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Ultrafast optical manipulation of ordered phases in strongly correlated materials is a topic of
significant theoretical, experimental, and technological interest. Inspired by a recent experiment
on light-induced superconductivity in fullerenes [Mitrano et al., Nature 530, 2016], we develop a
comprehensive theory of light-induced superconductivity in driven electron-phonon systems with
lattice nonlinearities. In analogy with the operation of parametric amplifiers, we show how the
interplay between the external drive and lattice nonlinearities lead to significantly enhanced effec-
tive electron-phonon couplings. We provide a detailed and unbiased study of the nonequilibrium
dynamics of the driven system using the real-time Green’s function technique. To this end, we
develop a Floquet generalization of the Migdal-Eliashberg theory and derive a numerically tractable
set of quantum Floquet-Boltzmann kinetic equations for the coupled electron-phonon system. We
study the role of parametric phonon generation and electronic heating in destroying the transient
superconducting state. Finally, we predict the transient formation of electronic Floquet bands in
time- and angle-resolved photoemission spectroscopy experiments as a consequence of the proposed
mechanism.

I. INTRODUCTION

In the recent years, the rapid progress of the field of
ultrafast pump-probe spectroscopy experiments has en-
abled an unprecedented exploration of many-body quan-
tum dynamics in far-from-equilibrium states (for reviews,
see Refs. [1, 2]). The application of strong ultrafast laser
pulses can dramatically alter the equilibrium state, out-
reach the linear response regime, and enable the induc-
tion of novel ordered states and stimulation of phase tran-
sitions via transient nonequilibrium states.

One of the main motivations behind these experiments
is to shed light on the interplay between competing or-
ders in strongly-correlated superconductors, along with
the tantalizing outlook of stimulating the superconduct-
ing transition at temperatures above the critical temper-
ature Tc. An early experimental evidence proving the
possibility of stimulating superconductivity via external
fields is the Wyatt-Dayem effect [3, 4], where microwave
radiation of superconducting micro-bridges in the MHz
to GHz frequency range was found to increase Tc by a
few percents. This effect was explained theoretically by
Eliashberg [5] on the basis of the nonequilibrium shift
of the quasiparticle occupation to high energies. Sub-
sequent theoretical work [6] and experiments in double-
barrier tunnel junctions and strips [7–10] found a much
larger effect up to several times larger than the equi-
librium Tc. An experimental proposal for investigating
this effect using ultracold fermionic atoms has also been
given [11].

Recently, Mitrano et al. [12] have reported a large in-
crease in carrier mobility and the opening of an opti-
cal gap upon stimulating the intercalated fullerene su-

perconductor K3C60 with a femto-second mid-infrared
light pulse in the frequency range 80–200 meV (19–
48 THz). These effects persist for several pico-seconds
after pumping, and remarkably for initial temperatures
up to Ti ∼ 100 K, much higher than the equilibrium
Tc ∼ 20 K, providing a compelling evidence for a possibly
light-induced superconducting state. The experimentally
observed resonance with several C60 vibrational modes
suggests that the underlying mechanism for enhanced
Cooper pairing in this experiment stems from lattice dis-
tortions and is distinct from the Wyatt-Dayem effect.

The application of a strong pump pulse alters the
initial equilibrium state in various ways and is a com-
plex function of the strength of the drive, strength of
coupling to different degrees of freedom and energetic
proximity to resonances. The accurate theoretical mod-
eling of light-stimulated superconductivity in K3C60 is
exacerbated by the structural complexity of K3C60, in-
cluding the three-fold degeneracy of the conduction t1u
bands and their coupling to eight Hg intra-molecular
Jahn-Teller phonons [13], strong electron-phonon cou-
pling λ ∼ 0.5–1, narrow conduction band ωph/Wel ∼ 0.1–
0.25 (ωph is the typical phonon energy scale and Wel is
the conduction bandwidth), and strong Coulomb inter-
action Uc/Wel ∼ 1.5–2.5 [14]. A reliable material-specific
analysis must combine state-of-the-art ab initio modeling
including nonlinear interactions and beyond-Migdal ver-
tex corrections [15] into the framework of nonequilibrium
field theory. We do not pursue this formidable goal here;
rather, inspired by the experiment and embracing the
Occam’s razor tradition, we explore a simplified model
with fairly generic electron-phonon interaction which re-
tains the essential features observed in experiments with
light-stimulated superconductivity in K3C60.
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FIG. 1. Parametric amplification of the phonon re-
sponse. (left) Phonon-mediated electron attraction in the
absence of external drive, (right) The external drive and lat-
tice nonlinearities parametrically amplify lattice distortions
which in turn mediate stronger attraction between the elec-
trons.

