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Subjecting a many-body localized system to a time-periodic drive generically leads to delocal-
ization and a transition to ergodic behavior if the drive is sufficiently strong or of sufficiently low
frequency. Here we show that a specific drive can have an opposite effect, taking a static delocalized
system into the MBL phase. We demonstrate this effect using a one dimensional system of inter-
acting hardcore bosons subject to an oscillating linear potential. The system is weakly disordered,
and is ergodic absent the driving. The time-periodic linear potential leads to a suppression of the
effective static hopping amplitude, increasing the relative strengths of disorder and interactions.
Using numerical simulations, we find a transition into the MBL phase above a critical driving fre-
quency and in a range of driving amplitudes. Our findings highlight the potential of driving schemes
exploiting the coherent destruction of tunneling for engineering long-lived Floquet phases.

A key obstacle in the search for new non-equilibrium
quantum phases of matter is the tendency of closed quan-
tum many-body systems to indefinitely absorb energy
from a time-periodic driving field. Thus, in the long
time limit, such systems generically reach a featureless
infinite-temperature-like state with no memory of their
initial conditions1–8. Interestingly, this infinite tempera-
ture fate can be avoided by the addition of disorder9–13.
Sufficiently strong disorder added to a clean interact-
ing system may lead to a many-body localized (MBL)
phase14–18 which does not allow transport of energy and
particles. The MBL phase can persist in the presence
of a weak, high-frequency drive9–13. Periodically driven
systems in the MBL phase retain memory of their ini-
tial conditions for arbitrarily long times. Thus, they can
support non-equilibrium quantum phases of matter, in-
cluding some which are unique to the non-equilibrium
setting19–30.

Generically, subjecting an MBL system to a periodic
drive increases the localization length9–11. If the driving
is done at sufficiently low frequencies or high amplitudes,
it may even cause the system to exit the MBL phase.
This delocalization effect is caused by transitions such
as photon-assisted hopping, which are mediated by the
periodic drive. These transitions conserve energy only
modulo ~ω, and can therefore lead to new many-body
resonances which destabilize localization.

An oscillating linear potential (henceforth an AC elec-
tric field) has a more subtle effect, as it can effectively
suppress the hopping amplitude between adjacent lat-
tice sites. This effect, called dynamical localization34

or coherent destruction of tunneling35, has been imple-
mented in cold atoms36–38, and can be used for exam-
ple to induce a transition from a superfluid to a Mott
insulator39,40. In non-interacting systems, dynamical lo-
calization can be employed to tune the localization prop-
erties and relaxation dynamics of one dimensional disor-
dered lattices41–45. In an interacting disordered system,
we expect the suppression of the hopping amplitude to in-
crease the relative strengths of disorder and interactions,
potentially driving a static delocalized system towards
the MBL phase (Fig. 1, inset). However, it is unclear to
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Figure 1. Phase diagram showing the MBL phase induced
by time-periodic driving. Hardcore bosons with nearest-
neighbor interactions on a weakly disordered 1D lattice en-
ter an MBL phase when driven by an AC electric field above
a critical driving frequency and in a range of driving am-
plitudes. The horizontal axis corresponds to the AC field’s
amplitude A, measured by the effective hopping amplitude
Jeff/J = J0 (A/ω) where J0 is the zeroth Bessel function.
Only values of A/ω ≥ 0 up to the first minimum of J0 are
shown. The vertical axis corresponds to the driving frequency.
The phase boundaries are extracted from finite-size scaling
of quasi-energy level statistics (see Figs. 2,4, and Supplemen-
tal Material31); the solid line is a guide to the eye. Inset:
schematic undriven phase diagram as a function of disorder
W/J and interactions U/J , as numerically obtained by32,33.
The cross marks the parameters chosen for our simulations;
the red arrow indicates the effective change of parameters due
to the suppression of Jeff by the periodic drive.

what extent the phenomenon of dynamical localization,
obtained to lowest order in inverse frequency expansions,
still applies in interacting systems, where these expan-
sions often diverge in the thermodynamic limit at any
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finite driving frequency1,7,46.

Here, we demonstrate that an AC electric field af-
fects disordered many-body systems very differently than
generic time-periodic drives. In fact, we show that an er-
godic (delocalized) system subjected to an AC electric
field may transition into the MBL phase. Our results
are summarized in Fig. 1, displaying the phase diagram
of a one dimensional many-body system which would be
ergodic in the absence of driving. Our main finding is a
driving-induced MBL phase emerging in a range of driv-
ing amplitudes above a critical driving frequency.

