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We apply the recent wavepacket formalism developed by Ossadnik to describe the origin of the
short range ordered pseudogap state as the hole doping is lowered through a critical density in
cuprates. We argue that the energy gain that drives this precursor state to Mott localization, follows
from maximizing umklapp scattering near the Fermi energy. To this end we show how energy gaps
driven by umklapp scattering can open on an appropriately chosen surface, as proposed earlier by
Yang, Rice and Zhang. The key feature is that the pairing instability includes umklapp scattering,
leading to an energy gap not only in the single particle spectrum but also in the pair spectrum.
As a result the superconducting gap at overdoping is turned into an insulating pseudogap, in the
antinodal parts of the Fermi surface.

I. INTRODUCTION

The novel nature of the transition from a full Fermi
surface metal into the pseudogap state with a truncated
Fermi surface as the doped hole density is reduced, is one
of the most studied features of the cuprate superconduc-
tors. The interpretation of ARPES experiments [1] that
it is a transition from a conventional Bloch band metal
to a precursor state of the Mott insulator at zero dop-
ing, has been confirmed by recent high-field Hall effect
measurements by Badoux et al [2] and Laliberté et al [3].
These experiments illustrate the dramatic change in the
k-space Fermi surface that appears without changing the
translational symmetry of the underlying lattice. A key
challenge is a microscopic description of this instability
of the Landau Fermi surface to a k-space reorganization
as the hole density decreases and the Mott state is ap-
proached. Note the strong contrast to the case of 3He
which remains a Landau Fermi liquid although the on-
site repulsion relative to the kinetic energy is much larger.
Standard Fermi surface instabilities show up in a Func-
tional Renormalization Group (FRG) analysis as a diver-
gence in a specific particle-hole or particle-particle chan-
nel, which can be analyzed by a symmetry lowering mean
field theory. However the lack of symmetry breaking as-
sociated with the onset of the pseudogap rules out this
approach. Our aim is to obtain a microscopic description
of the novel instability at the onset of the pseudogap.

The starting point of any instability analysis is the be-
havior of the effective low energy Hamiltonian, Heff , as
the instability is approached. The early FRG calcula-
tions on the 2D Hubbard model by Honerkamp et al [4]
showed strong growth in umklapp processes as the onsite
repulsion increased at underdoping. These processes are
especially strong for sets of wavevectors on a square sur-
face which join the antinodal points, enclosing half the

Brillouin zone. They labeled this the umklapp surface
(US). A special feature of the 2D square lattice near 1

2 -
filling is the presence of this US close by to the band
structure Fermi surface. Usually elastic U-scattering is
present only at isolated points on the Fermi surface and
as a result can be safely neglected. But here U-scattering
appears on the whole US and is crucial to the low energy
physics. Besides strong U-processes, the FRG flow also
showed strong enhancements in the d-wave superconduct-
ing (dSC) and the antiferromagnetic (AF) susceptibilities
[4, 5]. The presence of strong U-scattering on the US
in such a state, motivated Yang, Rice and Zhang [6, 7]
to propose a simple pairing form for the single particle
propagator in the pseudogap phase. Their phenomeno-
logical YRZ form places the pairing gap on the US, not
the Fermi surface, leads to an enhanced energy gap due
to U-scattering processes. The YRZ propagator has been
used to successfully interpret both detailed ARPES ex-
periments [1] and recent Hall effect experiments [8]. More
recent FRG improved analyses [9, 10] has led to detailed
forms forHeff at low energies in terms of a combination of
coexisting d-wave particle-particle pairing and AF (π, π)
particle-hole terms, analogous to a parquet diagram ap-
proach in a diagrammatic formulation.

There is one example of a Mott insulator phase at weak
coupling, amenable to k-space analysis, namely the “D-
Mott” insulator state in the 1

2 -filled 2-leg Hubbard ladder
[11, 12]. This has a fully truncated Fermi surface caused
by strictly short range (SRO) correlations. In this exam-
ple the D-Mott insulating behavior is driven by the extra
umklapp (U) scattering processes present exactly at the
1
2 -filling Fermi surface. Short range order appears in both
the dSC and the commensurate (π, π) AF channels. The
presence of strong and coupled divergences in both these
channels cannot lead to coexisting long range ordering in
both channels. Singlet pairing results in a spin gap which
is incompatible with long range AF order, which in turn
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would open a charge gap, incompatible with supercon-
ductivity. This incompatibility does not allow the result-
ing strongly coupled state to be treated by mean field the-
ory plus fluctuations. Rather the D-Mott insulator phase
of the 1

2 -filled 2-leg Hubbard ladder [11, 12] can be viewed
as a state where both kinds of SRO coexist, stabilized by
the energy gain from the presence of local correlations in
both particle-hole and particle-particle channels. Their
analysis is limited to the weak coupling limit. Recently
numerical DMRG methods have been developed which
can be applied to arbitrary strength interactions. As will
be discussed in detail below, the numerical results show
a continuous transition between the weak coupling and
strong coupling (i.e. Mott) limit. The only difference is
breakdown of the special SO(8) symmetry applies only
at weak coupling but the isolated ground state and finite
single particle, charge and spin gaps evolve continuously
with increasing interaction strength. One important lim-
itation is the real space character of DMRG which limits
detailed comparison of the DMRG and RG results.

The physics of this SRO state in the ladders is the same
as that in a Resonating Valence Bond (RVB) state that
was proposed very early by Anderson [13, 14] as underly-
ing high temperature superconductivity in the cuprates.
The initial RVB proposal started from an undoped Mott
insulator and discussed hole doping in a 2D Heisenberg
S = 1

2 model. But the 1
2 -filled 2-leg Hubbard ladder

shows that the same physics can appear in 1D at weak
and strong coupling. This raises the possibility of real-
izing RVB physics as an instability of a 2D metal as the
hole density is reduced towards the Mott state. An im-
portant obstacle is the extension of the 1D SRO ladder
state to a 2D SRO state. In the next chapter we will
introduce the important advance made by Ossadnik on a
microscopic theory of SRO states in a 2D lattice.

II. THE OSSADNIK-WW THEORY FOR SRO IN
INTERACTING FERMIONS

The challenge to construct a microscopic theory for
systems with strictly SRO and no broken symmetries,
inspired Matthias Ossadnik [15] to formulate many-body
theory in a wavepacket basis, rather than the standard
extended Bloch basis used in long range ordered sys-
tems. To this end he introduced the orthonormal Wilson-
Wannier basis [16] with even and odd combinations of
Wannier functions. Ossadnik [15] began by rewriting
the many-body Hamiltonian in this wavepacket basis and
proceeded to obtain a fermionic formulation of the SRO
groundstate of the 2-leg Hubbard ladder at 1

2 -filling, in
agreement with the standard bosonization analysis. He
then went on to demonstrate that his wavepacket ap-
proach could be straightforwardly generalized to 2D, un-
like bosonization techniques. However, he did not carry
through explicit calculations for this case. In this paper
we follow his lead and carry through such calculations
in the simplest approximation scheme. The great advan-

tage of the Ossadnik-WW formalism over a real space
approach, is that it enables one to directly examine the
behavior in k-space near the Fermi energy. We can de-
scribe the opening of an energy gap in the 2-particle spec-
trum by U-processes in the antinodal region of k-space.
Analogously to the case of the Hubbard ladder, the pres-
ence of U-processes is the key to turning the supercon-
ducting gap at overdoping into an insulating pseudogap
at underdoping.

