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Hexagonal ferrites do not only have enormous commercial impact (£2 billion/year in sales) 

due to applications that include ultra-high density memories, credit card stripes, magnetic 

bar codes, small motors and low-loss microwave devices, they also have fascinating magnetic 

and ferroelectric quantum properties at low temperatures.  Here we report the results of 

tuning the magnetic ordering temperature in PbFe12-xGaxO19 to zero by chemical 

substitution x. The phase transition boundary is found to vary as ࡺࢀ~ሺ૚ െ ࢞ ⁄ࢉ࢞ ሻ૛/૜ with xc 

very close to the calculated spin percolation threshold which we determine by Monte Carlo 

simulations, indicating that the zero-temperature phase transition is geometrically driven. 

We find that this produces a unique form of compositionally-tuned, insulating, ferrimagnetic 

quantum criticality.  Close to the zero temperature phase transition we observe the 

emergence of an electric-dipole glass induced by magneto-electric coupling.  The strong 

frequency behaviour of the glass freezing temperature Tm has a Vogel-Fulcher dependence 

with Tm finite, or suppressed below zero in the zero frequency limit, depending on 
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composition x.  These quantum-mechanical properties, along with the multiplicity of 

low-lying modes near to the zero-temperature phase transition, are likely to greatly extend 

applications of hexaferrites into the realm of quantum and cryogenic technologies. 

 

M-type hexagonal ferrites (hexaferrites) including BaFe12O19, SrFe12O19 and PbFe12O19 are 

popular magnetic materials for their use in a wide range of applications [1, 2]. Moreover, they also 

have interesting magnetic and ferroelectric properties at low temperatures [3, 4].  Here we study 

the effects of tuning the magnetic ordering (Néel) temperature all the way to zero resulting in a 

geometrically driven zero-temperature phase transition of the underlying spin system and the 

emergence of an electric-dipole glass.  These novel properties are expected to be important for a 

wide range of advanced quantum and cryogenic applications including, for example, 

electro-caloric and magneto-caloric refrigeration, and quantum memory devices, as the materials  

can be readily controlled by magnetic fields and voltage gates. 

 

BaFe12O19, SrFe12O19 and PbFe12O19 crystalise in the magnetoplumbite structure and are 

Lieb-Mattis [5] ferrimagnets with Néel temperatures of approximately TN ≈ 720K and saturated 

magnetisations in the low temperature limit of 20μB per double formula unit [6].  The crystal 

structure can be seen in the right inset to Fig. 1a which shows a double unit-cell.  The 

underlying spin structure comprises collinear anti-ferromagnetic order below TN with a total of 16 

spins pointing up and 8 spins pointing down located on Fe3+ sites per double unit-cell resulting in 

ferrimagnetism.  The Fe3+ ions, each in the high S = 5/2 spin state, are located on five 

sub-lattices as follows: six spin-up on octahedral sub-lattice (k), one spin-up on octahedral 

sub-lattice (2a), one spin-up on pseudo-hexahedral sub-lattice (2b), two spin-down on tetrahedral 

sub-lattice (4fIV) and two spin-down on octahedral sub-lattice (4fVI) [6].  The M-type 

hexaferrites are n-type semiconductors [7] with bandgaps of Eg ≈ 0.63 eV and rather heavy 

electrons and holes: m(light e) = 5.4 me; m(heavy e) = 15.9 me; m(light h) = 10.2 me; m(heavy h) 

= 36.2 me and highly anisotropic conductivity.  For electric fields applied normal to the c-axis, 

the electrical conductivity is circa fifty times greater than along c.  An example of the 

hexahedral (bi-pyramid) sites is shown in the right inset to Fig. 1a where its faces have been 
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shaded in grey.  All of the bi-pyramids comprise a single Fe3+ ion at the centre surrounded by 

five O2- ions at the corners.  The vibration of these positive ions within their negatively charged 

oxygen enclosures is along the c direction and generates polar transverse-optic A2u-symmetry 

phonon modes.  The lowest of these is observed to drop in frequency at long wavelengths (q = 0) 

to 42 cm-1 (5.2meV) as T approaches zero resulting in an incipient ferroelectric state [8, 9].  This 

state has been investigated in recent work with evidence of uniaxial ferroelectric quantum critical 

behaviour along the c direction [3] and anti-ferroelectric frustration on the triangular lattice of 

dipoles in the a-b plane [4]. 

