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Spin-current generation by fluid motion is theoretically investigated. Based on quantum kinetic
theory, the spin-diffusion equation coupled with fluid vorticity is derived. We show that spin currents
are generated by the vorticity gradient in both laminar and turbulent flows and that the generated
spin currents can be detected by the inverse spin Hall voltage measurements, which are predicted
to be proportional to the flow velocity in a laminar flow. In contrast, the voltage in a turbulent flow
is proportional to the square of the flow velocity. This study will pave the way to fluid spintronics.
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I. INTRODUCTION

Spintronics is an emerging field in condensed matter
physics, which focuses on the generation, manipulation,
and detection of spin current1. Two mechanisms of spin-
current generation have been repeatedly confirmed: the
spin-orbit coupling driven and the exchange coupling
driven mechanisms. The spin-Hall effect2–4 belongs to
the former class as it relies on the spin-orbit scattering. A
typical example of the latter class is the spin pumping5–7,
which originates from the dynamical torque-transfer pro-
cess during magnetization due to nonequilibrium spin ac-
cumulation.
Recently, an alternative scheme has been proposed,

wherein spin-rotation coupling8 is exploited for generat-
ing spin currents9–11. The spin-rotation coupling refers to
the fundamental coupling between spin and mechanical
rotational motion and emerges in both ferromagnetic12

and paramagnetic13,14 metals as well as in nuclear spin
systems15,16. This coupling allows the interconversion of
spin and mechanical angular momentum.
Spin-current generation has been experimentally

demonstrated using the mechanical rotation of a liquid
metal17. In the experiment, the induced mechanical ro-
tation in a turbulent pipe flow of Hg and Ga alloys is
utilized to generate the spin current.
In this paper, we theoretically investigate the fluid-

mechanical generation of spin current in both laminar
and turbulent flows of a liquid metal and predict that the
fluid velocity dependence of the spin current under lam-
inar conditions will be qualitatively different from that
in the turbulent flow. First, we show that the spin-
vorticity coupling emerges in a liquid metal and derive
the spin-diffusion equation in a liquid-metal flow based
on quantum kinetic theory. We solve the spin-diffusion
equation and reveal that the spin current is generated
by the vorticity gradient. By solving the equation under
both laminar- and turbulent-flow conditions, the inverse
spin Hall voltage in the laminar liquid flow is predicted to
be linearly proportional to the flow velocity, whereas the
voltage in the turbulent flow is proportional to the square
of the flow velocity. Our study will pave the way to fluid
spintronics, where spin and fluid motion are harmonized.

II. SPIN VORTICITY COUPLING

To consider the inertial effect on an electron due to
nonuniform acceleration, we begin with the generally co-
variant Dirac equation18, which governs the fundamental
theory for a spin-1/2 particle in a curved space-time:

[iγµ (pµ − qAµ − i~Γµ) +mc] Ψ = 0, (1)

where c, ~, q = −e, and m represent the speed of light,
the Planck’s constant, the charge of an electron, and the
mass of an electron, respectively. Equation (1) includes
two types of gauge potentials: the U(1) gauge poten-
tial, Aµ, and the spin connection, Γµ. The former origi-
nates from external electromagnetic fields and the latter
describes gravitational and inertial effects upon electron
charge and spin. The spin connection, Γµ, is determined
by the metric gµν(x). The coordinate-dependent Clifford
algebra can be expressed by γµ = γµ(x), and it satis-
fies {γµ(x), γν(x)} = 2gµν(x) (µ, ν = 0, 1, 2, 3) with the
inverse metric given by gµν(x).
In the following, we focus on a single electron in a con-

ductive viscous fluid. The motion of the viscous fluid
is effectively described by its flow velocity, v(x), which
is the source of the gauge potential on an electron, Γµ,
and reproduces inertial effects on the electron charge and
spin, as explained below. We assume that the flow ve-
locity is much less than the speed of light, |v| ≪ c. The
coordinate transformation from a local rest frame of the
fluid to an inertial frame is written as dr′ = dr+ v(x)dt,
and the space-time line element in the local rest frame is

ds2 = gµνdx
µdxν

= [−c2 + v2]dt2 + 2v · drdt+ dr2. (2)

Then, the metric becomes

g00 = −1 + v2/c2, g0i = gi0 = vi/c, gij = δij . (3)

Equations (1) and (3) lead to the Dirac Hamiltonian in
the local rest frame:

H = βmc2 + cα · π + qA0 −
1

2
qA · v −

1

2
{v,π} −

1

2
Σ · ω.