A SRO model of fermions is characterized by short
range correlations which decay exponentially at long dis-
tances. Ossadnik proposed a useful description of such
behavior can be based on coarse graining the real space
behavior leading to a lattice of supercells, whose length
scales are determined by the range of the strong short
range correlations. The long range behavior of the model
is determined in the first place by the local excitations
in a single supercell and then by inter-supercell inter-
actions. Ossadnik noted that in this approach, the low
energy spectrum of the individual supercell plays a cru-
cial role in determining the form of the correlation at long
distances. He illustrated this proposal by examining the
contrasting behavior of two 1-dimensional 1

2 -filled Hub-
bard models, the single chain and the 2-leg ladder (2LL).
In the former case a single supercell has a 2-fold degen-
erate groundstate and as a result inter-supercell interac-
tions in the supercell lattice lead to a power law decay of
long range AF correlations. In the case of a 2-leg Hub-
bard ladder, the supercell has an isolated groundstate
with finite gaps to all excitations. As a result the weaker
inter-supercell interactions act only to renormalize the
finite magnitude of the single supercell excitation ener-
gies. He concluded that “a surprising amount of infor-
mation about the nature of the groundstate is present in
the local interaction and excitation spectrum of the local
problem in the WW basis”, i.e. the excitation spectrum
of a single supercell. Ossadnik extended his real space
coarse graining approach to 2-dimensions which leads to
discretization of k-space in the low energy region near
the Fermi surface. Here we use this approach to describe
the neighborhood of the 2-dimensional Fermi surface by
a discrete set k-space patches. We are motivated by the
ARPES observations of a partially gapped Fermi surface
in the pseudogap phase of underdoped cuprates with only
SRO and no broken symmetry [1]. Ossadnik based his
analysis of the excitation spectrum of the 2LL by us-
ing the results of 1-loop RG calculations. This method
however is limited to weak interactions. The excitation
spectrum of the 2LL can be solved numerically using the
DMRG method at all interaction strengths. This allows
us to extend Ossadnik’s analysis to more realistic values
as will be discussed below.

Our goal is to describe qualitatively the evolution in
the physics, in particular the evolution of the 1-particle,
2-particle, and spin-flip excitation energies along the US.
Alternative approaches have been put forward in a se-
ries of papers by Sachdev and coworkers [17], Chubukov
and collaborators [18] and Pepin and coworkers [19] and
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(a) (b)

Figure 1. (a) The band structure of a 2-leg ladder at 1
2
-filling.

The Fermi level crosses the bonding (1) and antibonding (2)
rung bands leading to pairs of right (R) and left (L) moving
Fermi points. Note at 1

2
-filling the Fermi points R1 & L2 and

R2 & L1 are connected by (π,±π) scatterings. (b) Umklapp
scatterings at 1

2
-filling.

many others. They start from the band structure Fermi
surface and examine the role of U-scattering processes
connecting the 8 “hot points”, namely the 8 Fermi sur-
face points lying on the US. They examine the possi-
bility that as the hole density decreases below a critical
value, coupled instabilities in the SDW and CDW chan-
nels can be stabilized in the Hubbard and spin fermion
models. They interpret a number of X-ray investigations
and Scanning Tunneling Microscope (STM) experiments
in terms of such spatial modulations. We put forward a
different interpretation here, which proposes that the key
instability is driven not by a set of “hot points” on the
original Fermi surface, but by a macroscopic reorganiza-
tion of the k-space “Fermi surface” to obtain “hot lines”
lying on the US, see Fig. 6. In a recent paper Liu and
coworkers [20] found that in this underdoped pseudogap
state, the transition to superconducting long range order
is preceded by a wide temperature region with strong
phase fluctuations associated with a soft Leggett mode.
Further they showed that this scenario explains the un-
usual Giant Phonon Anomalies reported by Le Tacon et
al [21] in high-resolution inelastic X-ray experiments on
underdoped YBCO. In comparing these results on YBCO
and the recent STM results on BSCCO [22] one must
recognize the presence of strong static lattice disorder in
the CuO2 layers in BSCCO could account for the clear
discrepancy between the two sets of experiments. This
difference shows up very prominently when the strongly
broadened NMR spectrum of a BSCCO [23] sample is
compared to the narrow well resolved lines in the NMR
spectrum of underdoped YBa2Cu4O8 [24].

III. THE U − J HUBBARD LADDER

We start by reviewing the U-scattering processes re-
sponsible for the D-Mott insulator at 1

2 -filling in a 2-leg
Hubbard ladder. The band structure in Fig. 1 has a
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Figure 2. Excitation energies in the U -J ladder at half filling.
In each panel, the value of J/tL increases from bottom to top
evenly from 0.1 to 2. All excitation energies increase smoothly
as a function of U and J , and the state is always the “D-Mott”
insulator. However, the relative strength between SC and
AF SROs could be tuned by U and J . (Parameters: length
L = 62, bond dimension D = 700.)

pair of 1D bonding (1) and antibonding (2) bands with
right and left moving Fermi wavevectors when we choose
equal hopping matrix elements along legs and rungs,
R1 = (2π/3, 0), R2 = (π/3, π) and L1 = (−2π/3, 0),
L2 = (−π/3, π). The Fermi points at R1 & L2 and also
R2 & L1, are separated by the wavevector (π,±π) at
1
2 -filling, which as illustrated Fig. 1b, allows three new
scattering processes with momentum change (±2π, 0) or
(±2π,±2π) at 1

2 -filling. The three extra interband scat-
tering processes at 1

2 -filling change the nature of fixed
point in 1-loop RG flow, to an insulator with both
charge and spin gaps [11]. In particular, a charge gap in
the 2-particle Cooper pair channel is introduced, which
converts superconducting correlations into strictly short
range correlations. In the particle-hole channel the scat-
tering of a particle-hole pair with opposite spins with
an incoming wavevector of R1 − L2 = (π,−π) is scat-
tered to an outgoing particle-hole pair with wavevector
R2−L1 = (π, π). This extra vertex is allowed only at the
commensurate wavevector, which strengthens the SDW
response at the commensurate (π, π) wavevector. In the
related particle-particle channel, this scattering process
contributes to d-wave singlet pairing. Note however the
commensurate order is pinned to the underlying lattice
leading to a finite energy sliding mode in the particle-hole
channel. The interference between the two SRO correla-
tions can be constructive in the sense that it enhances the
magnitude of the enegy gaps, but this comes at the cost
of introducing an energy gap in the Cooper pair energy
spectrum. The result is the novel SRO D-Mott insulator
groundstate with a charge gap.

Before the discussion of the cuprate Fermi surface we
examine the generalization of the D-Mott insulating state
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of the 2-leg Hubbard ladder to finite strength interac-
tions. The 1-loop RG calculations are limited to weak
coupling and the extension to stronger coupling by multi-
loop RG is difficult. However numerical simulation of the
2-leg ladder by a real space DMRG method is possible
[25, 26] and allows the calculation of the excitation ener-
gies at arbitrary strength interactions. In this section we
summarize the numerical results. (The calculations are
described in more detail in the Appendix.)

We also examined the behavior when the interactions
in the Hubbard model are extended by adding an anti-
ferromagnetic spin-exchange interaction (J-term) to the
original Hubbard onsite repulsion U . Note we are using
the 2-leg Hubbard ladders to represent the low energy
effective interactions after the high energy region of the
2D Hubbard model is integrated out. This process . .
. , see Qiang-Hua . This process introduces uncertainty
into the exact form of the resulting 1/2-filled 2-leg lad-
der in real space but as we shall see this does not lead to
qualitative changes in the results.

H = −tL
∑
〈i,j〉,σ

(
c†iσcjσ + c†jσciσ

)
+U

∑
i

ni↑ni↓ + J
∑
〈i,j〉

Si · Sj , (1)

where 〈i, j〉 denotes nearest neighbors on the ladder in
both leg and rung direction, tL is the hopping on the
ladder (to distinguish from the hopping t on 2D square
lattice for later use), Si = 1

2

∑
ab c
†
ia~σabcib is the fermion

spin. For this model, the strengths U/tL and J/tL, can
be varied to see the sensitivity of the results to variations
in the low energy interactions along the umklapp surface.
We use the DMRG code from the ALPS library [27, 28]
to simulate open ladders with length L and widthW = 2,
in various particle-number-conserving sectors with N↑ =∑
i ni↑ = L,L±1 and N↓ =

∑
i ni↓ = L,L±1. Denoting

the lowest eigenenergy in the sector (N↑, N↓) by EN↑,N↓ ,
the 1-particle-, 2-particle- and spin-gaps, relative to the
1
2 -filled sector, are then defined by:

E1 =
1

2
(EL+1,L + EL−1,L)− EL,L,

E2 =
1

4
(EL+1,L+1 + EL−1,L−1)− 1

2
EL,L,

EA = EL+1,L−1 − EL,L,
EP = E1 − E2. (2)

Here we use EP to denote the energy gain when two
particles are added together instead of separately, i.e. if
EP > 0, then two particles have an effective attractive
interaction, leading to Cooper pairing correlations.