Model. We consider interacting hardcore bosons hop-
ping on a disordered one dimensional lattice with periodic
boundary conditions at half filling. The particles hop
between neighboring sites with a hopping amplitude J ;
they interact with nearest-neighbor repulsion U , and are
subject to random on-site potentials Vi drawn uniformly
and independently from the interval [−W,W ]. The static
Hamiltonian in the absence of driving therefore takes the
form:

Hstat (J, U,W ) =J
∑

i

(

ĉ†i+1ĉi + h.c.
)

+

+
∑

i

Vin̂i + U
∑

i

n̂in̂i+1

(1)

Variants of this model have been studied
extensively17,32,33,47, and feature a transition to a
many-body localized phase for sufficiently strong disor-
der. Specifically, starting from any point in the phase
diagram in the space of normalized disorder W/J and
interactions U/J , and decreasing the hopping amplitude
J , leads to the MBL phase (Fig. 1).

We investigate the effect of subjecting this static sys-
tem to an AC electric field. We work in a gauge where
the AC electric field is induced by a temporally oscillat-
ing, spatially uniform vector potential, rather than by a
scalar potential. Using periodic boundary conditions, our
system is thus equivalent to a ring penetrated by an oscil-
lating magnetic flux. Parameterizing the electric field as
E(t) = A cos (ωt), the Peierls substitution48 yields a com-

plex phase for the hopping amplitude, replacing ĉ†i+1ĉi in

Eq. (1) with ĉ†i+1ĉie
−iA

ω
sin(ωt).

Intuitively, the AC field can lead to an effective sup-
pression of the hopping amplitude J due to destructive
interference. This effect can be directly seen by consid-
ering the time-averaged Hamiltonian:

Heff =
1

T

T̂

0

Hdriven (t) dt = Hstat (Jeff , U,W ) . (2)

While the disorder and interaction terms remain un-
changed, time-averaging the oscillating phase yields a
renormalized effective hopping amplitude Jeff/J =
J0 (A/ω), where J0 is the zeroth Bessel function. Ex-

panding in Fourier modes we obtain:

H(t) = Heff+





∑

n6=0,i

Jn(A/ω)ĉ
†
i+1ĉie

−iωnt + h.c.



 , (3)

where Jn are the Bessel functions of order n. For fixed
V , U , we denote by Jc the critical hopping amplitude for
localization in the undriven model Hstat. When |Jeff |
is larger than Jc, the time-averaged Hamiltonian Heff is
delocalized49. Therefore, for |Jeff | > Jc we expect the
driven system to remain in the delocalized phase.

For |Jeff | < Jc, the time-averaged Hamiltonian Heff

enters the MBL phase. Since the drive consists of a sum
of local and bounded operators (

∑

n6=0 |Jn|
2 ≤ 1), en-

ergy absorption is suppressed at sufficiently high driving
frequencies50. Therefore, we expect the driven system to
become localized above a critical driving frequency9–11,51.

To predict the shape of the phase diagram (Fig. 1),
we note that eigenstates of Heff coupled by a local op-
erator can only differ within a range of the order ξ of
the operator’s support52–55, where ξ is the localization
length. Absorption of energy from the drive is therefore
expected to be suppressed if the driving frequency ω is
larger than the typical local spectrum of a subsystem of
size ξ9. Consequently, the critical frequency for inducing
localization should be minimal when the rescaled driving
amplitude A/ω is tuned to a root of the Bessel function
(Jeff = 0). In this case, Heff is trivially localized with
ξ = 1, and commutes with the particle occupations ni.
With increasing |Jeff |, the localization length ξ becomes
larger, and the local spectrum grows accordingly56. We
therefore expect the critical frequency to increase with
|Jeff |, until it diverges at |Jeff | = Jc where Heff delo-
calizes.

Numerical simulations. To establish the existence of
the driving-induced MBL phase, we tune the parame-
ters of our static Hamiltonian to the delocalized phase:
U = 1.5J , W = 2J . We then test whether it becomes
localized for various driving frequencies and amplitudes
near the first root of the zeroth Bessel function, (A/ω)

∗
.

Specifically, we examine the quasi-energy level statis-
tics of the evolution operator over one driving period

U (T ) = Pe−i
´

T

0
H(t)dt (up to a system size L = 16),

and the relaxation in time of an initially prepared prod-
uct state (up to L = 20). We first establish localization
for strong driving at high frequencies, and then look at
the effect of lower frequencies.