 

In this paper we study a different part of the phase diagram close to the insulating magnetic zero 

temperature critical point, achieved by suppressing TN to zero by randomly substituting Ga ions 

for the Fe ions in PbFe12-xGaxO19. As x increases, the lattice of spins is diluted as the 

non-magnetic gallium ions act as quenched spinless impurities. This results in a drop in TN as 

determined by Mössbauer and magnetic measurements [6].  The Mössbauer data also indicate 

that the Ga ions distribute themselves with nearly equal probability in all the available sublattices, 

at least for not too large x. As shown in Fig. 1, by extrapolating the trend to T = 0K we find that 

the critical value of x for which TN goes to zero is x = xc ≈ 8.6.   

 

The zero temperature transition between the ferrimagnetic and nonmagnetic ground states as a 

function of iron concentration can either be geometrically driven or driven by quantum 

fluctuations.  In the first scenario, the transition is a percolation transition.  It occurs when the 

iron concentration falls below the percolation threshold pc of the lattice of iron sites where p is 

the probability of a site containing an iron atom [related to x by x = 12(1-p) ].  Long-range 

magnetic order is then impossible because the iron atoms form disconnected finite-size clusters.  

In the second scenario, the zero-temperature phase transition occurs before the iron concentration 

falls below pc because the magnetic order is destroyed by quantum fluctuations of the iron spins. 

 

To help distinguishing the two scenarios, we have determined the percolation threshold of the 
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lattice of iron atoms in the M-type hexagonal ferrites by means of computer simulations.  This 

requires knowledge about the connectivity of the iron atoms, i.e., about the exchange interactions 

between the iron atoms on the five different sub-lattices. The exchange interactions in BaFe12O19 

were determined from phenomenological fits of experimental sub-lattice magnetization data in 

Refs. [10] and [11].  More recently, these interactions were also calculated from first principles 

[12]. Even though the exact values of the interactions differ between these papers, they agree on 

the basic structure:  The four dominating interactions are between the following sub-lattices: 

2a-4fIV, 2b-4fVI, 12k-4fIV, and 12k-4fVI (see Fig 1a). These interactions are antiferromagnetic, and 

they are not frustrated because each couples a spin-up and a spin-down sub-lattice.  All other 

interactions are significantly weaker, and they are frustrated because they couple spins in the 

same sub-lattice or in different sub-lattices with the same spin direction.  The exchange 

interactions in all the M-type hexagonal ferrites, Pb, Sr and Ba are expected to be very similar.  

In our percolation simulations we have therefore only included the bonds corresponding to the 

four dominating (unfrustrated) interactions.  The weaker frustrated interactions may become 

important at dilutions close to the percolation threshold and at low temperatures.  Because they 

are frustrated, they are expected to suppress the ferrimagnetic order compared to a scenario that 

includes only the leading unfrustrated ones.  We have further assumed that all iron sites have the 

same occupation probability (i.e., the gallium doping is completely random). 

 

To find the percolation threshold for the thus defined lattice of iron atoms, we have implemented 

a version of the fast Monte Carlo algorithm due to Newman and Ziff [13].  We have studied 

systems with sizes of up to 200x200x200 double unit cells (192 million Fe sites), averaging over 

several thousand disorder realizations for each size.  The percolation threshold is determined 

from the onset of a spanning cluster.  Extrapolating the results to infinite system size, yields pc = 

0.2628(5) where the number in brackets is the error of the last digit (estimated from the very 

small statistical error of the data and the robustness of the extrapolation).  In the material 

PbFe12-xGaxO19, this corresponds to a gallium concentration  x = 8.846(6).  We note that the 

percolation threshold for our realistic model of the magnetic interactions in the hexaferrites is 
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also very close to the threshold for a simple three-dimensional hexagonal stacked structure [14, 

15].  Fig. 1b shows a projection of the relevant Fe ions into the a-b plane for the parent 

compound (left) and a percolating magnetic cluster (right) for x close to xc. 