We begin by plotting the excitation energies at 1
2 -filling

versus the parameters U/tL & J/tL in Fig. 2. We see
a continuous rise of the excitation energies without any
sign of a singularity. From this we conclude that the Mott
physics in the 2-leg ladder at 1

2 -filling evolves smoothly
from the weak coupling limit where it is caused by the
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Figure 3. The excitation energies at 1
2
-filling, as a function of

the interaction strength U . The charge gap grow monotoni-
cally with U , but the spin gap EA and pairing energy gain EP
peak around a value of U equal to the kinetic energy band-
width U ∼ 6tL. (Parameters: length L = 62, bond dimension
D = 700.)
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Figure 4. Finite-size and finite-bond-dimension effects on the
excitation energies, for U = 8tL. The correlation length ξ is
defined by the length scale at which the excitation energies
saturate. Further increases in the system size lead to only
minor changes.

extra umklapp processes at 1
2 -filling. This demonstrates

that in 2D an insulating (or partially insulating) state can
be realized without symmetry breaking if one can max-
imize elastic umklapp processes across parts of a Fermi
surface.

The behavior of excitation energies, E1, E2 and EA
with increasing interaction strength is also of interest
(Fig. 2 and Fig. 3). All three excitation energies are equal
in the analytic solution in weak coupling [29]. However,
at finite coupling the single particle excitation is clearly
larger than the energy per particle to add a Cooper pair.
This behavior is robust and confirms the persistence of



5

3
2
1
0
1
2
3
4

E
G
/t
L

 p
e
r 

p
a
rt

ic
le

(a)

0.0 0.5 1.0 1.5 2.0
n

4
2
0
2
4
6
8

10
12

µ
/t
L

(b)

Figure 5. Groundstate energy per particle (a) and the chem-
ical potential ∂EG/∂N (b), at U = 8tL and J = 0, as a func-
tion of filling, n = N/2L. The horizontal black line marks the
particle-hole symmetric chemical potential µ = U/2 = 4tL,
and the vertical black line the jump in µ due to the charge
gap. (Parameters: length L = 62, bond dimension D = 700.)

SRO in the pairing channel. The triplet S = 1 excitation
energy EA depends mostly on the value of J and only
weakly on U . The finite value indicates the persistence
of AF (π, π) SRO.

The DMRG calculations also allow an explicit test of
Ossadnik’s central point, namely that SRO systems can
be well represented by as a lattice of independent super-
cells in cases where the supercell groundstate is isolated
with a finite energy gap for all excitations. To this end
we show the finite-size effect on the excitation energies,
for various ladder lengths. The results in Fig. 4, do in-
deed show a clear saturation of the excitation energies
at a finite length scale. This saturation length is smaller
in the charge sector than the spin sector in agreement
with the larger excitation energies in the former, so one
can interpret the saturation length as the length scale of
strong correlations. It also supports Ossadnik’s proposal
that inter-supercell interactions may be safely neglected.
When we consider the 2D case below, we shall extend
this approximation to neglect inter-supercell interactions
also between supercells associated with correlations at
different non-degenerate k-points along the US.

Lastly we plot EG versus filling n, see Fig. 5. Here
the solid blue lines are results from the DMRG, and the
dashed red lines are interpolations as if there were no
charge gap. As expected, the presence of elastic umk-
lapp processes across the Fermi surface lowers the EG
per particle. It follows that if a separate particle reser-
voir for particles exists, an extra single particle energy
cost to transfer particles to the ladder, can be compen-
sated by the energy gain due to the enhanced gap in E1.
Since the latter increases with increasing U it follows that
such a particle transfer will be stable beyond a critical
value of U .

IV. THE PSEUDOGAP PHASE IN THE
CUPRATES

We use a single-band Hubbard model in 2D square
lattice to describe the cuprates:

H = −
∑
ijσ

tij(c
†
iσcjσ + c†jσciσ) + U

∑
i

ni↑ni↓, (3)

where tij = t when i, j are nearest neighbors (nn), and
tij = t′ when i, j are next-nearest neighbors (nnn). Later
a third-nearest-neighbor hopping amplitude t′′ (nnnn) is
also included.

The original band structure Fermi surface of the
cuprates in Fig. 6b, only allows elastic U-scattering pro-
cesses at the 8 so-called “hot spots” where the Fermi sur-
face crosses the US. However since the pseudogap state
is not present in the weak coupling limit, we should look
also for interacting groundstates that derive adiabatically
from noninteracting excited states. In the phenomenolog-
ical YRZ ansatz to be discussed later [6, 7], the original
curved noninteracting Fermi surface is deformed to max-
imize the overlap with the US, as illustrated in Fig. 6c.
This excited band state is relevant if we postulate that
the interacting groundstate is adiabatically connected to
a noninteracting excited state with all occupied states
inside the US. The boundary between occupied and un-
occupied states extends along the US from the antinodal
point until intersecting a Fermi arc centered on the nodal
point of the US, as illustrated in Fig. 6c. The commen-
surate AF state of Cr alloys is an example of a ground-
state adiabatically connected to a Fermi surface modi-
fied to maximize U-scattering processes with wavevector
(π, π, π). This leads to greatly enhanced Neel tempera-
ture, energy gap and electron/atom range for commensu-
rate itinerant antiferromagnetism in Cr alloys. The com-
mensurate AF is adiabatically connected to an excited
single-particle state, which leads to a doubling of the
single-particle energy gap through the extra U-scattering
processes that are allowed in the commensurate AF state
[30]. We note in passing that neutron scattering on
cuprates with well ordered lattices, e.g. HgBa2CuO4+x,
show only commensurate (π, π) AF short range order in
the pseudogap phase [31], an experimental confirmation
that commensurate AF (π, π) are playing an important
role in stabilizing the pseudogap state. Note this change
in the “Fermi surface” can be stabilized by a finite, but
not necessarily strong, interaction strength at low ener-
gies as demonstrated by the case of Cr. In the cuprates as
the doping decreases, the strength of the effective low en-
ergy repulsion increases, from zero in the Landau Fermi
liquid at overdoping, to a large value in the Mott insu-
lator with a large energy gap at zero doping. We shall
return to the consequences for ARPES later.

Another feature of the pseudogap phase is the strong
anisotropy in k-space near the Fermi energy. The single-
particle energy gap measured by ARPES is maximum
near the antinodal points and decreases as k moves along
the US towards nodal. In a hole doped sample, at a
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Figure 6. The YRZ reconstruction of the single particle distribution. The original Fermi surface (b) is deformed to the YRZ
surface (c), by a transfer of occupied states from outside to inside of the US (a). This reconstruction conserves particle number
and results in a small hole pocket near nodal (c).

certain k-point there is a crossover to a Fermi arc which
lies inside the US and is centered at the nodal point.
The superconducting gap that vanishes at Tc opens on
this Fermi arc.

Ossadnik compared this k-space anisotropy near the
Fermi energy to the behavior of multi-leg Hubbard lad-
ders near 1

2 -filling. In this case the band structure is a
set of 1D bands labelled by their transverse wavevector.
These 1D bands form pairs with equal effective masses
at the Fermi level, whose value depends on the rung
wavevector [32]. These band pairs have different density
of states at the Fermi level and so make transitions to
strong coupling at different critical scales in a RG treat-
ment. This successive freeze out of the different band
pairs as the energy scale is lowered suggests an approx-
imation scheme, where we treat the freeze out of each
band pair as independent as we lower the energy scale
[32]. As a result, in a lightly doped system at low temper-
ature, we have a separation into 1

2 -filled band pairs with
larger energy gaps, and lightly doped band pairs. This
is similar in many ways to the variation with k along
the US in the pseudogap phase in 2D. For a review of
multi-ladder Hubbard models, see Le Hur and Rice [33].

A. Trial wavefunction

In the cuprates the 2D band structure energy varies
along the US in the presence of nnn hopping, t′ < 0, with
a minimum at antinodal and a maximum at nodal accord-
ing to −4t′ cos kx cos ky. Ossadnik showed the simplest
way to treat the variation in k-space along the US is to
introduce a partition into independent k-space patches,
each characterized by a WW-wavevector and energy [15].
Each k-patch belongs to a star of 8 degenerate k-points
on the US due to the square symmetry of the lattice.
These points are connected by a set of scattering vertices
including U-processes, which act to open extra energy
gaps on the US, see Fig. 6. Since the k-stars have dif-

ferent energies and we are considering only short range
order, we shall neglect scattering processes between dif-
ferent stars of 8 k-patches. We represent the ground-
state wavefunction as a product state of the groundstate
of each 8 degenerate k-point stars along the US. A fur-
ther simplification occurs when we concentrate on the
local approximation introduced by Ossadnik, namely we
could evaluate the excitation energy spectrum of a single
square supercell, and examine how this excitation energy
spectrum varies with the position of the k-patch on the
US. The correlation lengths and hence the dimensions of
each supercell vary with the position of k on the US. The
shortest correlations on the fastest timescales will occur
near the antinodal k-points and the slower correlations
grow in on longer length scales as k approaches nodal.