At the simplest level, the pumping pulse with fre-
quency Ωdrv ∼ 100 meV strongly drives near-resonant
infra-red (IR) active lattice vibrational mode, such as
T1u modes in fullerenes. As a first approximation, one
may average out fast oscillations at the scale of Ω−1

drv.
The presence of lattice anharmonicities and nonlinear
coupling between vibrational modes results in the expan-
sion and contraction of time-averaged lattice constants
and electronic orbital configurations. The time-averaged
electron-phonon coupling constants and electronic
density of states are consequently renormalized. This
approach is adopted in Ref. [12] where an ab initio
analysis in the static “frozen-phonon” approximation
is performed and it is shown that time-averaged lattice
deformations exhibit a favorable trend toward increasing
Tc.

In this paper, we aim to show that the implications of
a strong periodic drive and its interplay with lattice non-
linearities reaches beyond statically renormalized model
parameters. In fact, we will show that the mechanism
which yields the most striking enhancement of electron-
phonon coupling is purely dynamical in nature and is not
described by time-averaged Hamiltonians.

The phonon-mediated electron-electron attraction U
is usually understood using second-order perturbation
theory: an electron distorts the lattice and the other
electron is attracted to the lattice distortion, see Fig. 1
(left). In other words, this attractive potential is pro-
portional to the retarded phonon response function. We
will show that the enhancement of superconductivity in
a driven nonlinear lattice is conceptually similar to the
operation of a parametric amplifier circuit: the “nonlin-

ear capacitor” is realized by the lattice nonlinearity, the
“ac pump source” is realized by an excited lattice vibra-
tional mode, the “input signal” is the phonon excitation
caused by a momentum kick from an electron, and the
“output signal” is the parametrically amplified phonon
response observed by the other electron. In essence, lat-
tice nonlinearities convert the coherent motion of the
driven mode into a source of parametric drive for the
phonon that couples to conduction electrons. When this
drive is near parametric resonances, the retarded re-
sponse will be significantly amplified, leading to a much
stronger electron-electron attraction. Parametric driving
also induces strong temporal oscillations in the effective
electron-electron attraction, allowing it to visit very large
values during each cycle. We will show that such tem-
poral oscillations can significantly enhance Tc even if the
time-averaged attraction remains constant, see Figs. 1
(right) and 6.

A rigorous quantitative analysis of this simple mecha-
nism and its consequences in a realistic electron-phonon
model goes beyond the amplifier analogy as one must
take into account several competing effects. Most
importantly, the nearly resonant drive also results in
parametric generation of high-energy phonons that
dissipate their excess energy to electrons, leading to to
higher scattering rates and heating. It is not a priori
clear which subset of these phenomena prevails, even
for short times, without resorting to an unbiased and
rigorous framework. Ultimately, we find that without an
external cooling mechanism, Cooper pairing may only
be enhanced for a short time similar to the experiments,
and the normal state takes over as high-energy phonon
excitations equilibrate their energy with electrons.

Our goal in this paper is two-fold. First and foremost,
we wish to present a transparent and physical analysis of
the role of parametric resonances of the lattice in enhanc-
ing electron-phonon interactions and stimulating Cooper
pair formation. The major part of this goal is achieved
in the first part of the paper using perturbation the-
ory, BCS theory, classical dynamics, along with a num-
ber of common-sense simplifications. Secondly, we aim
to develop a rigorous theoretical formalism for analyzing
the nonequilibrium dynamical nature of light-stimulated
superconductivity experiments; a formalism that takes
into account the detailed driven-dissipative evolution of
phonons and heating of electrons while being flexible
enough to include material-specific properties and paving
the way for future investigations. To this end, we develop
an extension of the Migdal-Eliashberg theory [16, 17] to
periodically driven electron-phonon systems with lattice
nonlinearities, and utilize it to substantiate the results of
the first part as an immediate application.

The conventional Migdal-Eliashberg theory is a
cornerstone of the modern theory of superconductiv-
ity, both for qualitative understandings and accurate
ab initio calculations. The existing attempts at the
real-time extension of the Migdal-Eliashberg theory are
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known to be intractably difficult to work with due to the
complicated temporal structure of the equations [18–20].
Here, we combine ideas from effective actions, Floquet
theory, dynamical mean-field theory, and quantum
kinetic theory to develop a formalism that is well-suited
for numerical and analytical studies of periodically
driven systems. The Floquet quantum kinetic formalism
trades fast drive-induced oscillations of nonequilibrium
propagators with slowly-varying Floquet components,
and memory convolution integrals with algebraic prod-
ucts along with derivative corrections [21–24]. These
controlled approximations effectively reduce the two-
time Kadanoff-Baym integro-differential equations [25]
to (implicit) ordinary differential equations which are
much easier to solve numerically. The extension of the
quantum kinetic formalism to periodically driven sys-
tems has been considered before in Ref. [24] in a different
context and in the Boltzmann “quasiparticle” approx-
imation. The latter is obtained by neglecting off-shell
processes [26, 27]. We do not adopt this approximation
here. As we pointed out earlier, suppression of electronic
and phononic quasiparticle coherence is an important
factor in the analysis of transient superconductivity.
Hence, a detailed study of the changes in the spectral
functions of Floquet quasiparticles will be an important
ingredient of our theory.