 

The experimentally observed value of xc = 8.6 is very close to that determined above from our 

model calculations suggesting that the zero temperature phase transition is predominantly 

geometrically driven by the percolation of magnetic ions through the crystal.  The closeness of 

the measured and calculated values of xc is further evidence, along with the results of Mössbauer 

experiments [6] mentioned above, that Ga ions are substituted randomly onto the Fe sites of the 

parent compound. For x > xc, magnetic long-range order is impossible. This is confirmed by the 

measured heat capacity of a sample with x = 9, shown in Fig. 2a, which does not feature a phase 

transition down to the lowest measured temperatures. However, due to statistical fluctuations in 

the distribution of the Ga ions, we expect disconnected Fe-rich clusters of magnetic order to exist 

within a background rich in the non-magnetic Ga ions, resulting in a paramagnetic Griffiths phase 

[16, 17].  The weak hysteresis observed in the magnetisation-field curve of the x=9 sample, 

shown in Fig. 2b, supports this picture as it can be attributed to the contribution to the uniform 

magnetisation from the ferrimagnetic clusters. The experimental confirmation of the 

paramagnetic Griffiths phase will require further study.   At the percolation threshold, and for x 

< xc, there is an “infinite percolation cluster” that spans the entire crystal, resulting in a finite 

value of the global TN and long-range magnetic order.  The point T = 0K and x = xc can be 

understood as a multi-critical point (MCP) because it combines the geometrical criticality of the 

zero-temperature percolation transition (characterised by the percolation critical exponents [14]) 

and the thermal criticality of the finite-temperature phase boundary (characterised by the usual 

thermodynamic critical exponents).  Despite extensive theoretical work on classical and 

quantum magnetic percolation phase transitions, there are relatively few experimental examples.  

Notable examples include work on the square lattice two-dimensional La2Cu12-z(Zn,Mg)zO4 

system [18] and on transition metal halides [19].  PbFe12-xGaxO19 is unique in that it is a 

three-dimensional hexagonal magneto-electric system that can be successfully tuned up to and 
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beyond the percolation threshold with a novel phase transition boundary TN (x) as discussed 

below. The fact that the measured value of xc is a little less than that determined from calculations 

could be due to a small degree of Ga clustering or alternatively due to effects of quantum 

fluctuations arising from the sub-dominant frustrated magnetic interactions referred to above. 

 

As shown in Fig. 1 we find that the shape of the phase transition boundary follows a striking 

ேܶ~ሺ1 െ  ௖ሻଶ/ଷ dependence over the entire concentration range from x = 0 to x = xc. Whereݔ/ݔ

does this power law come from? As the phase boundary starts at high temperatures ( ேܶሺ0ሻ ൌ720ܭ), one might expect ேܶሺݔሻ to follow the form predicted by classical percolation theory, ߤሺ ேܶሻ~  ሺݔ௖ െ ሻథݔ  where ߤሺܶሻ  is the appropriate spin Hamiltonian temperature scaling 

function.  ߤሺܶሻ~݁ିଶ௃ ௞ಳ்⁄  for a system with Ising symmetry and ߤሺܶሻ~ܶ for a system with 

continuous (e.g. Heisenberg) symmetry and ߶ is a crossover exponent usually defined as the 

ratio of percolation and thermal correlation length critical exponents ߶ ൌ   .[19-21 ,14] ்ߥ/௣ߥ

Over the range of temperatures and chemical compositions tested so far, our measured ேܶሺݔሻ 

curve is quite different from the predictions of these classical models in which usually ߶ ൒ 1. 