A typical star of 8 k-points is represented in Fig. 7.
For a k-space analysis we need to parameterize the dom-
inant scattering processes at low energies in a 2D Hub-
bard model when the Fermi surface is near the US. Under
these conditions there are competing and mutually inter-
acting collective fluctuations in both spin-density-wave
and d-wave-pairing channels. The singular-mode FRG
(SM-FRG) [9, 10] represents the effective interactions as
a coupled flow of wavevector resolved terms in the d-
wave pairing (dSC) and particle-hole AF (π, π) channels.
While there are explicit calculations only to 1-loop order
we shall apply this form to moderately strong interac-
tions relevant in the pseudogap phase. This form of the
interaction is similar to that proposed for strong coupling
in the “spin-Fermion” model [34, 35].

Motivated by the Ossadnik-WW theory, we separate
the conducting and insulating parts in k-space, and pro-
pose the pseudogap wavefunction to be a product of the
BCS state on the nodal arc, and an insulating state on the
umklapp surface near antinodal. The insulating state is
in turn a product state of different sets of 8 Fermi points
(patches). The wavefunction reads:

|Ψ〉BZ = |BCS〉arc ⊗ |PG〉 , |PG〉 =
⊗
kU

|2LL〉S(kU) , (4)
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Figure 7. Mapping to the 8 degenerate ladder Fermi points.
The 8 degenerate k-points on the US (purple circles) are di-
vided into into two subsets of 4 k-points each, on the US.
Each subset is connected by (π, π) intra-subband scattering,
similar to the case of 2-leg ladders in Fig. 1. The gray shaded
region is occupied by the YRZ construction. The blue arrows
mark the important intra-subband (π, π) scatterings.

which is in a product form. Here BZ denotes the whole
Brillouin zone, S(kU) denotes one set of 8 Fermi points
connected from an umklapp point kU, e.g. in Fig. 7,
S(R1) = {L1, L2, R1, R2, U1, U2, D1, D2}. In passing we
note that as far as we are aware, so far an approximate
wave function, which includes US has not been found.

Note the product form in k-space for the 2D ground-
state has certain similarities to the product form of a BCS
wave function. However in that case, all k-patches are
degenerate and the presence of long range order creates
a coherent field on each k-patch due to inter-k-patch in-
teractions. In the pseudogap phase there is a continuous
crossover to SRO as the temperature is lowered making
it similar to case of wider Hubbard ladders at 1/2- filling,
where successive band pairs cross into the strong coupling
state as the energy scale is lowered.

B. Mapping to 2LLs

Looking at the 8-k-point star illustrated in Fig. 7, we
see that it can be decomposed of 2 subsets (R,L) &
(U,D) with velocities along the (1, 1) & (1,−1) directions
respectively. Each subset consists of 4 k-points connected
by umklapp scattering processes involving (π, π) momen-
tum transfers, similar to the case of 2LLs at 1

2 -filling.
While there are umklapp scattering processes between k-
points in the two different subsets, these U-processes do
not involve (π, π) momentum transfers. This suggests a
further simplification, where we approximate the ground-
state of the 8-k-point star as the product of a pair of
independent 4-k-point subsets with velocities along the
(1, 1) & (1,−1) directions. This product approximation

greatly simplifies the calculations as each 4-k-point sub-
set can then be mapped onto a 2LL.

This connection is clear when we label the 4 degenerate
k-points of a single subset on the US as right (R) and left
(L) movers in Fig. 7, and add a second label 1 & 2 to de-
note the ±k pairs. The similarity of this 4-k-point subset
to the 4 Fermi points of the 2LL at 1

2 -filling in Fig. 1, is
obvious. The wavevector separations between R1 & L2,
and also R2 & L1, are (π, π), similar to the 2-leg lad-
der at 1

2 -filling so that a scattering between the Cooper
pairs (R1,L1) & (R2, L2) involves momentum transfers
of (π, π), just as in the 2LL. The spin response is peaked
at the commensurate wavevector (π, π), enhancing the
strength of scattering processes through this wave vec-
tor. As discussed earlier the analytic solution in k-space
for ladders is limited to weak coupling, but a numerical
solution using DMRG can be carried out in a real space
formulation for arbitrary coupling. This requires a real
space, rather than k-space form for the interaction e.g.
represented as U, J in Eq. (1). The relevant values of U, J
are not easy to estimate but as shown earlier the excita-
tion energies E1, E2 and EA at 1

2 -filling evolve smoothly
with U, J . Thus our approximate treatment will not be
quantitive, only qualitative.

C. Relation to the YRZ ansatz for the single
particle propagator and ARPES experiments

We begin by examining the E1(k), which is measured
in ARPES experiments. Numerous experimental inves-
tigations of the electronic properties in the pseudogap
state have found a strong dichotomy between the k-space
regions near antinodal and nodal. Only SRO correla-
tions accompanied by insulating behavior are observed
near antinodal, which persist up to high temperatures.
This behavior is a clear contrast with the large super-
conducting gap at T < Tc, observed near antinodal at
overdoping. We have argued above that this difference
is similar to that observed in the SRO insulating state
driven by umklapp processes observed at 1

2 -filling in a
2-leg Hubbard ladder. Here this behavior was derived
when the starting band structure Fermi surface is mod-
ified to maximize overlap with the US. In this case the
dominant interactions are those within the degenerate 4-
k-point subsets with local velocities along the (1, 1) &
(1,−1) directions. Further we argued the U-processes
connecting the two 4-k-point subsets are weaker, allow-
ing us to apply results from the SRO insulator driven by
umklapp processes observed at 1

2 -filling in a 2-leg Hub-
bard ladder.

Some years ago, Yang, Rice and Zhang [6] put forward
a phenomenological form for the single particle propa-
gator whose poles determine E1(k), stimulated by the
prominence of U-scattering processes in the earlier FRG
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The shift in focus provides a new perspective on the nodal gap.
Dividing the momentum space largely into two half regions, the
gap extending over the near-nodal half is less sensitive to
underdoping than that in the antinodal half, as seen from Fig. 3a–
d. This general trend is consistent with previous reports16–18.
Combining this trend with the appreciable curvatures observed in
Fig. 3a,b, it follows that the nodal limit of the gap slope, DN,
decreases with underdoping from OP91 to UD66, and then to
UD42, as indicated by blue tangent lines in Fig. 3a–c. The
asymptotic behaviour of the gap deviation suggests that the
parameter would be purified by taking the nodal limit y-0.

Relation to critical temperature. The superconducting-gap
energies at various dopings are scaled by Tc, and put together in
Fig. 4a, which reveals that the nodal limit of D(y)/Tc remains
unchanged with underdoping in contrast to the antinodal limit.
Figure 4a also shows that the energies of the BB and AB gaps
determined with hn¼ 8.5 and 7.0 eV are all consistent with the
single fitted-curve for each doping level. The two gap parameters,
DN and D*, determined from the next-higher-harmonic fit are
plotted as a function of hole concentration in Fig. 4b. This shows
that the nodal gap DN closely follows the decrease in Tc with
underdoping, departing from the antinodal gap D*. The gap-to-Tc

ratios plotted in Fig. 4c are worth noting. As hole concentration p
decreases from the overdoped limit, both the nodal and antinodal
ones increase with keeping a constant proportion, DN¼ 0.87D*.
This is the canonical behaviour expected when the coupling is
getting stronger. A further decrease in p leads to a plateau of 2DN/
kBTc¼ 8.5, which is about twice the mean-field prediction 4.3 for
d-wave weak-coupling superconductors, and meanwhile to a
continuing increase in 2D*/kBTc

2,3,13. These features are beyond
the scenario of the standard weak-coupling theory. Figure 4d
shows that our data for Bi2212 finely converge on the line of 2DN/
kBTc¼ 8.5 in particular from the optimum to a heavily
underdoped level, and that similar values of 2DN/kBTc have
been reported for optimally doped single-layer cuprates23,25.