The experimental observation of the light-induced su-
perconducting state in K3C60 [12] has inspired several
theoretical works. Sentef et al. [20] have studied the
transient dynamics of the superconducting gap follow-
ing a change in the coupling constants. In an earlier
work, we outlined the role of parametric driving in en-
hancing the electron-phonon coupling [28] and analyzed
the problem using a Floquet extension of the BCS the-
ory. Komnik et al. [29] have recently worked out a sim-
ilar BCS framework using a more concise analytical ap-
proach. More recently, Kennes et al. [30] have suggested
nonlinear electron-phonon couplings as another plausi-
ble source of enhancing Tc in a highly-pumped state.
The model is also studied in a non-equilibrium setting
in Ref. [31]. Last but not least, Kim et al. [32] have
suggested light-induced changes in the screened Coulomb
matrix elements as a factor for enhancing superconduc-
tivity in intercalated fullerenes. We would like to mention
that none of these works, except for Ref. [28], have stud-
ied the role of undesirable competing factors within their
respective models. The electrons are always assumed to
remain in the initial thermal state and heating is ignored.
Given that superconductivity in fullerenes is mediated by
high-frequency optical phonons, the issue of heating is a
crucial aspect of the phenomenology even for short times.
Another important goal of our paper to provide a first
complete and unbiased analysis of the competition be-
tween processes that enhance and suppress Cooper pair-
ing.

Finally, we would like to emphasize that the para-
metric amplification of electron-phonon coupling is not
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FIG. 2. Non-equilibrium evolution of the driven
electron-phonon system obtain using the Floquet-
Migdal-Eliashberg formalism. (a) intensity of the ex-
ternal drive, (b) phonon spectral function ρ(ν, t), showing
the redshift of the phonon peak and along with emergent
oscillatory features, (c) electron distribution n(ω, t) show-
ing the smearing of the Fermi surface as the electrons heat
up, (d) electron effective mass (black, left axis) and damping
(red, right axis), (e) lowest eigenvalue of the Floquet-Migdal-
Eliashberg gap functional, where N and SC correspond to
normal conducting and superconducting (instability) inter-
vals, (f) predicted time-resolved ARPES signal in the log scale
as a function of electron frequency ω and kinetic energy ξ at
t = 15 τph, showing the formation of electronic Floquet bands.
The lattice nonlinearity is cubic-type with κ3 = 0.1 Ω0, and
the drive frequency and amplitudes are Ωdrv = 0.4 Ω0 and
A = 0.75 (refer to Sec. VI for additional details).

limited to enhancing Cooper pairing and is expected to
find similar applications to other systems. For exam-
ple, the same framework can be employed to study the
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recently observed enhancement of electron-phonon cou-
pling in periodically distorted graphene [33] and driven
opto-mechanical cavities [34–37].

A. Organization of the paper

This paper is organized as follows. We describe the
model in Sec. II as the first step, and present its analysis
in two separate stages. Before delving into the detailed
formalism, we give a more intuitive account using pertur-
bation theory, classical dynamics, and the BCS theory to
demonstrate the idea of parametric amplification in non-
linear lattices and its implications in Sec. III. Many of
the relevant details such as feedback to electrons, heat-
ing, and competing factors are left to the second stage.

Sec. IV and its multiple subsections are dedicated to
developing the formalism of Floquet-Migdal-Eliashberg
quantum kinetics. In particular, a pairing instability cri-
terion is derived in Sec. V that generalizes the result of
Scalapino, Schrieffer, and Wilkins [38] to quasi-steady
Floquet states. As a first application of the formalism,
we study the stationary solutions of the driven-dissipative
state of phonons while neglecting the heating of elec-
trons. This allows us to gain insight about the parameter
regimes of maximal electron-phonon coupling enhance-
ment, and to study the role of individual factors in en-
hancing and suppressing Cooper pairing. We move on
the fully non-equilibrium scenario in Sec. VI B where we
discuss the dynamics of the coupled electron-phonon sys-
tem and show that a window of transient superconduct-
ing instability can exist even if the heating of electrons
are taken into account. Finally, we use our theory to
make additional experimental predictions in Sec. VI C,
in particular, the dynamical formation of Floquet con-
duction bands which can be probed using time- and
angle-resolved photo-emission spectroscopy (tr-ARPES).
The experimental observation of electronic Floquet bands
provides strong evidence for the role of coherent driving
in enhancing Cooper pairing as opposed to explanations
based on incoherent excitations.