 

Alternatively, the shape of the phase boundary may be governed the zero-temperature quantum 

phase transition occurring as the composition x is tuned through xc. Quantum phase transitions 

are subtly different from the more familiar classical phase transitions occurring as a function of 

temperature at high temperatures. In the present case, the zero entropy state at T = 0 K (or at 

sufficiently low temperatures for the third law of thermodynamics to apply) of long-range 

ferrimagnetic order for x < xc, is transformed into a paramagnetic state with no conventional 

magnetic ordering for x > xc.  This zero temperature state still has zero entropy (assuming a 

non-degenerate ground state). Magnetic quantum phase transitions are a highly active area of 

research.  Depending on specific material details (precise lattice geometry) and dimensionality, 

they can lead to a rich tapestry of exotic phases such as dimer states, valence bond solids, spin 

glasses, quantum spin liquids and topological entities, such as spin spiral states and others 

[22-26]. In the presence of quenched disorder, quantum phase transitions can give rise to smeared 



7 of 17 
 

phase transitions as well as to the above-mentioned Griffiths phases [16] that are characterized by 

singular low-temperature thermodynamic functions with gapless excitations over a range of 

tuning parameter variables [17, 25, 27, 28] . 

 

In ‘clean’ quantum critical systems, where the interactions are tuned, for example, by lattice 

density or magnetic field, the effects of quantum criticality can often be felt over a wide range of 

temperatures and tuning parameters below a temperature scale T* set for example by the 

spectrum of magnetic excitations ( כܶ ൌ ԰߱כ/݇஻ ). In contrast to classical critical points, 

thermodynamic properties near quantum critical points are affected by fluctuations of the 

order-parameter field in space and time. This implies that thermodynamic quantities are functions 

of the dynamical exponent z characterizing the spectrum Ωሺݍሻ~ݍ௭ of modes close to the critical 

point where q is the wavevector.  For insulators where the modes are typically propagating 

(heavily under-damped) Ωሺݍሻ  is a frequency-wavevector dispersion of the normal modes, 

whereas for metals where the modes are typically dissipative (heavily over-damped) Ωሺݍሻ is a 

relaxation rate spectrum.  If ݀ ൅ ݖ ൒ 4 (where  d is the dimension of space, thermodynamic 

quantities in the quantum critical regime may be calculated by the one-loop (Hartree) 

approximation used in renormalization group models and self-consistent-field models of quantum 

criticality[23, 29-41].  Close to the quantum critical point, this yields the magnetic susceptibility ߯~1/ܶఊ೅ where the (thermal) critical exponent ்ߛ ൌ ሺ݀ ൅ ݖ െ 2ሻ ⁄ݖ .  The critical temperature 

is found to vary as ௖ܶ~ሺ1 െ ݃ ݃௖⁄ ሻଵ/ఊ೅ where g is the (non-disorder inducing) quantum tuning 

parameter.  We note that the value 2/3 of the phase transition boundary exponent found in Fig. 1 

would be consistent with a dynamical exponent z = 2 and d = 3.  Such an exponent z in a 

magnetic insulator may arise for example from the dynamics of spin precession [23, 25, 42].   

 

However, the situation is different in the presence of strong disorder as introduced, for example 

by the dilution of the magnetic lattice. According to the Harris criterion [43], disorder is typically 

a relevant perturbation at a quantum phase transition and therefore destabilizes the clean critical 

behavior. For the specific case of magnetic percolation quantum phase transitions, theories 
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predict that thermodynamic functions either depend on a new dynamical exponent ݖԢ defined in 

terms of the fractal dimension Df of the percolation transition [14] and the dynamical exponent z 

of the clean quantum phase transition [27, 28] or they show even more unconventional activated 

scaling behavior20. However, in both cases, the phase boundary is predicted to follow the 

classical behavior discussed above, in disagreement with our observation.  

 

The origin of the unusual phase transition boundary with a 2/3 power law may be due to the 

interaction of magnetic and ferroelectric degrees of freedom, or the combined effects of quantum 

fluctuations (arising from the frustrated magnetic interactions referred to above) and those of the 

geometrically-driven percolation transition.  In a future study the relative importance of these 

effects may be separated by employing further tuning parameter such as pressure or field in 

addition to chemical composition. 