The proportional relation, 2DN¼ 8.5 kBTc, reconciles the critical
temperature with the nodal slope of the distorted d-wave
superconducting gap. It seems reasonable that Tc, in effect,
depends on DN rather than D*, because thermal quasiparticle
excitations concentrate in the vicinity of the node and hardly
occur around the antinode in particular for the strong-coupling
case, 2D*/kBTcc4.3. The association between the nodal excitations
and Tc has been proposed in various ways12,13,15–17. In particular,
the decrease in DN with underdoping has been deduced from the
low-energy slope of B2g-Raman spectra12 and the quasiparticle
interference in scanning-tunnelling images29. Besides, in possible
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Figure 3 | ARPES spectra along the Fermi surface for representative dopings. Samples are labelled by a doping-level prefix, namely underdoped (UD),
optimum (OP) or overdoped (OD), and a trailing number denoting Tc. (a–d) Energy-versus-sin2y plots of the spectral images for BB, taken in the
superconducting state at T¼ 10 K and symmetrized with respect to o¼0 and y¼0. Circles, curves and blue lines denote the gap energies, the next-
higher-harmonic fits and the nodal tangents, respectively. (e–h) EDCs at the momenta marked by triangles in panels a–d. Black curves and vertical bars
denote the fits and the gap energies, respectively. (i) EDCs in the normal state at T¼ 80 K for UD66 (see Supplementary Fig. S2 for other dopings). (j) Gap
energies as functions of sin2y in the superconducting (red) and normal (green) states of UD66, determining the energies of antinodal gap D*, nodal gap DN

and arc-endpoint gap Darc (see Supplementary Fig. S2 for other dopings). Error bars indicate the uncertainty of EDC fit. The inset shows the doping
dependence of the Fermi-arc endpoint, yarc, at TCTcþ 10 K alongside yarc/p¼ 100! (dotted line). The error bars of yarc stem from the natural broadness of
the EDC peaks. The angles inside and outside yarc are labelled by bold and italic faces in e–i, and marked by filled and open triangles in a–d, respectively.
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The shift in focus provides a new perspective on the nodal gap.
Dividing the momentum space largely into two half regions, the
gap extending over the near-nodal half is less sensitive to
underdoping than that in the antinodal half, as seen from Fig. 3a–
d. This general trend is consistent with previous reports16–18.
Combining this trend with the appreciable curvatures observed in
Fig. 3a,b, it follows that the nodal limit of the gap slope, DN,
decreases with underdoping from OP91 to UD66, and then to
UD42, as indicated by blue tangent lines in Fig. 3a–c. The
asymptotic behaviour of the gap deviation suggests that the
parameter would be purified by taking the nodal limit y-0.

Relation to critical temperature. The superconducting-gap
energies at various dopings are scaled by Tc, and put together in
Fig. 4a, which reveals that the nodal limit of D(y)/Tc remains
unchanged with underdoping in contrast to the antinodal limit.
Figure 4a also shows that the energies of the BB and AB gaps
determined with hn¼ 8.5 and 7.0 eV are all consistent with the
single fitted-curve for each doping level. The two gap parameters,
DN and D*, determined from the next-higher-harmonic fit are
plotted as a function of hole concentration in Fig. 4b. This shows
that the nodal gap DN closely follows the decrease in Tc with
underdoping, departing from the antinodal gap D*. The gap-to-Tc

ratios plotted in Fig. 4c are worth noting. As hole concentration p
decreases from the overdoped limit, both the nodal and antinodal
ones increase with keeping a constant proportion, DN¼ 0.87D*.
This is the canonical behaviour expected when the coupling is
getting stronger. A further decrease in p leads to a plateau of 2DN/
kBTc¼ 8.5, which is about twice the mean-field prediction 4.3 for
d-wave weak-coupling superconductors, and meanwhile to a
continuing increase in 2D*/kBTc

2,3,13. These features are beyond
the scenario of the standard weak-coupling theory. Figure 4d
shows that our data for Bi2212 finely converge on the line of 2DN/
kBTc¼ 8.5 in particular from the optimum to a heavily
underdoped level, and that similar values of 2DN/kBTc have
been reported for optimally doped single-layer cuprates23,25.

The proportional relation, 2DN¼ 8.5 kBTc, reconciles the critical
temperature with the nodal slope of the distorted d-wave
superconducting gap. It seems reasonable that Tc, in effect,
depends on DN rather than D*, because thermal quasiparticle
excitations concentrate in the vicinity of the node and hardly
occur around the antinode in particular for the strong-coupling
case, 2D*/kBTcc4.3. The association between the nodal excitations
and Tc has been proposed in various ways12,13,15–17. In particular,
the decrease in DN with underdoping has been deduced from the
low-energy slope of B2g-Raman spectra12 and the quasiparticle
interference in scanning-tunnelling images29. Besides, in possible
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Figure 3 | ARPES spectra along the Fermi surface for representative dopings. Samples are labelled by a doping-level prefix, namely underdoped (UD),
optimum (OP) or overdoped (OD), and a trailing number denoting Tc. (a–d) Energy-versus-sin2y plots of the spectral images for BB, taken in the
superconducting state at T¼ 10 K and symmetrized with respect to o¼0 and y¼0. Circles, curves and blue lines denote the gap energies, the next-
higher-harmonic fits and the nodal tangents, respectively. (e–h) EDCs at the momenta marked by triangles in panels a–d. Black curves and vertical bars
denote the fits and the gap energies, respectively. (i) EDCs in the normal state at T¼ 80 K for UD66 (see Supplementary Fig. S2 for other dopings). (j) Gap
energies as functions of sin2y in the superconducting (red) and normal (green) states of UD66, determining the energies of antinodal gap D*, nodal gap DN

and arc-endpoint gap Darc (see Supplementary Fig. S2 for other dopings). Error bars indicate the uncertainty of EDC fit. The inset shows the doping
dependence of the Fermi-arc endpoint, yarc, at TCTcþ 10 K alongside yarc/p¼ 100! (dotted line). The error bars of yarc stem from the natural broadness of
the EDC peaks. The angles inside and outside yarc are labelled by bold and italic faces in e–i, and marked by filled and open triangles in a–d, respectively.
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The shift in focus provides a new perspective on the nodal gap.
Dividing the momentum space largely into two half regions, the
gap extending over the near-nodal half is less sensitive to
underdoping than that in the antinodal half, as seen from Fig. 3a–
d. This general trend is consistent with previous reports16–18.
Combining this trend with the appreciable curvatures observed in
Fig. 3a,b, it follows that the nodal limit of the gap slope, DN,
decreases with underdoping from OP91 to UD66, and then to
UD42, as indicated by blue tangent lines in Fig. 3a–c. The
asymptotic behaviour of the gap deviation suggests that the
parameter would be purified by taking the nodal limit y-0.

Relation to critical temperature. The superconducting-gap
energies at various dopings are scaled by Tc, and put together in
Fig. 4a, which reveals that the nodal limit of D(y)/Tc remains
unchanged with underdoping in contrast to the antinodal limit.
Figure 4a also shows that the energies of the BB and AB gaps
determined with hn¼ 8.5 and 7.0 eV are all consistent with the
single fitted-curve for each doping level. The two gap parameters,
DN and D*, determined from the next-higher-harmonic fit are
plotted as a function of hole concentration in Fig. 4b. This shows
that the nodal gap DN closely follows the decrease in Tc with
underdoping, departing from the antinodal gap D*. The gap-to-Tc

ratios plotted in Fig. 4c are worth noting. As hole concentration p
decreases from the overdoped limit, both the nodal and antinodal
ones increase with keeping a constant proportion, DN¼ 0.87D*.
This is the canonical behaviour expected when the coupling is
getting stronger. A further decrease in p leads to a plateau of 2DN/
kBTc¼ 8.5, which is about twice the mean-field prediction 4.3 for
d-wave weak-coupling superconductors, and meanwhile to a
continuing increase in 2D*/kBTc

2,3,13. These features are beyond
the scenario of the standard weak-coupling theory. Figure 4d
shows that our data for Bi2212 finely converge on the line of 2DN/
kBTc¼ 8.5 in particular from the optimum to a heavily
underdoped level, and that similar values of 2DN/kBTc have
been reported for optimally doped single-layer cuprates23,25.