Finite-size scaling of quasi-energy level statistics. We
compute U (T ) by exponentiating H (t) at discrete time-
steps (120 equally spaced steps) using exact diagonal-
ization (ED). We then diagonalize U (T ) to obtain the
quasi-energies ǫα, and focus on the gaps between sub-
sequent quasi-energies δα = ǫα+1 − ǫα. The ratio be-
tween subsequent gaps averaged over the quasi-energy

spectrum 〈r〉 =
〈

min(δα,δα+1)
max(δα,δα+1)

〉

measures the repulsion

between quasi-energy levels, and distinguishes between
the MBL and ergodic phases of a driven system. The
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Figure 2. Finite-size scaling of quasi-energy level statistics
as a function of driving amplitude at high driving frequency
(ω = 5J). At weak driving the average level statistics pa-
rameter 〈r〉 increases with system size and approaches the
Wigner-Dyson value 〈r〉 ≈ 0.53 corresponding to the delo-
calized phase. As the driving amplitude increases and the
effective hopping is more strongly suppressed, this trend is
reversed: the level statistics parameter decreases with system
size, approaching the Poisson value 〈r〉 ≈ 0.39 which corre-
sponds to the localized phase. Further increase of driving
amplitude leads to a revival of the effective hopping with an
opposite sign, restoring the delocalized phase (only values of
A/ω ≥ 0 up to the first minimum of J0 are shown). Error bars
indicate one standard deviation of the average, with averaging
performed over at least 1000, 200, 100 disorder realizations for
L = 10, 12, 14 respectively.

ergodic, delocalized phase exhibits quasi-energy level re-
pulsion with a level spacings parameter 〈r〉COE ≈ 0.53
corresponding to the circular orthogonal ensemble (COE)
of random matrices1. The MBL phase features uncorre-
lated Poisson quasi-energy level statistics and therefore
a smaller value 〈r〉POI ≈ 0.3910,17,57.

We begin by considering a fixed frequency ω = 5J and
increasing driving amplitudes, see Fig 2. We observe a
sharp change in the scaling of the level statistics with the
system size as we increase the driving amplitude. When
the system is weakly driven, the level statistics parameter
becomes larger as the system size is increased, approach-
ing the delocalized value 〈r〉COE ≈ 0.53 in a similar
manner to the undriven case32. However, at sufficiently
strong driving the effective hopping Jeff/J = J0 (A/ω)
is suppressed, and this trend is reversed: the level statis-
tics parameter decreases as the system size is increased,
approaching the MBL value 〈r〉POI ≈ 0.39. Thus, the
drive induces a transition from the delocalized phase into
the MBL phase. At even stronger driving amplitudes
|Jeff | rises again, and the delocalized phase is recovered.
We estimate the critical values of Jeff for the transi-
tions between the MBL and ergodic phases (marked in
Fig. 1) at the crossing of the curves for different system
sizes L according to finite-size scaling (see Supplemental

Material31).
The width (standard deviation) of the many-body

spectrum of Hstat in the system sizes we studied with
ED is comparable to the driving frequency. This renders
resonant absorption of energy from the drive less promi-
nent than in the thermodynamic limit. To confirm the
existence of the driving-induced localized phase, we study
larger systems by propagating an initial density pattern
in time.

Relaxation of an initial product state. We initialize
our system in an arbitrary product state of site occupa-
tions, distributing L/2 particles randomly among its L
sites. We then evolve this state for a long time by acting
on it with the exponential of the Hamiltonian at discrete
time steps (120 steps per period for over 1500 driving
periods), and follow the site occupations 〈n̂i (t)〉. In the
absence of driving, the particles spread throughout the
system, such that the occupation in each site eventually
revolves around 〈n̂i〉 ≈ 0.5 (Fig. 3a, bottom), as expected
for an ergodic system58,59.

When we evolve the same state with a strong drive
at high frequency (ω = 5J), the particles remain mainly
in their initial positions for the duration of our simula-
tions (Fig. 3a, top). This indicates long-term memory
of the initial conditions, a signature of the MBL phase,
as expected from the ED results. Following13,59–63, we
differentiate between the MBL and delocalized phases
by tracking the evolution of the generalized imbalance,
which measures the correlation between the current and
initial density patterns,

I (t) =
4

L

L
∑

i=1

〈ψ (0)|

(

n̂i (t)−
1

2

)(

n̂i (0)−
1

2

)

|ψ (0)〉 .