 

We now turn to the results of measurements of the dielectric susceptibility for samples with x 

close to xc.  The dielectric susceptibility ε probes the electrical dipole response of the system 

and typical results are shown in Fig. 3.  We find that for samples measured close to TN the 

dielectric function exhibits a frequency dependent peak at a temperature Tm(f) in the real part 

ε’(T), which arises from magneto-electric coupling, presumably via striction, plus a peak in the 

imaginary part ε”(T) at slightly lower temperatures.  Spin-phonon coupling in BaFe12O19 has 

been reported previously from Raman spectroscopy [44-46], and detailed dynamics given by 

Fontcuberta’s group [47-49].  A model for dielectric loss at Néel temperatures has been given by 

Pirč et al [50], and their graph of ε’(T) and ε”(T) for low-frequency probes is given in Fig. 6 of 

Ref. [50] for realistic parameters, assuming a magneto-electric interaction through striction. The 

data indicate that polarized clusters form around TN with glassy dynamics which freeze at Tm(f).  

Such a state is known as a ferroelectric relaxor or electric-dipole glass [51, 52].  Relaxor 

dynamics are characterized by a broad distribution of relaxation times, and the freezing process at 

Tm(f) is associated with the divergence of the longest relaxation time.  The present data satisfy a 

Vogel-Fulcher relationship as in Fig. 3c with frequencies f from 100 Hz to 1 MHz.  The glass 
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freezing temperature Tf = Tm(f→0) is found to be finite for samples with TN > 0 and suppressed 

below zero for samples with paramagnetic ground states x > xc.  The electrically polarized 

clusters which form the glass state are likely supported within the magnetic Fe rich clusters.  

These magnetic clusters are of diminishing size as the Ga concentration is increased suppressing 

Tm(f).  Since the glass freezing temperature can be tuned through zero with frequency and 

composition, future studies may involve models of a quantum dipole glass (quantum relaxor) 

analogous to those studied in spin systems.  Both the ferroelectric-glass and the magnetic 

clusters will contribute to the heat capacity which is likely to be the origin of the non-cubic 

temperature dependence as observed over any abscissa range in Fig. 2a. 

 

In summary, randomly substituting nonmagnetic Ga ions for magnetic Fe ions in the 

ferrimagnetic hexagonal ferrite PbFe12-xGaxO19 suppresses the Néel temperature to zero at a 

critical composition xc close to the magnetic ion percolation threshold as calculated for the 

hexaferrite structure. The phase transition boundary features a unique ேܶ~ሺ1 െ  ௖ሻଶ/ଷݔ/ݔ

dependence over a wide range of T and x. The origin of this behaviour is unexplained by theory. 

Close to xc the system develops magnetic clusters and an electric-dipole glass with Vogel-Fulcher 

behaviour.  The magneto-electric effect raises the exciting possibility of manipulating the low 

temperature magnetic phases by electric fields (voltage gates) and the electric-dipole glass by 

magnetic fields.  Future experimental and theoretical studies are likely to be key in elucidating 

the exotic spin and electric-dipole states and their applications expected to arise close to zero 

temperature phase transitions in hexaferrites. 

 

METHODS 

 

M-type hexaferrite samples were prepared by the flux method. The raw powders of PbCO3, 

Fe2O3, Ga2O3 and fluxing agent Na2CO3 were weighed in the correct molar ratio and mixed well. 

The mixed raw powder was put in a platinum crucible and heated to 1250°C for 24 hours in air, 

then cooled down to 1100°C at a rate of 3°C/min and finally quenched to room temperature. The 
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samples (ca. 2 mm across) were characterized by x-ray diffraction at room temperature using a 

Rigaku X-ray diffractometer.  Heat capacity was measured as a function of temperature using 

the relaxation technique on a 5mg sample.  The low temperature DC magnetisation was 

measured using a SQUID magnetometer up to fields as high as 5 T.  The dielectric 

measurements were carried out in a liquid-cryogen free cryostat at temperatures as low as 6 K. 