Some of the technical details, in particular those per-
taining to numerical methods, have been moved to the
appendices. The appendices also include an extensive
discussion of the role of electrons in generating phonon
nonlinearities (see Sec. E). In particular, we show that
the magnitude of electron-mediated phonon nonlineari-
ties increases near parametric resonances and can make
a significant contribution to intrinsic lattice nonlineari-
ties.

Finally, Fig. 2 shows a summary of the non-equilibrium
dynamics obtained from the Floquet-Migdal-Eliashberg
formalism; refer to the figure caption for details.

II. THE MODEL

We start with a general model for conduction electrons
and a single phonon branch, along with an external drive
that couples to the uniform lattice displacement, a local
nonlinear lattice potential, and a linear electron-phonon
coupling. The Lagrangian for this system is given as:

L[ϕ,Ψ](t) =
∑
k

Ψ†k (i∂tI− ξkσ̂3) Ψk

− 1

2

∑
q

1

2ωq
ϕq

(
∂2
t + ω2

q

)
ϕ−q −

∑
j∈ lattice

Vph(ϕj)

− 1√
N

∑
k,k′

gk,k′ ϕk−k′ Ψ
†
k′ σ̂3Ψk

+
Λ

2
|F (t)|2

∑
j∈lattice

ϕj (1)

Here, Ψk = (ck↑, c
†
−k↓)

T is the Nambu spinor of the con-
duction electrons, ξk is the electron dispersion, ϕq ≡
b†q +b−q =

∑
j e
−iq·Rjϕj/

√
N is the lattice displacement

operator, ωq is the phonon dispersion, and gk,k′ is the
linear electron-phonon coupling constant. Furthermore,
Vph(ϕ) is the local lattice anharmonic potential which,
for low-amplitude deformations, can be modeled as:

Vph(ϕ) = −κ3

3!
ϕ3 − κ4

4!
ϕ4, (2)

We assume κ4 > 0 since the lattice potential generically
softens for large deformations. The sign of κ3 is inconse-
quential due to symmetries. We neglect Coulomb inter-
action to simplify the analysis. We will briefly comment
on its effect later on and argue that it does not play a con-
sequential role in the phenomenon that is the case here.
Finally, F (t) is the external classical drive that couples
to the uniform q = 0 lattice displacement with strength
Λ/2.

A. The origin of the drive term

The generic model we introduced in Eq. (1) is com-
patible with several scenarios suggested for modeling the
role of the drive in pump-probe experiments of differ-
ent materials. If ϕ describes a polarizable (IR-active)
phonon, F (t) can be directly identified with the exter-
nal electric field, in which case, the coupling strength
Λ will be proportional to the polarizability of ϕ. On
the other hand, if ϕ is a non-polarizable (Raman-active)
phonon, even though the incident light does not directly
influence it through dipole coupling, the classical drive
term can still be obtained via nonlinear coupling to a
driven “proxy” IR-active phonon. The leading order non-
linear IR/Raman coupling allowed by symmetries is the
cubic ∝ ϕ2

IR ϕ interaction. In this case, we can identify
F (t) ∼ 〈ϕIR(t)〉 as the coherent oscillations of the driven
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IR-active mode and Λ as the strength of the cubic cou-
pling to the Raman phonon ϕ. Regardless of the origin
of the classical drive, we assume:

F (t) = Fenv(t) cos(Ωdrvt), (3)

where Ωdrv is the principal frequency of the classical drive
and Fenv(t) is its slowly-varying envelope. Note that the
classical drive couples to ϕ in intensity, |F (t)|2, such that
the effective principal drive frequency is 2Ωdrv.

If the drive term originates from nonlinear coupling to
an IR-active phonon, Ωdrv may no longer be identified
with the frequency of the incident light after the pump
pulse is ramped down; rather, the pump pulse coherently
drives the proxy IR-active phonon out of its equilibrium
position and subsequently, the coupled IR-active and Ra-
man phonons oscillate together at a frequency predomi-
nantly determined by the IR-active mode. The proposed
model still applies to this case with the appropriate choice
of Ωdrv.

B. Different routes to parametric driving

For the purposes of this work, the necessary ingredi-
ent of the model is a mechanism to achieve parametric
driving of the ϕ phonon, i.e. a route for achieving the ef-
fective substitution ω2

q → ω2
q[1 + 2αq cos(2Ωdrvt)], where

αq is the effective parametric driving amplitude. In the
model proposed by Eq. (II), this is achieved from the in-
terplay between the nonlinearities of the ϕ phonon and
its own coherent displacement, as further explained in the
next section. There exists, however, a multitude of other
physically realizable routes that all lead to parametric
driving. This situation closely resembles the multitude of
architectures proposed for building electronic parametric
amplifiers over the years using elements such as variable
capacitance diodes, nonlinear inductors, and Josephson
junctions. The common theme remains the same: the
interplay between pumping and nonlinear elements.