The proportional relation, 2DN¼ 8.5 kBTc, reconciles the critical
temperature with the nodal slope of the distorted d-wave
superconducting gap. It seems reasonable that Tc, in effect,
depends on DN rather than D*, because thermal quasiparticle
excitations concentrate in the vicinity of the node and hardly
occur around the antinode in particular for the strong-coupling
case, 2D*/kBTcc4.3. The association between the nodal excitations
and Tc has been proposed in various ways12,13,15–17. In particular,
the decrease in DN with underdoping has been deduced from the
low-energy slope of B2g-Raman spectra12 and the quasiparticle
interference in scanning-tunnelling images29. Besides, in possible
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Figure 3 | ARPES spectra along the Fermi surface for representative dopings. Samples are labelled by a doping-level prefix, namely underdoped (UD),
optimum (OP) or overdoped (OD), and a trailing number denoting Tc. (a–d) Energy-versus-sin2y plots of the spectral images for BB, taken in the
superconducting state at T¼ 10 K and symmetrized with respect to o¼0 and y¼0. Circles, curves and blue lines denote the gap energies, the next-
higher-harmonic fits and the nodal tangents, respectively. (e–h) EDCs at the momenta marked by triangles in panels a–d. Black curves and vertical bars
denote the fits and the gap energies, respectively. (i) EDCs in the normal state at T¼ 80 K for UD66 (see Supplementary Fig. S2 for other dopings). (j) Gap
energies as functions of sin2y in the superconducting (red) and normal (green) states of UD66, determining the energies of antinodal gap D*, nodal gap DN

and arc-endpoint gap Darc (see Supplementary Fig. S2 for other dopings). Error bars indicate the uncertainty of EDC fit. The inset shows the doping
dependence of the Fermi-arc endpoint, yarc, at TCTcþ 10 K alongside yarc/p¼ 100! (dotted line). The error bars of yarc stem from the natural broadness of
the EDC peaks. The angles inside and outside yarc are labelled by bold and italic faces in e–i, and marked by filled and open triangles in a–d, respectively.
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(d)

Energy (meV)

(c)(b)(a)

Figure 8. (a) Normal state energy contours, E1(k) in YRZ, form a cone (blue) above the nodal pocket Fermi surface (green).
The contour (red) beyond the pocket end denotes the minimum energy to extract an electron. Note, the E1(k) contour deviates
from the US due to the non constant electron energy on the US. (b) Energy values along these contours. Outside the pocket
(larger θ) the pseudogap hole energy, E1 (red) increases to the Brillouin zone boundary, see Yang et al [1]. The YRZ gap
parameter ∆R (estimated from DMRG ladder calculations) is shown in orange. In the pseudogap region, the energy per hole
E2 (magenta), to extract a Cooper pair of holes (estimated from DMRG ladder calculations) lies below E1(k) due to SRO
pairing correlations. The transition region between the end of the Fermi pocket and the onset of the pseudogap is shaded gray.
In the normal state at T > Tc it is characterized by strong pairing fluctuations. (Parameters used in the DMRG calculations:
U = 0.4t, J = 0.1t, L = 62, D = 900. Parameters for YRZ: t0 = 0.3t, t1 = −0.06t, t2 = 0.08t, µP = −0.089t. See the appendix
for more details.) (c) The energy symmetrized ARPES results for E1(k) reported by Anzai et al [36] at both T = 10K (red)
in the superconducting state, and T = 80K (black) in the normal state on underdoped BSCCO (Tc = 66K). Note the energy
splitting at T = 10K changes to a small splitting between two broad peaks at T = 80K, due to pairing fluctuations at T > Tc.
(d) A comparison of the values of the single hole extraction energies, E1(k) at low T (10K) in the superconducting state and
high T (80K) in the normal phase.

results of Honerkamp et al [4]:

GYRZ(k, ω) =
gt

ω − ξ(k)− ∆2
R(k)

ω+ξ0(k)

+Ginc.,

ξ0(k) =− 2t(cos kx + cos ky),

ξ(k) =ξ0(k)− 4t′ cos kx cos ky

− 2t′′(cos 2kx + cos 2ky)− µP,

∆R(k) =∆0(cos kx − cos ky). (5)

The form of the self energy is a generalization of the self
energy of a single 1

2 -filled 2LL at T = 0K, obtained by
Konik and Ludwig [12]. The presence of both charge
and spin gaps leads to a well defined pole at each of the
four kF points and a divergence of the self energy Σ at
ω → 0 at these points. The YRZ self energy has a simi-
lar divergence in the self energy along the US. This form
can be tested by ARPES experiments, which measure
the minimum energy to create a hole in the occupied
states, E1(k). Figure 8a shows the energy contours of
E1(k) in the absence of superconductivity. In the nodal
region, E1(k) forms an anisotropic Fermi pocket shown
in green. Above the chemical potential this pocket closes
with a local maximum along the blue line. Outside the
nodal pocket the minimum hole energy, E1(k), lies on
the red curve. Note this locus deviates from the US due
to the nnn hopping term which causes the band struc-
ture energy to vary on the US. This deviation is present
in ARPES experiments [1]. Figure 8b illustrates the en-
ergies of create a hole along the red contour connect-
ing the Fermi pocket to the BZ boundary. Also shown

is the gap ∆(k) and its evolution along the US postu-
lated in the YRZ propagator. This determines E1(k)
and − 1

π ImGYRZ(k, ω) and the ARPES line shape. In
the original YRZ paper a simple d-wave form for ∆(k)
was assumed.

The product form Eq. (4) for the groundstate wave-
function gives a microscopic derivation of E1(k) for the
2D system. In this case there is a continuous distribu-
tion of k-points along the US, which we can obtain by
interpolating between the k-point patches. Note that the
dimensionless parameters U/tL, J/tL in the mapping to
2LL in Eq. (1) involve the DOS at the US, which de-
creases along the US from antinodal towards nodal. As
a result the effective ladder hopping, tL, decreases and
this in turn causes a decrease in E1(k) as k moves from
antinodal towards nodal, a behavior that is also found
in the YRZ ansatz. The mapping to 2LL goes beyond
the YRZ ansatz and determines the value of E2(k), the
energy per hole to extract a Cooper hole pair. It gives
a finite value for E2(k) in the antinodal region below
E1(k) which causes the insulating character of the antin-
odal pseudogap. Note however that E2(k) < E1(k) due
to the introduction of SRO of Cooper pairs in the pseu-
dogap state. This prediction however can not be directly
tested by experiment.

In the panels Fig. 8c and Fig. 8d, we reproduce a recent
set of ARPES experiments by Anzai et al [36], showing
the temperature dependence of hole spectra, E1(k), in
an underdoped BSCCO sample with a superconducting
Tc = 66K. The increase in the magnitude of E1(k) as
k moves towards antinodal is clear in ARPES results.
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underdoped cuprates approaching the Mott insulator
emerges from SI-STM studies as summarized by Fig. 12.
In the dSC phase [Figs. 12(a)–12(c)] the Bogoliubov QPI
signature of delocalized Cooper pairs (x6) exists upon the
arc in k-space labeled by region II in Fig. 12(b). These
states have energy jEj ! !0. The Bogoliubov QPI dis-
appears near the lines connecting k ¼ ð0;$!=a0Þ to k ¼
ð$!=a0; 0Þ—thus defining a k-space arc which supports the
delocalized Cooper pairing. This arc shrinks rapidly towards
the k ¼ ð$!=2a0;$!=2a0Þ points with falling hole-density
in a fashion which could satisfy Luttinger’s theorem if it
were actually a hole-pocket bounded from behind by the

k ¼ $ð!=a0; 0Þ–k ¼ $ð0;!=a0Þ lines. The jEj & !1 pseudo-
gap excitations (x7) are labeled schematically by region I
in Fig. 12(b). They exhibit a radically different r-space
phenomenology locally breaking the expected C4 symmetry
of electronic structure at least down to C2 and possibly
to an even lower symmetry, within each CuO2 unit cell
[Fig. 12(a)]. These intra-unit-cell broken C4-symmetry
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Fig. 11. (Color online) (a) Fluctuations of electronic nematicity
"Onð~r; e ¼ 1Þ obtained by subtracting the spatial average hOnð~r; e ¼ 1Þi
from Onð~r; e ¼ 1Þ. The locations of all 2! topological defects measured
simultaneously are indicated by black dots. They occur primarily near the
lines where "Onð~r; e ¼ 1Þ ¼ 0. Inset shows the distribution of distances
between the nearest "Onð~r; e ¼ 1Þ ¼ 0 contour and each topological defect;
it reveals a strong tendency for that distance to be far smaller than expected
at random. The boxes show regions that are expanded in (e) and (f) and
compared to simulations in (c) and (d). (b) Theoretical "Onð~r; e ¼ 1Þ from
the Ginzburg Landau functional eq. (15) at the site of a single topological
defect (bottom). The vector ~l lies along the zero-fluctuation line of
Onð~r; e ¼ 1Þ. (c, d) "Onð~r; e ¼ 1Þ obtained by numerical simulation using
eq. (15) plus the experimentally obtained topological defect configurations
(black dots). Red broken circle is the measure of the spatial resolution
determined by the cut-off length (3#) in extracting the smectic field.
(e, f ) Measured "Onð~r; e ¼ 1Þ in the fields of view of (c) and (d).

