter in the MBL case (iii). In spite of the system
being still nonintegrable, the energy eigenstates stay very lo-
calized breaking ergodicity and hence thermalization. More-
over, the eigenstates are weakly entangled (they obey an area
law [34, 35], which for a one-dimensional chain implies an
entanglement entropy nearly independent of the system size).
Thus the mechanism behind ETH breaks down and the system
does not thermalize, at least within reasonable time scales,
that is, nonexponential in system size. At such time scales,
the system shows some features of the integrable systems, as
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FIG. 1. (Color online) Comparison between ESS and energy level spacing statistics after a quantum quench at t0 = 1000 starting from a random
product state in systems that are Anderson localized (a-b), nonintegrable and featuring ETH (c-d), featuring MBL (e-f). ESS follows three
different distributions, namely Poisson (a), WD (c), and a non-universal one (e), thus perfectly classifying the three different dynamical phases.
On the other hand, the distribution of the energy level spacings is always Poisson in all three cases. It becomes WD in the nonintegrable, ETH
case shown in inset of panel (d) only if total magnetization Sz conservation is broken by a field in the x direction. In the MBL case, the ESS
approaches WD upon discarding the largest eigenvalues values of the spectrum (inset of (e)). All simulations are done with 2000 realizations
of disorder and L = 12 unless otherwise specified.

there is an extensive number of quasilocal conserved quanti-
ties [35–39]. This is also reflected in the distribution of the en-
ergy level spacings. We computed that distribution and show
it in Fig. 1f, which reveals a Poisson statistics, just like for an
integrable system (or AL, that is, integrable).

Let us now analyze the ESS for MBL. We shall find that
MBL can be distinguished from both AL/integrable systems
and ETH. The analysis that we present below shows that the
ESS for MBL approaches asymptotically a WD distribution
at rather long time scales, which we quantify below. The ESS
is shown in Fig. 1e, and show the following features. At the
given time scale (t0J = 1000), the ESS appears to deviate
from WD statistics (as well as from Poisson statistics); the de-
viation is reduced if one considers a fraction of the full spec-
trum, retaining lowest eigenvalues values of the spectrum and
discarding the largest ones (see inset). In order to quantify the
approaching of the entanglement spectrum to WD (GUE) dis-
tribution upon truncation, we consider the statistical distance
between two probability distributions given by the Kullback-
Leibler (KL) divergence: DKL(p∥q) = ∑i pi log(pi/qi). In
Fig. 2a, we show the KL divergence between P (r) of MBL
and the WD distribution as function of the fraction of the cut-
off. As more of the largest eigenvalues values are discarded,
we get closer to universal statistics. Moreover, we find that, as
function of evolution time, all theDKL decreases as 1/ log(t)
(see Fig. 2b), and thus the ESS of MBL asymptotically ap-
proaches a WD (GUE) distribution. (We remark that theDKL

divergence between P (r) and the WD distribution in the ETH

regime goes to zero at a time scale of order 1/J .) Indeed, in
the infinite time limit, time-evolved states in the MBL regime
also have to equilibrate, as the time fluctuations of typical ob-
servables go to zero, though the scaling with both time and
system size are different in MBL from ETH [40].

We interpret the slow approach to universal WD (GUE)
statistics of the ESS of a state following unitary evolution
with a Hamiltonian in the MBL regime as follows. At rea-
sonable time scales, the system has approximately local con-
served integrals of motion, and may look like an integrable
one. However, unlike AL, the MBL Hamiltonian remains in-
teracting even in the basis of conserved quantities. Eventu-
ally, for long time scales, information propagates along the
full chain [41], and the interaction between far away quasilo-
cal conserved quantities is revealed by the slow 1/ log(t) ap-
proach to the universal WD distribution. The ESS detects the
presence of interaction already at short time scales, because
the deviations from the universal distribution are small and
decreasing in time. None of these aspects can be captured by
the study of the energy level spacings. We remark that this
feature of the ESS is a truly dynamical one, and depends on
the fact that the system is away from equilibrium. If one trun-
cates the entanglement spectrum of a high energy eigenstate
of MBL, the spectrum stays nonuniversal [42–44].

Complexity of Entanglement.— The different statistics in
the ESS correspond to different complexity of the entangle-
ment generated by the time evolution. In Refs. [9, 10], it was
shown that the entanglement generated by a quantum circuit
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FIG. 2. (Color online) (a) The KL divergence DKL as function of the
fraction of truncation of the full spectrum for different total evolution
times (L = 14 and zi ∈ [−8,8]). The data are averaged over 100 real-
izations of disorder and 2000 realizations of the initial product state,
evolved for times t = 100,500,1000, and 106. (b) scaling of DKL

with 1/ log(t) for the full spectrum and for the truncated spectrum at
fraction 0.1875, consistent with the KL divergence vanishing at long
times and the ESS asymtoptically reaching the WD distribution.

can be undone by an entanglement cooling algorithm when
the ESS shows (semi-)Poisson statistics. On the other hand, if
one uses a quantum circuit obtained by a universal set of gates,
the ESS displays WD statistics and the simple algorithm for
disentangling fails, so the ESS is complex.