The strong pumping of a material with a complex crys-
tal structure will induce coherent oscillations in a few pri-
mary modes. These oscillations trickle down to several
other modes as a result of nonlinear couplings. Thus, ev-
ery symmetry-allowed mode will be parametrically driven
to a degree with strong enough pumping. With this un-
derstanding, the model proposed here is only one out of
the numerous possible other routes to achieve paramet-
ric driving. For instance, the symmetry-allowed quartic
coupling in fulleride superconductors ∼ ϕ2

IRϕ
2 directly

translates the coherent motion of ϕIR to a parametric
drive for ϕ. Here, ϕIR is one of the IR-active modes of
C60 such as T1u(1 − 4), and ϕ is a Raman-active mode
such as Hg(7 − 8) that couples strongly to conduction
electrons [12, 39]. Even though achieving parametric
driving is material-specific, it leads to the same quali-
tative physics. The present paper mainly deals with the
universal consequences of parametric driving.

III. PARAMETRIC AMPLIFICATION OF
PHONON-MEDIATED ELECTRON-ELECTRON

ATTRACTION: A FIRST LOOK

Our goal in this section is to demonstrate the resonant
amplification of the electron-phonon coupling in the pres-
ence of the drive. For the time being, we neglect the com-
plex epiphenomena such as the nonequilibrium evolution
of electrons, phonon dissipation and retardation, and the
feedback between electrons and phonons. Instead, we re-
sort to a perturbative treatment and elementary methods
in order to elucidate the main ideas. We will revisit the
problem again in later section and provide a comprehen-
sive account using the nonequilibrium Migdal-Eliashberg
theory. The latter treatment is naturally more cumber-
some than the physical account given in this section. The
present analysis serves a guideline to identify and inter-
pret the results of the upcoming detailed analysis.

As a first step, we assume that the lattice nonlinearity
V(ϕ) and the electron-phonon coupling gk,k′ are both
weak compared to the drive, such that we can study the
coherent motion of the lattice in isolation. The classical
equation of motion for 〈ϕ̂0(t)〉 (the q = 0 mode) is easily
found as:

∂2
t 〈ϕ̂0(t)〉+ ω2

0 〈ϕ̂0(t)〉 =
Λω0

2

√
N F 2

env(t) cos2(Ωdrvt),

(4)

The normalization constant
√
N results from the defini-

tion of the Fourier operators given earlier, i.e. 〈ϕ̂0〉 =√
N 〈ϕ̂j〉 where 〈ϕ̂〉 is the coordinate of an arbitrary sin-

gle ion j. We assume that the temporal variation scale
of Fenv(t) is much longer than the drive period. Thus,
for an adiabatically ramped up Fenv(t), we find:

〈ϕ̂0(t)〉 ≈ Λ
√
N

4ω0
F 2

env(t)+

Λ
√
Nω0

4(ω2
0 − 4Ω2

drv)
F 2

env(t) cos(2Ωdrvt). (5)

Near the resonance Ωdrv = ω0/2, the oscillatory term
dominates the dc term in amplitude. The precise value
of the prefactors of the dc and ac terms are not im-
portant for the present discussion and in a more real-
istic setting, both get corrections from phonon damp-
ing, nonlinearities, etc. Quite generally though, we have
〈ϕ̂0(t)〉 ≈

√
N ϕ0(t) +

√
N ϕ1(t) cos(2Ωdrvt) where ϕ0(t)

and ϕ1(t) are slowly-varying functions of time. With this
understanding, we drop the time labels from ϕ0 and ϕ1

hereafter and treat than as given quasi-steady parame-
ters.

The local lattice nonlinearity terms couple the coherent
uniform motion of the lattice to ±q modes. For instance,
the leading order correction resulting from the cubic non-
linearity ∼ ϕ3 is found by replacing one of the operators
with 〈ϕ̂0(t)〉. Momentum conservation implies opposite
momenta for the remaining two operators:
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FIG. 3. Illustration of parametric amplification from
classical phase-space trajectories. The classical phase-
space trajectories corresponds to a parametrically driven os-
cillator in response to a momentum jump with magnitude P0

at t = 0 for Ωdrv below resonance (left), on resonance (mid-
dle), and above resonance (right). Here, X0 ≡ P0/(2Mωq)
is a normalization constant and the Mathieu parameter is set
to α = 0.2. The red circle is the periodic trajectory in the
absence of the drive (α = 0). Note the significantly ampli-
fied response below resonance Ωdrv < ωq/2, the diverging
response on resonance Ωdrv = ωq/2, and suppressed response
above resonance Ωdrv > ωq/2.

− κ3

3!

∑
j∈lattice

ϕ̂3
j →

− κ3

2
[ϕ0 + ϕ1 cos(2Ωdrvt)]

∑
q 6=0

ϕ̂q ϕ̂−q. (6)

Likewise, the leading order contribution from the quartic
nonlinearity is found by replacing two of the operators
with q = 0, which yields:

− κ4

4!