T ~ 0 T > Tc

I

a d

1.01.0

0.50.5 k xKy

0.00.0

∆k

I

II

b

1.01.0

0.50.5 k xKy

0.00.0

∆k

I

II

III

e

II

16 meV 16 meV

Phase Coherent d-SC Phase Incoherent d-SC

c f

Fig. 12. (Color online) (a) Image typical of the broken spatial symmetries
in electronic structure as measured in the dSC phase at the pseudogap
energy E & !1 in underdoped cuprates (both Bi2Sr2CaCu2O8þ" and Ca2(x-
NaxCuO2Cl2). (b) A schematic representation of the electronic structure in
one quarter of the Brillouin zone at lowest temperatures in the dSC phase.
The region marked II in front of the line joining k ¼ ð!=a0; 0Þ and
k ¼ ð0;!=a0Þ is the locus of the Bogoliubov QPI signature of delocalized
Cooper pairs. (c) An example of the characteristic Bogoliubov QPI signature
of sixteen pairs of interference wavevectors, all dispersive and internally
consistent with the octet model as well as particle–hole symmetric
qiðþEÞ ¼ qið(EÞ, here measured at lowest temperatures. (d) An example
of the broken spatial symmetries which are concentrated upon pseudogap
energy E & !1 as measured in the PG phase; they are indistinguishable
from measurements at T & 0. (e) A schematic representation of the
electronic structure in one quarter of the Brillouin zone at T & 1:5Tc in the
PG phase. The region marked III is the Fermi arc, which is seen in QPI
studies as a set of interference wavevectors qiðE ¼ 0Þ which indicate that
there is no gap-node at E ¼ 0. Region II in front of the line joining
k ¼ ð!=a0; 0Þ and k ¼ ð0;!=a0Þ is the locus of the phase incoherent
Bogoliubov QPI signature. Here all 16 pairs of wavevectors of the octet
model are detected and found to be dispersive. Thus although the sample is
not a long-range phase coherent superconductor, it does give clear QPI
signatures of d-wave Cooper pairs. (f ) An example of the characteristic
Bogoliubov QPI signature of sixteen pairs of interference wavevectors, all
dispersive and internally consistent with the octet model as well as particle–
hole symmetric qiðþEÞ ¼ qið(EÞ, but here measured at T & 1:5Tc.
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Figure 9. Scanning Tunneling Microscopy results for E1(k)
by Fujita et al (Ref. [22]). (a) I, pseudogap region; II, su-
perconducting region. (b) I, pseudogap region; II, transition
region; III, Fermi arc.

Note the absence of a change in E1(k) near antinodal,
between the superconducting state at T = 10K and the
normal state at 80K, is consistent with the irrelevance of
superconducting LRO to the gap in the antinodal region.
This behavior is to be expected since the pseudogap per-
sists to T ∗, substantially higher than Tc. In this region,
the minimum energy to extract a hole is displaced away
from the antinodal k-point in agreement with the result
from the YRZ form for the single particle propagator.
The locus of the minimum in E1(k) is plotted in Fig. 8d
agrees with that found by ARPES [1]. The U-processes
not only contribute to E1(k) but open a gap also in the
pair spectrum E2(k) leading to an insulating antinodal
pseudogap.

The superconducting order at low T opens a E1(k)
gap on the anisotropic metallic nodal pockets. The YRZ
ansatz applies only to the normal phase and an addi-
tional residual attractive d-wave pairing interaction has
to be added to explain the superconducting transition at
Tc. The metallic nodal pockets are displaced away from
the US in Fig. 6c, this suppresses U-processes and allows
the onset of superconductivity in the metallic pockets.
An overall reduction of Tc associated with the onset of
the pseudogap follows from the decrease in the length of
the metallic Fermi surface. The transition to supercon-
ducting order at Tc opens up a single particle gap E1(k)
on the Fermi surfaces of the nodal pockets, as confirmed
by the ARPES experiments, e.g. in Fig. 8d. As usual,
E2(k) is zero in a superconductor.

The dichotomy between the electronic spectra in the
antinodal and nodal regions of k-space is well repro-
duced in the 2LL approximation through the presence
and absence of strong U-scattering processes, respec-
tively. There remains however the transition region be-
tween these regions, i.e. the insulating pseudogap on
the US and the end of the Fermi arcs. At low tempera-
tures in the superconducting state, the ARPES data in
Fig. 8d show a distinct kink at the transition between the
two k-regions. This can be rationalized by the presence
of extra U-scattering at the transition from the metallic
Fermi surface to the US.

At T = 80K in the normal state, the ARPES results
by Anzai et al [36], in Fig. 8d show a transition region
in E1(k) joining a normal Fermi surface near nodal to
the temperature independent antinodal region. However
a closer inspection of the individual ARPES spectra in
Fig. 8c show a substantial broadening of the peaks in the
ARPES spectra at T = 80K over those at T = 10K, indi-
cating strong superconducting fluctuations in the pairing
state

Another way to measure E1(k) is through Spectro-
scopic Imaging Scanning Tunneling Microscopy. Recent
results by the Davis group [22] for E1(k) on underdoped
BSCCO in the pseudogap phase, for both the long range
ordered dSC and normal (T = 1.5Tc) states, are sum-
marized schematically in Fig. 9. In the antinodal re-
gion I, the gapped excitations are associated with the
finite pseudogap. The region marked II in the dSC su-
perconducting phase at T < Tc is interpreted as arising
from Bogoliubov quasiparticles associated with delocal-
ized Cooper pairs, similar to our previous discussion. At
T > Tc, region III is the normal metallic Fermi arc and re-
gion II is interpreted in terms of dSC fluctuations, which
appear at the transition region between the nodal and
antinodal regions.

There have been a number of other independent mea-
surements reporting superconducting fluctuations exist-
ing over a large temperature region at underdoped hole
densities. Dubroka et al [37] found evidence in the c-axis
infrared spectra of a transverse Josephson plasmon in un-
derdoped YBCO extending up to 3Tc. Recently Koren
and Lee [38] found anomalous tunneling spectra in epi-
taxial c-axis junction which they interpreted as evidence
for preformed pairs at T > Tc. Le Tacon et al [21] ob-
served Giant Phonon Anomalies in Inelastic X-ray Spec-
troscopy, whose form was greatly modified at Tc. Liu et al
[20] found these unusual phonon anomalies could be ex-
plained by the existence of superconducting fluctuations
associated with Leggett mode fluctuations in the normal
state above Tc. They derived an unusual Leggett mode
resulting from strong internal pairing interactions inside
the the Fermi arc pairs in the (1, 1) & (1,−1) directions
and weak pairing between these two sets of arc pairs,
similar to that proposed above. Their analysis leads to
very strong fluctuations as Tc is approached from above,
which couple to phonons with wave vectors connecting
the arc ends. These are the wave vectors where Le Tacon
et al [21] found the Giant Phonon Anomalies.

The third excitation energy is EA – the spin triplet
excitation with energy minimum at (π, π). We won’t dis-
cuss this in detail here. The ladder results show that
this is mostly dependent on the strength of the J-term.
Neutron scattering results on the clean underdoped sin-
gle layer cuprate, Hg1201, show a clear minimum in EA
at (π, π) but without the lower energy legs reported in
the “hourglass” form in several 214 cuprates [31]. These
low energy legs presumably come from particle-hole tran-
sitions between opposite arcs. Their absence in Hg1201
may be due to the much weaker AF correlations for these
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transitions which do not connect k on the US compared
to those involving the US sections with strong AF 2LL
correlations.