(4)



2

Here β and α are the Dirac matrices and Σ is the spin
operator. Moreover, π = p − qA refers to the mechani-
cal momentum, ω = ∇ × v is the vorticity of the fluid,
and {v,π} = vπ + πv. Equation (4) is a generalization
of the Dirac equation in a rigidly rotating frame. If the
velocity is chosen to be v(x) = Ω × r with a constant
rotation frequency, Ω, then the fourth term {v,π}/2 is a
representative of the coupling of the rotation and the or-
bital angular momentum, −Ω · (r×π), which reproduces
quantum-mechanical versions of the Coriolis, centrifu-
gal, and Euler forces, as shown below. The fifth term,
−Σ · ω/2, can be called the “spin-vorticity coupling,”
which reproduces the spin-rotation coupling −Σ ·Ω be-
cause the vorticity ω is reduced to the rotation frequency
Ω as ω = 2Ω for rigid motion. Thus, Eq. (4) reproduces
the Dirac equation in the rotating frame.

III. INERTIAL FORCES ON AN ELECTRON

DUE TO VISCOUS-FLUID MOTION

Using the lowest order of the Foldy-Wouthuysen-Tani
expansion19 for Eq. (4), we obtain the Schrödinger equa-
tion for an electron’s two-spinor wave function, ψ, in the
fluid:

i~
∂ψ

∂t
= Hψ,

H =
1

2m
π

2 + qA0 − µBσ ·B

−
1

2
qA · v −

1

2
{v,π} −

1

2
S · ω, (5)

with µB = q~/2m, B = ∇×A, and S = (~/2)σ.
From Eq. (5), the Heisenberg equation for an electron

in the fluid is obtained as

ṙ =
1

i~
[r, H ] =

π

m
+ v (6)

mr̈ =
1

i~
[mṙ, H ] +m

∂v

∂t
= F (7)

where the operator Fi whose expectation value corre-
sponds to a semi-classical force is given by

F = Fem + Fc + Fσ, (8)

Fem = q (E+ (ṙ− v) ×B) , (9)

Fc = m(ṙ · ∇)v − (∇vi)ṙi + (∇vi)vi +m
∂v

∂t
, (10)

Fσ = ∇

{

µBσ ·

(

B+
ω

2γ

)}

. (11)

Equation (9) represents the electromagnetic force in a
conductive viscous fluid. In the case of a rigid rotation,
v(x) = Ω × r, the first and second terms in Eq. (10)
reproduce the Coriolis force, −2mṙ ×Ω, the third term
becomes the centrifugal force, mΩ×(Ω×r), and the last
term corresponds to the Euler force.
Equation (11) is an expression for the Stern–Gerlach

force, which originates from the gradient of the combina-
tion of the Zeeman term, µBσ ·B, and the spin-vorticity

coupling term, ~σ · ω/2:

Hσ = −µBσ ·

(

B+
ω

2γ

)

, (12)

where γ = gq/2m is the gyromagnetic ratio with g = 2.
This indicates that the inertial effect due to fluid motion
is equivalent to the effective magnetic field Bω = γ−1

ω/2.
In the following paragraphs, we demonstrate that the
effective field is crucial for generating the spin current.

IV. SPIN-DIFFUSION EQUATION IN A

LIQUID-METAL FLOW

To investigate spin-current generation due to the spin-
vorticity coupling, we derive the spin-diffusion equation
by using quantum kinetic theory. Starting with the quan-
tum kinetic equation:

∂G<

∂t
−

1

~

∂ReΣR

∂R

∂G<

∂k
+ vk

∂G<

∂R

=
1

~
(GKImΣR − ImGRΣK), (13)

where G is the nonequilibrium Green’s function of an
electron, Σ is the self-energy of the electron, and vk is the
group velocity of the electron. We consider the effects of
the impurity potential, the spin-orbit potential, and the
spin-vorticity coupling:

Hint = Vimp + ηsoσ · (∇Vimp × p)−
~

4
σ · ω, (14)

where Vimp is an ordinary impurity potential and ηso is
the spin-orbit coupling parameter. Using a quasi-particle
approximation, the quantum kinetic equation reduces to
the spin-dependent kinetic equation:

∂fσ
ktr

∂t
−

1

~

∂Σσ,R
kε

∂R

∂fσ
krt

∂k
+ vk

∂fσ
krt

∂R

= −
fσ
ktr − f0

k

τimp
−
fσ
ktr − f−σ

ktr

τ̃sf
, (15)

where fσ
krt is the distribution function of an electron with

spin σ, f0 is the equilibrium distribution function of an
electron, and τimp is the transport-relaxation time given
by

τ−1
imp = 2πnimpDFV

2
imp/~ (16)

with the impurity density nimp. The spin-flip relaxation
time τ̃sf given by

τ̃−1
sf (k) = τ−1

sf (k) + τ−1
sv (k), (17)

where the spin-life time due to the spin-orbit coupling is

τ−1
sf = 2η−2

so τ
−1
imp (18)

and the spin-life time due to the spin-vorticity coupling
τsv is given by

τ−1
sv (r,k, t, ω) = DFω̃(r,k, t, ω), (19)
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where ω̃(r,k, t, ω) is the Wigner representation of the ki-
netic component of the two particle correlation function
defined by