∑
j∈lattice

ϕ̂4
j →

− κ4

4
[ϕ0 + ϕ1 cos(2Ωdrvt)]

2
∑
q6=0

ϕ̂q ϕ̂−q. (7)

The dc terms result in the renormalization of the phonon
frequency, e.g. ω2

q → ω2
q−κ3ϕ0/2 for the cubic nonlinear-

ity, and ω2
q → ω2

q−κ4(ϕ2
0/4+ϕ1/8). Such corrections are

precisely the time-averaged renormalized lattice proper-
ties that we discussed earlier in the introduction and can
enhance or suppress the effective electron-phonon cou-
pling on their own account.

As we will show soon, the most intriguing effect is
purely dynamical and stems from the ac term. We ne-
glect the dc corrections for simplicity hereafter. At the
present order in perturbation theory, only ±q opposite
momentum pairs couple and thus we may focus on a sin-
gle momentum pair without the loss of generality. We
also only consider the cubic nonlinearity. It will soon be-
come apparent that both types of nonlinearity give rise
to the same resonant amplification phenomenon. The
Hamiltonian is given as Ĥ±q(t) = Ĥe+Ĥp,±q(t)+Ĥep,±q,

where Ĥe =
∑

k,σ ξk c
†
k,σck,σ and:

Hp,±q(t) =
~ωq

2
ϕ̂q ϕ̂−q + 2 ~ωq π̂q π̂−q

− κ3 ϕ1 cos(2Ωdrvt) ϕ̂q ϕ̂−q

Hep,±q = gq ϕ̂q ρ̂−q + g−q ϕ̂−q ρ̂q, (8)

where π̂q = (b−q − b†q)/(2i) is the conjugate momentum
to ϕ̂q [40], and gq is the linear electron-phonon coupling
constant (we have assumed gk,k′ ≈ gk−k′).

Finally, ρq =
∑

k,σ c
†
k+q,σck,σ is the electron charge

density operator. The analysis can be further simplified
by performing a canonical change of variables to standing
wave phonon operators:

Q̂+ =

√
~

4Mωq
(ϕ̂q + ϕ̂−q) ,

Q̂− =

√
~

4Mωq

(
îϕq − iϕ̂−q

)
, (9)

and their corresponding conjugate momenta:

P̂+ =
√
~Mωq (π̂q + π̂−q) ,

P̂− =
√
~Mωq (iπ̂q − iπ̂−q) . (10)

Here, M is the ion mass. It is readily verified that
[Q̂+, P̂+] = [Q̂−, P̂−] = i~ while all other commutators
vanish. The Hamiltonian can be easily written in terms
of Q̂± and P̂± operators:

Hp,q =
∑
α=±

(
P̂ 2
α

2M
+

1

2
MΩ2

q(t) Q̂2
α

)
, (11a)

Hep,q = g̃q
∑
α=±

Q̂αρ̂α, (11b)

where g̃q = gq
√

2Mωq/~, ρ̂+ = (ρ̂q + ρ̂−q)/
√

2, ρ̂− =

i(ρ̂q − ρ̂−q)/
√

2, and:

Ω2
q(t) = ω2

q [1 + 2α cos(2Ωdrvt)] ,

α = −κ3ωq ϕ1/(~ωq) (12)

The Hamiltonian is the sum of two decoupled har-
monic oscillators (α = ±) each with linear coupling
to a standing electronic charge density wave. Since
the α = ± modes undergo a similar evolution, we
will drop the ± index hereafter and focus on a one
of the modes. In the absence of electron-phonon cou-
pling, the problem reduces to a parametrically driven
harmonic oscillator. Corrections arising from electron-
phonon coupling can be be studied order by order us-
ing time-dependent perturbation theory in the weak-
coupling limit gqν(0) � 1. This can be done, e.g. via
a perturbative expansion of the unitary evolution oper-

ator Û(t) = T exp
[
−i~−1

∫ t
0

dt′ Ĥ±q(t′)
]

in the powers

of g̃q [41]. The leading order correction to the action is
O(g̃2

q) and is easily found as:

∆S(2)(t) = −|g̃q|
2

~

∫ t

−∞
dt′ e−ε(t−t

′)DRQQ(t, t′) ρ̂(t) ρ̂(t′),

(13)



7

where DRQQ(t, t′) = −iθ(t − t′)〈[Q̂(t), Q̂(t′)]〉 is the re-
tarded phonon correlator and ε is an infinitesimal. It is
well-known that this correction implies an attractive in-
teraction between the electrons in the long wave-length
regime |ξk±q − ξk| � ωq. In this regime of interest, the
phase winding of the electron charge density excitation is
much slower than the phonon time scale. Thus, to sim-
plify the discussion further, we simply neglect the relative
phase winding of the electron charge density waves and
set ρ̂(t′) → ρ̂(t) from the outset. Note that this coin-
cides with the usual εk = εk′ = εF approximation in the
BCS treatment. This results in the following simple ex-
pression for the phonon-mediated attractive interaction,
∆S(2)(t) = U(t) ρ̂(t) ρ̂(t) where:

U(t) =
|g̃q|2
~

∫ t

−∞
dt′ e−ε(t−t

′)DRQQ(t, t′). (14)

Since the Hamiltonian is time-dependent, U(t) is ex-
pected to be time-dependent as well. In particular, for
the periodic Hamiltonian given in Eq. (11a), U(t) further

admits a Fourier expansion U(t) =
∑+∞
n=−∞ Un e

−2inΩdrvt

in the harmonics of 2Ωdrv. In plain words, U(t) is pro-
portional to the mean displacement of the oscillator up
to time t in response to a momentum boost at all prior
times.

The retarded phonon propagator DRQQ(t, t′) is most

easily calculated using Heisenberg equations for Q̂(t) and

P̂ (t):

dQ̂(t)

dt
=
P̂ (t)

M
, (15a)

dP̂ (t)

dt
= −Mω2

q

[
1 + 2α cos(2Ωdrvt)

]
Q̂(t), (15b)

The Heisenberg equations exactly coincide with the clas-
sical equations of motion due to the Ehrenfest’s theorem.
The formal solution of these equations can be expressed
in terms of Mathieu functions. For given Heisenberg op-
erators at time t′, we find:

Q̂(t) = MQQ(t, t′) Q̂(t′)−MQP (t, t′)
P̂ (t′)

MΩdrv
,

P̂ (t) = MPQ(t, t′)MΩdrv Q̂(t′) + MPP P̂ (t′), (16)

The explicit expressions for the M-functions are given
in Eq. (A1) in terms of even and odd Math-
ieu functions. In the limit α → 0 (no drive),
we have limα→0 MQQ(t, t′) = limα→0 MPP (t, t′) =
cos[ωq(t − t′)], and (ωq/Ωdrv) limα→0 MQP (t, t′) =
−(Ωdrv/ωq) limα→0 MPQ(t, t′) = − sin[ωq(t − t′)], thus
reducing Eq. (16) the usual non-driven harmonic oscilla-
tor evolution. Furthermore, MQQ(t′, t′) = MPP (t′, t′) =
1 and MPQ(t′, t′) = MQP (t′, t′) = 0, as it is also re-
quired from the initial condition. The retarded correla-
tor is immediately calculated using Eq. (16), giving an
exceedingly simple result:

DRQQ(t, t′) = −i θ(t− t′)〈[Q̂(t′), P̂ (t′)]〉 × −MQP (t, t′)

MΩdrv

= − ~
MΩdrv

θ(t− t′)MQP (t, t′). (17)

This result presents several important features:

• The retarded phonon propagator DRQQ(t, t′), and

consequently U(t) (see Eq. 14), are fully determined
by MQP (t, t′). The latter is in turn fully deter-
mined by the Heisenberg equations, and is inde-
pendent of the initial wavefunction of phonons. In
other words, for the Hamiltonian given in Eq. (11a),
one obtains the same effective interaction U(t) in
all equilibrium and nonequilibrium phonon states.
This is a direct consequence of the linearity of the
harmonic oscillator evolution. As a corollary, this
result immediately shows the peculiar cancellation
of Bose enhancement factors between phonon ab-
sorption and emission processes in the conventional
textbook diagrammatic calculation of U in equilib-
rium [42].

• DRQQ(t, t′) ∝ MQP (t, t′) admits a simple classi-
cal interpretation: it coincides with the displace-
ment of a classical driven oscillator at time t in
response to a momentum jump at time t′, i.e.
DRQQ(t, t′) = ~ δQcl(t)/δPcl(t

′). This result can
be obtained independently and more directly using
quantum phase-space methods [43].

• The origin of phonon-mediated attraction is purely
quantum mechanical. Had Q̂ been a classical op-
erator, it would commute with itself at different
times and we would obtain lim~→0DRQQ(t, t′) = 0.
Nonetheless, this analysis provides a classical anal-
ogy as a response to a momentum jump (see the
previous remark).

The second remark implies that classical trajectories of
a parametrically driven oscillator following a momen-
tum jump encode the necessary and sufficient infor-
mation to calculate U(t). As a first example, let us
consider the non-driven limit. In this case, we find
limα→0 MQP (t, t′) = −(Ωdrv/ωq) sinωq(t− t′)

lim
α→0
DRQQ(t, t′) = ~ θ(t− t′) sinωq(t− t′)

Mωq
. (18)

The above result indeed corresponds the QP−response of
the classical harmonic oscillator up to a factor of ~. Plug-
ging this result in Eq. (14), we find U = −|g̃q|2/(Mω2

q) =

−2|gq|2/(~ωq) which is the usual time-independent equi-
librium result [44]. Note that regularizing prefactor

e−ε(t−t
′) is crucial for obtaining this result, without which

the t′-integration is ill-defined. In a more realistic model
with finite phonon damping, regularization is unneces-
sary.