(4)
The imbalance generalizes a technique used in recent cold
atom experiments, which studied the relaxation of an
initially prepared charge-density-wave61,62.

In the absence of driving, the system is ergodic, and
the density pattern becomes uncorrelated with the initial
pattern. Thus, the imbalance decays to a value which
decreases with system size (Fig. 3b, c). When a drive of
appropriate frequency and amplitude is applied, memory
of the initial occupancy pattern persists for long times,
and the imbalance stabilizes on a finite value independent
on the system size (I ≈ 0.6 for ω = 5J , Jeff = 0).
Thus, in the strong driving regime the system fails to
thermalize, indicating that an MBL phase is induced by
the driving field.

Critical driving frequency. Tuning the rescaled driv-
ing amplitude A/ω to the first root of J0 (such that
Jeff = 0) and repeating the level statistics analysis for
varying frequencies, we find a minimal critical frequency
ωc ≈ 4J for inducing localization with the driving field
and model parameters we considered. Below this fre-
quency, the level statistics parameter 〈r〉 tends to its
delocalized value as the system size increases (Fig. 4).
Ergodicity at ω = 3.5J is further confirmed by the anal-
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Figure 3. Relaxation of the occupation imbalance starting from a product state. (a) Example of site occupations 〈ni〉 at long
times with a strong high-frequency drive (top; ω = 5J , A/ω = (A/ω)∗ corresponding to Jeff = 0) vs. an undriven system
(bottom) starting from the same initial product state and disorder realization (middle). The occupations are averaged over
103T < t < 1.5 × 103T with error bars indicating one standard deviation accounting for fluctuations in that duration. (b)
Imbalance [see Eq. (4)] as a function of time with (top) vs. without (bottom) a strong high-frequency drive (ω = 5J , Jeff = 0),
averaged over disorder realizations and random initial product states (1000 instances for L = 10, 500 for 12 ≤ L ≤ 18 and 200
for L = 20). The imbalance is measured at each simulation step and shown on a linear time scale up to t = 10T , after which
it is measured at stroboscopic times t = nT only and shown on a logarithmic time scale. While in the absence of driving site
occupations become uncorrelated with their initial values, in the driven case they remain highly correlated. (c) Final imbalance
as a function of system size (log-log scale), averaged over 1.4 × 103T < t < 1.5 × 103T ; error bars indicate one standard
deviation of the average over disorder realizations. The final imbalance decreases with system size in the absence of driving
(slope= −2.4± 0.2), whereas it is insensitive to system size when the drive is applied (slope= 0.04± 0.03).

ysis of the long-time imbalance of initial product states
(Fig. S1 in31).

As discussed above, we expect the critical frequency
for inducing the MBL phase in our system to increase

delocalized

MBL

Figure 4. Quasi-energy level statistics 〈r〉 as a function of
driving frequency for A/ω = (A/ω)∗ corresponding to Jeff =
0. The changing trend in the scaling of 〈r〉 with system size
indicates a critical frequency ωc (≈ 4J for our parameters)
above which driving-induced localization occurs.

with |Jeff |. This expectation is indeed confirmed by the
phase diagram in Fig. 1, which we obtained by analyzing
the level statistics for additional cuts of fixed frequency in
parameter space (see Fig. S2 in31 for data near ωc). Fi-
nally, we find qualitatively similar results with a slightly
reduced critical frequency when the driving amplitude is
tuned near the second root of J0; when the system is
taken at a smaller filling fraction; or when a square-wave
drive is used (for details, see31).

Discussion. We have shown that subjecting an er-
godic system to a periodic drive can induce a transition
into the MBL phase, providing an interesting example
for the emergence of integrability in an ergodic system
due to the addition of a drive. It would be interesting
to understand how the phase diagram (Fig. 1) depends
on the strength of disorder and interactions, and specifi-
cally, whether MBL can be induced in our model starting
from arbitrarily weak disorder. Especially interesting are
possible generalizations to higher dimensions, for exam-
ple by using circularly polarized electromagnetic fields in
two dimensions64. Most importantly, our results open
new possibilities for inducing exotic out-of equilibrium
phases in weakly disordered systems using methods which
are readily accessible in cold atom systems36,38,62.