V. DISCUSSION

In this paper we have proposed a generalization of the
well studied D-Mott insulator groundstate of the 1

2 -filled
2-leg Hubbard ladder to 2D. The truncation of the Fermi
surface in the ladder groundstate by correlations that are
strictly short range, even at weak coupling, leads us to
look into the possibility of a generalization to 2D. Such
a state is a promising candidate to describe the insta-
bility of the overdoped full Fermi surface metal to the
pseudogap state, as the hole density is reduced. Ossad-
nik’s recent wavepacket formulation of many body the-
ory offers a way to investigate modifications of electronic
properties through strictly SRO correlations. The key
feature of the D-Mott insulator in 1D at weak coupling
is the presence of elastic umklapp scattering processes
spanning the Fermi surface. Generally in higher dimen-
sions the surface spanned by elastic umklapp processes
has little overlap with the Fermi surface. So a precursor
Mott state is only possible at strong coupling. However
the 1D example of the 1

2 -filled 2-leg ladder suggests that
there could be special Fermi surfaces that are suscepti-
ble to truncation by umklapp processes even at moderate
coupling. The relatively small deviations between the 2D
Fermi surface of the CuO2 layers in cuprates and the sur-
face that is spanned by umklapp processes in a 2D square
lattice near 1

2 -filling led us to investigate this possibility
further. In particular we found a nearby excited band
structure state with a special “Fermi” surface separating
occupied and empty states. This situation is reminiscent
of the case of Cr alloys, where a small distortion of the
original Fermi surface strongly enhances commensurate
nesting thereby enhancing the stability of the commensu-
rate SDW phase. In the cuprates it is the commensurate
reduction of the hole density from its value of 1+x in the
band structure state at overdoping to realize a precursor
Mott state with hole doping x at a value x ∼ 0.19.

The model we considered here is closely related to the
earlier YRZ model [6]. Their ansatz postulated a form for
the self energy similar to that in the 1

2 -filled 2-leg Hub-
bard ladder [12]. Both focus on insulating energy gaps
opening on the US rather than on the overdoped Fermi
surface. The earlier pairing ansatz [6, 39] was inspired
by a mean field factorization of the strong coupling t-J
Hamiltonian and the crossover to the full Fermi surface at
overdoping appeared when the finite solution to the gap
equation vanished in a continuous transition between un-
derdoping and overdoping. In the present approach the
transition is due to an energy crossing between two differ-
ent groundstates with energy gaps on the US and on the
band structure Fermi surface. In the simplest descrip-
tion this leads to a first order transition although this
may appear in real materials as continuous due to local

fluctuations in the hole density caused by spatial disor-
der of the acceptors. One difference between the two
proposals is the appearance of near antinodal electron
pockets in YRZ as the transition is approached from un-
derdoped. As far as we are aware, the presence of these
near antinodal electron pockets have not been seen di-
rectly in experiments.

Recently a detailed study of the low-field Hall effect
through the transition has been reported by Badoux et
al [2]. They find an initial sharp drop in the carrier den-
sity from the full Fermi surface value at overdoping with
longer tail on the low hole density side. This sharp drop
could be considered evidence for a discontinuity in car-
rier density. Note however the crossover agrees well with
Storey’s calculation [8] using the YRZ ansatz. As a re-
sult a firm conclusion between a continuous transition a
la YRZ and a discontinuity possibly broadened by spatial
disorder, is not possible at present.

Finally we comment on the nature of lattice fluctua-
tions in the pseudogap state at temperatures T > Tc.
Many authors have looked to explain these as due to the
presence of Charge Density Waves associated in some way
with the SDW fluctuations and also as competing with
superconductivity in this temperature range [17, 19, 40–
46]. CDW and phonon fluctuations do not enter in the
theoretical model presented here. A recent paper by Liu
et al. [20] gave an alternative explanation for the ex-
periments on this topic, based on the presence of an ex-
tended range of superconducting fluctuations above su-
perconducting Tc in the pseudogap state. Using argu-
ments similar to those that are used here to justify the
separation between the (1, 1) & (1,−1) movers, they ar-
gued for strong phase fluctuations between the pairing
amplitudes on the arcs in these directions are accompa-
nied by overdamped Leggett modes. They found that
these Leggett modes can couple to lattice phonons and
lead to unusual Giant Phonon Anomalies in agreement
with those observed by Le Tacon et al [21] on underdoped
YBCO with a Tc ∼ 60K. Their special feature is a strong
increase in the broadening of phonons at specific points in
k-space as T → Tc which abruptly change character into
localized dips in the energy when the sample is cooled
to T < Tc. Note earlier NMR investigations on the dou-
ble chain cuprate, YBa2Cu4O8 by Suter et al [47], found
evidence for unusual damping in the charge component
of the NMR signals with a similar temperature depen-
dence. This unusual damping can be explained by low
frequency tails of the Giant Phonon Anomalies. In this
way we have a consistent explanation for both the transi-
tion into the pseudogap state as observed in ARPES and
high field Hall effect and also the unusual Giant Phonon
anomalies in the pseudogap phase.

We have proposed a generalization of the well stud-
ied D-Mott insulator groundstate of the 1

2 -filled 2-leg
Hubbard ladder to the 2D square lattice. The trunca-
tion of the Fermi surface in the ladder is caused by the
presence of elastic umklapp scattering processes span-
ning the Fermi surface, which lead to a combination of
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strictly short range d-wave singlet pairing and commen-
surate antiferromagnetic correlations. Anderson’s Reso-
nant Valence Bond proposal shortly after the discovery of
the cuprate superconductors, focussed on such spin sin-
glet pair correlations as the origin of superconductivity
in doped cuprates. Ossadnik’s recent wavepacket formu-
lation of many body theory is a crucial step in the in-
vestigation of nonperturbative modifications of electronic
properties by SRO states in dimensions D > 1.

Finally we would like to draw the reader’s attention to
a recent paper by Alexei Tsvelik [48] who has examined
the relationship between the D-Mott insulator ground-
state of the 1

2 -filled 2-leg Hubbard ladder and the 2D
square lattice near the “hot” spots on the US within the
strong coupling spin fermion model. Although his anal-
ysis is quite different from ours, the general conclusions
are in agreement.
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Appendix A: Details on DMRG calculation

The DMRG is most efficient with open boundary con-
ditions. There is however one subtlety related to the
boundary effect in the presence of the J-term, as fol-
lows. At the boundary of the 2LL, a site has only 2
neighbors instead of 3 (as in the bulk). In this case
a uniform J-term will attract particles to the bound-
ary. If this happened, the calculated excitation energies
would not represent bulk excitations in the thermody-
namic limit. To overcome this problem, we replace the
boundary rung interactions J1,rung = JL,rung = 2J as
twice large, and keep everywhere else uniform. By in-
specting the real-space particle-density distribution, we
confirm the groundstate distribution is uniform and for
excited states the extra particles are indeed doped into
the bulk.

To include low energy excitations near the ladder Fermi
points, we only choose L such that L+ 1 is a multiple of
3, e.g. L = 14, 32, 62, 95. Because the groundstate of the

Hubbard ladder at 1
2 -filling is unique and gapped, DMRG

converges well (for the purpose of this paper) already at
length L = 62 and bond dimension D = 700, as shown
in Fig. 4.

Appendix B: Details on fitting ARPES

In the 2D Hubbard model we have the kinetic pa-
rameters t, t′, t′′, t′′′, which determine the Fermi surface.
For each point on the noninteracting Fermi surface kF ,
we project it to kU(kF ) on the US, and then calcu-
late the projection of the velocity in the (1, 1)-direction,
v =

[
∂kxξ(kU) + ∂kyξ(kU))

]
/
√

2. Next we map the 4
k-points generated by this point to the 4 Fermi points
in a 2LL, whose hopping satisfies 2tL sin(2π/3) = v. For
simplicity we have chosen constant effective U = 0.4t and
J = 0.1t for all sets of 4 k-points. We use DMRG to get
the E1 in the ladder and then use it as ∆R for the YRZ
Green’s function. Results are shown in Fig. 8.