Silver paste was painted on the surfaces of a thin plate of each crystal and an Andeen-Hagerling, 

Agilent 4980A and QuadTech LCR instruments were used to measure the dielectric susceptibility 

at frequencies in the range 100 Hz to 1 MHz. 
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FIGURES 

 

 

 
 

Figure 1 –Magnetic phase diagram and crystal structure of PbFe12-xGaxO19.  The Néel 

temperature, TN ≈ 718K, in PbFe12O19 separating paramagnetic and ferrimagnetic phases is 

suppressed via non-magnetic Ga substitution and tuned through a geometrically driven 

percolation phase transition located at T = 0K and x = xc ≈ 8.6 as shown in (a).  x = 8.6 is close 

to the calculated percolation threshold x = 8.85 referred to in the main text for the hexaferrite 

structure.  The right inset shows a double unit-cell of PbFe12O19 as explained more fully in the 

main text with the crystallographic c direction indicated by the arrow.  Values of TN were 

(Néel Order)

(C)

Ferrimagnetic

Paramagnetic

Paramagnetic

(Magnetic clusters / 
short-range order)

b) 
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determined by Mössbauer and magnetisation measurements [6].  The value of TN as a function 

of Ga x in the related materials BaFe12-xGaxO19 and SrFe12-xGaxO19 differ from those shown 

above for PbFe12-xGaxO19 by only a few per cent.  The main figure shows ேܶଷ/ଶ (blue dots) 

plotted against x and the straight line is a best fit to the data with an equation of the form 

ேܶ ሺ718 Kሻ⁄ ൌ ሺ1 െ ௖ሻథݔ/ݔ  with critical Ga concentration xc = 8.56, and the power-law 

exponent determined as φ = 0.67 ± 0.02, i.e. 2/3.  The region labelled (A) is where uniaxial 

quantum critical ferroelectric fluctuations have recently been reported in BaFe12O19 and 

SrFe12O19 [3, 9].  The regions labelled (B) and (C) are where an electric-dipole glass state 

(ferroelectric relaxor) is observed, induced by magneto-electric coupling as explained in the main 

text and later figures.  The dashed line separates the classical paramagnetic phase and the 

paramagnetic phase composed of disconnected clusters of ferrimagnetic order.  The region 

labelled (C) is where one might expect to search for exotic spin and thermodynamic states [27, 

28].  In (b) the left image shows a projection into the a-b plane of the relevant magnetic ions 

(one spinel block shown) used in the percolation calculation explained in the main text for the 

un-doped parent compound PbFe12O19.  The right image shows a percolating magnetic cluster 

under the conditions of magnetic dilution in PbFe12-xGaxO19 with x close to xc. 
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Figure 2 – Thermal and magnetization measurements in PbFe3Ga9O19 (x = 9).  The heat 

capacity as a function of temperature in (a) demonstrates along with Mössbauer experiments [6] 

the absence of a bulk phase transition and thus no long-range order in a sample with x > xc.  The 

weak hysteresis measured at 2K in (b) indicates the contribution to the uniform magnetization 

from ‘rare regions’ - small disconnected ferrimagnetic clusters - in the paramagnetic phase at low 

temperatures.  Close to the zero temperature percolation phase transition the magnetic clusters 
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are randomly distributed in space but perfectly correlated in time leading to the possibility of 

singular thermodynamic functions over a range of tuning parameter variables [20, 28]. 
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Figure 3 - Real and imaginary parts of the dielectric constant (a, b) and Vogel-Fulcher plots 

(c), for PbFe12-xGaxO19 showing dipole-glass behaviour. Figures (a) and (b) show the real ε and 

imaginary parts ε’’ of the dielectric constant measured at different frequencies plotted against 

temperature T for samples of PbFe12-xGaxO19 with x = 8.4 and x = 9.6 respecitvely.  A 

Vogel-Fulcher fit to the data of the peak temperature Tm versus measurement frequency f is 

shown for the same two samples in (c). The Vogel-Fulcher equation is of the form ݂ ൌ
଴݂݁݌ݔ ቀെ ௔ܶ/൫ ௠ܶ െ ௙ܶ൯ቁ where the constant Ta is the activation temperature scale and f0 is a 

characteristic frequency.  The frequency dependent variable Tm(f) is defined as the temperature 

at which ε’ has a peak in T as in the examples shown in (a).   The constant Tf is the freezing 

temperature in the zero frequency limit.  For x = 9.6 the fitting parameters were Ta = 730 K, Tf = 

-11.7 K and f0 =3.02 x1011 Hz and for x = 8.4 they were Ta = 611 K, Tf = 18.1 K and f0 =3.00 

x1011 Hz. 
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