5

ACKNOWLEDGMENTS

We thank Dima Abanin, Jens Bardarson, Iliya Esin,
Vladimir Kalnizky, Ilia Khait, Achilleas Lazarides,
Roderich Moessner and Alon Nahshony for illuminating
discussions. E. B. acknowledges financial support from
the Gutwirth foundation. G. R. is grateful for support
from the NSF through Grant No. DMR-1410435, the
Institute of Quantum Information and Matter, an NSF
Frontier center funded by the Gordon and Betty Moore
Foundation, and the Packard Foundation. N. L. acknowl-
edges support from the People Programme (Marie Curie

Actions) of the European Union’s Seventh Framework
Programme (No. FP7/2007–2013) under REA Grant
Agreement No. 631696, from the Israeli Center of Re-
search Excellence (I-CORE) “Circle of Light.”, and from
the European Research Council (ERC) under the Euro-
pean Union Horizon 2020 Research and Innovation Pro-
gramme (Grant Agreement No. 639172).

Note added: During the completion of this manuscript,
we became aware of a recent work65 which finds localiza-
tion enhancement in the driven quantum random energy
model.

1 L. D’Alessio and M. Rigol, Phys. Rev. X 4, 041048 (2014).
2 A. Lazarides, A. Das, and R. Moessner, Phys. Rev. E 90,

012110 (2014).
3 A. Lazarides, A. Das, and R. Moessner, Phys. Rev. Lett.

112, 150401 (2014).
4 A. Chandran and S. L. Sondhi, Phys. Rev. B 93, 174305

(2016).
5 R. Citro, E. G. Dalla Torre, L. D’Alessio, A. Polkovnikov,

M. Babadi, T. Oka, and E. Demler, Annals of Physics
360, 694 (2015).

6 I. Kukuljan and T. Prosen, Journal of Statistical Mechan-
ics: Theory and Experiment 2016, 043305 (2016).

7 L. D’Alessio and A. Polkovnikov, Annals of Physics 333,
19 (2013).

8 P. Ponte, A. Chandran, Z. Papić, and D. A. Abanin, An-
nals of Physics 353, 196 (2015).

9 A. Lazarides, A. Das, and R. Moessner, Phys. Rev. Lett.
115, 030402 (2015).

10 P. Ponte, Z. Papić, F. Huveneers, and D. A. Abanin, Phys.
Rev. Lett. 114, 140401 (2015).

11 D. A. Abanin, W. De Roeck, and F. Huveneers, Annals of
Physics 372, 1 (2016).

12 J. Rehn, A. Lazarides, F. Pollmann, and R. Moessner,
Phys. Rev. B 94, 020201 (2016).

13 S. Gopalakrishnan, M. Knap, and E. Demler, Phys. Rev.
B 94, 094201 (2016).

14 P. W. Anderson, Phys. Rev. 109, 1492 (1958).
15 D. M. Basko, I. L. Aleiner, and B. L. Altshuler, Annals of

Physics 321, 1126 (2006).
16 I. V. Gornyi, A. D. Mirlin, and D. G. Polyakov, Phys.

Rev. Lett. 95, 206603 (2005).
17 V. Oganesyan and D. A. Huse, Phys. Rev. B 75, 155111

(2007).
18 R. Nandkishore and D. A. Huse, Annual Review of Con-

densed Matter Physics 6, 15 (2015).
19 R. Moessner and S. L. Sondhi, arXiv:1701.08056.
20 P. Titum, E. Berg, M. S. Rudner, G. Refael, and N. H.

Lindner, Phys. Rev. X 6, 021013 (2016).
21 V. Khemani, A. Lazarides, R. Moessner, and S. L. Sondhi,

Phys. Rev. Lett. 116, 250401 (2016).
22 C. W. von Keyserlingk, V. Khemani, and S. L. Sondhi,

Phys. Rev. B 94, 085112 (2016).
23 C. W. von Keyserlingk and S. L. Sondhi, Phys. Rev. B 93,

245145 (2016).
24 C. W. von Keyserlingk and S. L. Sondhi,

arXiv:1602.06949.

25 D. V. Else and C. Nayak, Phys. Rev. B 93, 201103 (2016).
26 D. V. Else, B. Bauer, and C. Nayak, Phys. Rev. Lett. 117,

090402 (2016).
27 I.-D. Potirniche, A. C. Potter, M. Schleier-Smith, A. Vish-

wanath, and N. Y. Yao, arXiv:1610.07611.
28 A. C. Potter, T. Morimoto, and A. Vishwanath, Phys.

Rev. X 6, 041001 (2016).
29 F. Nathan, M. S. Rudner, N. H. Lindner, E. Berg, and

G. Refael, arXiv:1610.03590.
30 H. C. Po, L. Fidkowski, T. Morimoto, A. C. Potter, and

A. Vishwanath, Phys. Rev. X 6, 041070 (2016).
31 See Supplemental Material.
32 Y. Bar Lev, G. Cohen, and D. R. Reichman, Phys. Rev.