ω̃(r,k, t, ω) ≡

∫

δrδt

ω̃(r, δr, t, δt)ei(k·δr−ωδt) (20)

with

ω̃(r, δr, t, δt)

= Tr
[

ρ̂ω+
(

r−
δr

2
, t−

δt

2

)

ω−

(

r+
δr

2
, t+

δt

2

)]

.(21)

Here ρ̂ is the density matrix of the fluid (Fig. 1). Using

FIG. 1. Contribution to the self-energy Σ originating from
the spin-vorticity coupling.

the expansion:

fσ
krt = f0

k + ∂Ek
f0
k (σδµ + ~ωkrt/2), (22)

the momentum average of the kinetic equation is reduced
to the generalized spin-diffusion equation:

(∂t −Ds∂
2
x + τ̃sf(kF )

−1)δµS = −
~

τ̃sf(kF )
ζωz, (23)

where Ds is the diffusion constant and ζ is the renor-
malization factor of the spin-vorticity coupling defined
by

ζ =

∫ kF

0
dk[∂kf

0
kω

z
rktτ̃sf(k)

−1]

ωz(r, t)τ̃sf (kF )−1
∫ kF

0 dk[∂kf0
k ]

(24)

with the Fermi wave number kF . Based on the non-
equilibrium Green’s function method, the renormaliza-
tion factor is found to depend on the microscopic param-
eters including the transport-relaxation time, the spin-
flip life time, resulting from impurity scatterings and an
extrinsic spin-orbit coupling.
In nonequilibrium steady-state conditions, this equa-

tion may be further reduced to

(

∇2 −
1

λ2

)

δµs =
~ζω

λ2
, (25)

where λ denotes the spin-diffusion length.

V. SPIN CURRENT FROM FLUID MOTION

A. Spin current from laminar flow between plates

We now solve the spin-diffusion equation under a typ-
ical laminar flow condition. The equations of motion for

an incompressible viscous fluid are well described by the
Navier-Stokes (NS) equation:

∂v

∂t
+ (v · ∇)v = −

1

ρ
∇p+

η

ρ
∇2v, (26)

where ρ is the fluid density, η is the viscosity coefficient,
and p is the pressure. In the following derivation, we use a
solution of the NS equation. Moreover, the vorticity field
calculated from the solution is inserted into the static
spin-diffusion equation in (25) to obtain the generated
spin current.

!"
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FIG. 2. Representation of the spin current in the two-
dimensional Poiseuille flow. The parallel flow between the
two parallel planes, y = ±y0, creates the velocity field
v = (v0(1− y2/y2

0), 0, 0). The vorticity of the flow emerges in
the z-direction: ∇ × v = (0, 0, 2v0y/y

2

0). Then, the gradient
of the vorticity generates the z-polarized spin-current in the
y-dicrection.

We consider the parallel flow enclosed between two par-
allel planes with a distance of 2y0 as shown in Fig. 2. The
solution to Eq. (26) is the well-known two-dimensional
Poiseuille flow20:

vx = v0{1− (y/y0)
2
}, vy = vz = 0, (27)

where

v0
y20

= −
1

2η

dp

dx
. (28)

In this case, the vorticity becomes

ω = ∇× v = (0, 0, 2v0y/y
2
0). (29)

Inserting Eq. (29) into Eq. (25), we obtain the z-
polarized spin current as

Jz
s,y=

σ0
e

∂

∂y
δµz

s(y) = 2ζ
~σ0
e

v0
y20

[

1−
cosh(y/λ)

cosh(y0/λ)

]

≈ 2ζ
~σ0
e

v0
y20
, (30)

when y0 ≫ λ.



4

B. Spin current from laminar flow in a pipe.

Let us consider a steady flow in a pipe of circular cross-
section with radius r0 (Fig. 3). In this case, the solution
to Eq. (26) is the Hagen–Poiseuille flow20:

vx = v0{1− (r/r0)
2
}, vr = vθ = 0, (31)

when

v0
r20

= −
1

4η

dp

dx
. (32)

The θ-polarized spin current, which flows in the radial
direction, is given by

Jθ
s,r ≈ 2ζ

~σ0
e

v0
r20
. (33)

v
x
,v
r
,v

θ( ) = v
0
1− r

2
/ r
0

2( ),0,0( )

!!

"!
 Vorticity

FIG. 3. Representation of the spin current for the Hagen–
Poiseuille flow. A steady viscous flow in a pipe of circu-
lar cross-section with radius r0 creates the velocity field,
(vx, vr, vθ) = (v0(1 − r2/r20), 0, 0), in the cylindrical coordi-
nate (x, r, θ). In this case, the vorticity gradient generates
the θ-polarized spin current in the radial direction. The inset
shows the cross section of the pipe.