How does the disentangling algorithm perform in the case
of Hamiltonian evolution? We start from the final state ob-
tained after a quantum quench for running time t0 = 1000,
like in the previous analysis for ESS. Notice that a similar
amount of entanglement (averaged over all possible contigu-
ous bipartitions of the system) is reached in both the MBL
and the AL case (see Fig. 3), while the average entanglement
is much higher for the ETH case. The disentangling (cooling)
algorithm works as follows. We pick randomly a one-or two-
body term from the model Eq. (1), and evolve the state for a
time δt = π/10. Then we accept such an attempt with prob-
ability min{1, exp(−β∆S̄)}, where ∆S̄ is the change of the
amount of von Neumann entropy averaged over all possible
bipartitions of the system, and β−1 is a fictitious temperature
that is gradually reduced to zero.

Let us look first at the cooling in the disordered XX model,
which at time t0 = 1000 after the quench features Poisson
statistics for the ESS – what we would call a non-complex
entanglement pattern. The performance of the cooling algo-
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FIG. 3. (Color online) Attempt of disentangling using the entangle-
ment cooling algorithm starting from the states at t0 = 1000. S̄ is the
von Neumann entropy averaged over all possible bipartitions of the
system with L = 12.

rithm is shown in the blue curve in Fig. 3. As the data show,
the state can be disentangled almost completely by this kind
of entanglement cooling algorithm. It is a remarkable fact that
entanglement can be undone after Hamiltonian evolution even
without knowledge of the precise Hamiltonian.

What happens for ETH and MBL? Figure 3 shows that the
entanglement entropy reached at t0 = 1000 using both the
MBL and ETH Hamiltonians cannot be undone by the cooling
algorithm, even though the value of the entanglement entropy
is smaller in the case of MBL. States generated from evolu-
tions using MBL or ETH Hamiltonians cannot be disentan-
gled, and in both cases, the ESS shows some degree of univer-
sality (both reach a WD distribution, albeit at rather different
time scales). We conclude that what determines how easy or
hard it is to disentangle a state is not the level of entanglement,
as measured by the entanglement entropy, but instead that in-
formation is contained in the ESS, like in the case for states
generated by quantum circuits.
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064426 (2008).
[26] J. H. Bardarson, F. Pollmann, and J. E. Moore, Phys. Rev. Lett.

109, 017202 (2012).
[27] M. Serbyn, Z. Papic, and D. A. Abanin, Phys. Rev. Lett. 110,

260601 (2013).
[28] M. V. Berry and M. Tabor, Proc. Roy. Soc. A 356 375–394

(1977).

[29] G. Montambaux, D. Poilblanc, J. Bellissard, and C. Sire, Phys.
Rev. Lett. 70, 497 (1993).

[30] P. Calabrese and J. Cardy, J. Stat. Mech. (2005) P04010.
[31] T. Prosen, Phys. Rev. Lett. 106, 217206 (2011); R. G. Pereira,

V. Pasquier, J. Sirker, and I. Affleck, J. Stat. Mech. P090307
(2014).

[32] Y. Y. Atas, E. Bogomolny, O. Giraud, and G. Roux, Phys. Rev.
Lett. 110, 084101 (2013).

[33] K. Kudo and T. Deguchi, J. Phys. Soc. Jpn. 74, pp. 1992-2000
(2005).

[34] J. Eisert, M. Cramer, and M. B. Plenio, Rev. Mod. Phys. 82,
277 (2010).

[35] D. A. Huse, R. Nandkishore, and V. Oganesyan, Phys. Rev. B
90, 174202 (2014).

[36] M. Serbyn, Z. Papic, and D. A. Abanin, Phys. Rev. Lett. 111,
127201 (2013).

[37] I. H. Kim, A. Chandran, and D. A. Abanin, arxiv:1412.3073.
[38] L. Rademaker and M. Ortuño, Phys. Rev. Lett. 116, 010404

(2016).
[39] A. Chandran, I. H. Kim, G. Vidal, and D. A. Abanin, Phys. Rev.

B. 91, 085425 (2015).
[40] J. Yang, A. Hamma, arXiv:1702.00445.
[41] M. Friesdorf, A. H. Werner, M. Goihl, J. Eisert, and W. Brown,

New J. Phys. 17, 113054 (2015).
[42] Z.-C. Yang, C. Chamon, A. Hamma, and E. R. Mucciolo, Phys.

Rev. Lett. 115, 267206 (2015).
[43] S. D. Geraedts, R. Nandkishore, and N. Regnault, Phys. Rev. B

93, 174202 (2016).
[44] M. Serbyn, A. A. Michailidis, D. A. Abanin, and Z. Papic, Phys.

Rev. Lett. 117, 160601 (2016).


	Entanglement Complexity in Quantum Many-Body Dynamics, Thermalization and Localization
	Abstract
	References