Lett. 114, 100601 (2015).
33 S. Bera, H. Schomerus, F. Heidrich-Meisner, and J. H.

Bardarson, Phys. Rev. Lett. 115, 046603 (2015).
34 D. H. Dunlap and V. M. Kenkre, Phys. Rev. B 34, 3625

(1986).
35 F. Grossmann, T. Dittrich, P. Jung, and P. Hänggi, Phys.

Rev. Lett. 67, 516 (1991).
36 H. Lignier, C. Sias, D. Ciampini, Y. Singh, A. Zenesini,

O. Morsch, and E. Arimondo, Phys. Rev. Lett. 99, 220403
(2007).

37 A. Eckardt, M. Holthaus, H. Lignier, A. Zenesini,
D. Ciampini, O. Morsch, and E. Arimondo, Phys. Rev.
A 79, 013611 (2009).

38 A. Eckardt, arXiv:1606.08041.
39 A. Eckardt, C. Weiss, and M. Holthaus, Phys. Rev. Lett.

95, 260404 (2005).
40 A. Zenesini, H. Lignier, D. Ciampini, O. Morsch, and

E. Arimondo, Phys. Rev. Lett. 102, 100403 (2009).
41 M. Holthaus, G. H. Ristow, and D. W. Hone, Phys. Rev.

Lett. 75, 3914 (1995).
42 D. W. Hone and M. Holthaus, Phys. Rev. B 48, 15123

(1993).
43 D. F. Martinez and R. A. Molina, Phys. Rev. B 73, 073104

(2006).
44 K. Drese and M. Holthaus, Phys. Rev. Lett. 78, 2932

(1997).
45 A. Roy and A. Das, Phys. Rev. B 91, 121106 (2015).
46 M. Bukov, L. D’Alessio, and A. Polkovnikov, Advances in

Physics 64, 139 (2015).
47 A. Pal and D. A. Huse, Phys. Rev. B 82, 174411 (2010).
48 R. P. Feynman, R. B. Leighton, M. Sands, and R. B.

Lindsay, “The feynman lectures on physics, vol. 3: Quan-
tum mechanics,” (1966).



6

49 J 7→ −J is a gauge symmetry of Eq. (1).
50 D. A. Abanin, W. De Roeck, and F. Huveneers, Phys.

Rev. Lett. 115, 256803 (2015).
51 A. Haldar and A. Das, arXiv:1702.03455.
52 M. Serbyn, Z. Papić, and D. A. Abanin, Phys. Rev. Lett.

111, 127201 (2013).
53 D. A. Huse, R. Nandkishore, and V. Oganesyan, Phys.

Rev. B 90, 174202 (2014).
54 V. Ros, M. Mueller, and A. Scardicchio, Nuclear Physics

B 900, 420 (2014).
55 A. Chandran, I. H. Kim, G. Vidal, and D. A. Abanin,

Phys. Rev. B 91, 085425 (2015).
56 Tuning A/ω away from a root of J0 also decreases the

time-dependent terms since
∑

n6=0
|Jn|

2 = 1 − |J0|
2. How-

ever, since the localization length of Heff diverges as Jeff

approaches Jc, we expect it to be the dominant factor in
determining the shape of the phase diagram.

57 L. Zhang, V. Khemani, and D. A. Huse, Phys. Rev. B 94,
224202 (2016).

58 M. Srednicki, Phys. Rev. E 50, 888 (1994).
59 S. Iyer, V. Oganesyan, G. Refael, and D. A. Huse, Phys.

Rev. B 87, 134202 (2013).
60 S. F. Edwards and P. W. Anderson, Journal of Physics F:

Metal Physics 5, 965 (1975).
61 M. Schreiber, S. S. Hodgman, P. Bordia, H. P. Lüschen,

M. H. Fischer, R. Vosk, E. Altman, U. Schneider, and
I. Bloch, Science 349, 842 (2015).

62 P. Bordia, H. Luschen, U. Schneider, M. Knap, and
I. Bloch, Nat Phys (2017).

63 D. J. Luitz, N. Laflorencie, and F. Alet, Phys. Rev. B 93,
060201 (2016).

64 M. Bukov, S. Gopalakrishnan, M. Knap, and E. Demler,
Phys. Rev. Lett. 115, 205301 (2015).

65 A. L. Burin, arXiv:1702.01431.