C. Spin current from turbulent flow in a pipe

We also consider a turbulent flow in the pipe. Velocity
distribution in a turbulent flow in a pipe is well described
as20

vx(r)

v∗
=

{

v∗(r0−r)
ν

(r0 − δ0 < r < r0)
1
κ
ln v∗(r0−r)

ν
+A (0 < r < r0 − δ0)

(34)

where v∗ is the friction velocity, r0 is the internal radius
of the pipe, ν is the kinetic viscosity, κ is the Karman
constant, A = 5.5 for the mercury, and δ0 is the thickness
of the viscous sublayer. The friction velocity is related

to the velocity distribution vx(r) as v∗ =

√

ν
∣

∣

∣

∂vx
∂r

∣

∣

∣

r=r0
.

The region near the inner wall (r0−δ0 < r < r0) is called
the viscous sublayer.
In the cylindrical coordinate (x, r, θ) (Fig. 3), the vor-

ticity, ωθ(r) = −∂rvx(r), is given by

ωθ(r) =

{

v2

∗

ν
(r0 − δ0 < r < r0)

v∗
κ

1
r0−r

(0 < r < r0 − δ0)
(35)

The spin current is generated mostly near the viscous
sublayer, especially around r ≈ ro − δ0, where the vor-
ticity gradient is the largest. Then, the spin current be-
comes

Jθ
s,r ≈ 2ζ

~σ0
e

v∗
κ(r − r0)2

. (36)

D. Inverse spin Hall voltage

Finally, we investigate the inverse spin Hall voltage
owing to the spin-current generation under the laminar
and turbulent flow conditions.
Following the voltage measurement by Takahashi et

al.17, we consider the inverse spin Hall voltage to be par-
allel to the flow velocity (the x-direction). The spin cur-
rent is then converted into the electric voltage because
of the spin-orbit coupling in the liquid metal and can be
expressed as

V Lam
ISHE =

L

σ0

2e

~
θSHEJs (37)

where VISHE is the inverse spin Hall voltage, L is the
length of the channel, θSHE is the spin Hall angle of
the liquid metal, and Js represents the generated spin
current: Jz

s,y = Jz
s or Jθ

s,r. In the case of the Hagen–
Poiseuille flow, the voltage is given by

V Lam
ISHE = 2ζθSHE

~

e

L

y20
v0. (38)

This indicates that the generated voltage in a laminar
flow is proportional to the flow velocity v0.
Contrast to the laminar flow case, the voltage in a

turbulent flow proportional to the square of the flow ve-
locity:

V Turb
ISHE =

θSHEL

σ0πr20
×
(

∫ r0−δ0

0

+

∫ r0

r0−δ0

)

2πrdrJθ
s,r

≈ ζθSHE
4L

r0

~

e

1

κνReδ
v 2
∗
, (39)

where Reδ = δ0v∗/ν is the Reynolds number defined by
the friction velocity.
Making use of the material parameter values for the

turbulent condition of the mercury17, κ = 1.2 × 10−7,
ν = 1.2 × 10−7m2s−1, L = 400 × 10−3 m, r0 = 0.2 ×
10−3 m, v∗ = 0.1 m/s and V Turb

ISHE = 100× nV, we obtain
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ζθSHE = 1.1. Taking θSHE = 10−2 as an example, we
find the renormalization factor ζ to be 102.
Furthermore, we estimate the voltage in the Hagen–

Poiseuille flow. Although the renormalization factor ζ
under a laminar-flow condition is generally different from
that under a turbulent condition, we assume that the
factor in a laminar flow is the same order of that in the
turbulent flow as ζθSHE ≈ 1. Then choosing L = 80mm
and r0 = 0.1mm, the computed inverse spin Hall voltage
is VISHE ≈ 4 nV.

VI. CONCLUSION

In this paper, we have investigated spin-current gen-
eration due to fluid motion. The spin-vorticity coupling
was obtained from the low energy expansion of the Dirac
equation in the fluid. Owing to the coupling, the fluid
vorticity field acts on electron spins as an effective mag-
netic field. We have derived the generalized spin-diffusion
equation in the presence of the effective field based on
the quantum kinetic theory. Moreover, we have eval-

uated the spin current generated under both laminar-
and turbulent-flow conditions, including the Poiseuille
and Hagen–Poiseuille flow scenarios, and the turbulent
flow in a fine pipe. The generated inverse spin Hall volt-
age is linearly proportional to the flow velocity, whereas
that in a turbulent-flow environment is proportional to
the square of the velocity. Our theory proposed here will
bridge the gap between spintronics and fluid physics, and
pave the way to fluid spintronics.
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