Fig. 3 shows the classical trajectories in response to a
sudden momentum jump at t = 0 in the presence of a
finite parametric drive. The red circular orbit shows the
response in the absence of the drive. It is noticed that
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FIG. 4. The effective electron-electron interaction U(t)
as a function of drive frequency Ωdrv and time. Here,
τdrv = π/Ωdrv and Ueq = −2|gq|2/(~ωq) is attraction strength
in the absence of the drive. The Mathieu parameter is α = 0.2
and we have set the damping rate to ε = 0.1ωq. The red
thick lines show U(t) on the first two resonances Ωdrv/ωq =
1/2, 1/4.
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FIG. 5. Time average and variance of the effective
electron-electron interaction. Solid lines are numerical
results obtained from the solutions of the Mathieu equation.
Dashed lines correspond to the perturbative results given in
Eq. (20). The Mathieu parameter is set to α = 0.2.

the classical trajectory diverge on resonance Ωdrv = ωq/2
(middle panel), implying an infinitely enhanced response.
Intuitively, the lattice becomes critically unstable in the
presence of a resonant drive of finite amplitude such that
smallest perturbation causes an infinitely large deforma-
tion. Just below the resonance (left panel), the trajecto-
ries are noticeably expanded in the phase space though
remain bounded. This corresponds to a moderately en-
hanced U(t). Finally, the response is attenuated just
above the resonance (right panel), which is the expected
asymmetric behavior near a parametric resonance.

The time-dependent effective attraction U(t) can be
obtained numerically using Eqs. (17) and (14). The re-
sults are shown in Fig. 4. According to the previously
mentioned periodicity U(t + π/Ωdrv) = U(t), we have
only shown one full period in t. The immediately no-
ticeable feature is the large temporal variations of U(t)

near parametric resonances, which is a manifestation of
the wild variations of classical trajectories in the phase-
space in this regime. The perturbation series for U(t) can
be worked out using Eqs. (14), (17), and the expressions
given in Appendix A. We quote the final result here:

U(t)

Ueq
= 1− 2αω2

q cos(2Ωdrvt)

ω2
q − 4Ω2

drv

+
2α2 ω2

q

[
ω2
q − 16Ω2

drv + ω2
q cos(4Ωdrvt)

]
(ω2

q − 16Ω2
drv)(ω2

q − 4Ω2
drv)

+O(α4)

(19)

Note the parametric resonances at Ωdrv = ωq/2 in the
first order term and Ωdrv = ωq/4 in the second order
term, as well as the appearance of higher order harmonics
of 2Ωdrv.

We remark that the parametric resonances of the
Mathieu oscillator, Ωdrv = ωq/n, n ∈ N, do not nec-
essarily imply a corresponding resonance in the effective
attraction U(t). As remarked after Eq. (14), U(t) can
be interpreted as the mean displacement of the oscillator
in response to a momentum boost. The mean displace-
ment can behave properly even for divergent trajectories.
For example, the leading n = 1 parametric resonance at
Ωdrv = ωq leaves U(t) regular while leading to a divergent
response at the same time. This can be easily noticed in
the perturbation analysis: Eq. (A2) shows a resonance at
Ωdrv = ωq while U(t) remains regular, see Eq. (19) and
Fig. 5.

The time average and variance of U(t)/Ueq can be
found readily using the above result:〈

U(t)

Ueq

〉
= 1 +

2α2 ω2
q

ω2
q − 4Ω2

drv

+O(α4), (20a)

Var

[
U(t)

Ueq

]
=

2α2 ω4
q

(ω2
q − 4Ω2

drv)2
+O(α4). (20b)

The leading order correction to 〈U(t)〉 is O(α2). Fig. 5
shows the average and variance of U(t) within a period.
The dashed lines show the above perturbative results.
As expected from the study of classical trajectories (see
Fig. 3), 〈U(t)〉 is enhanced for frequencies below the res-
onance and is suppressed above the resonance. Perhaps
more importantly, the temporal variance of U(t) is sig-
nificantly increased on either side of the resonance. This
can be seen e.g. from Eq. (20b). In the next section, we
discuss the important role of enhanced temporal varia-
tions of U(t) in enhancing the superconducting transition
temperature.

A. The superconducting transition temperature for
a time-dependent effective interaction

We showed that the parametric drive of the lattice re-
sults in the enhancement of the effective attraction me-
diated between the electrons, U(t). We further showed
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that U(t) exhibits large oscillations in t near paramet-
ric resonances (see Fig. 4), such that U(t) takes on val-
ues that are significantly higher and lower than its equi-
librium value. According to the BCS theory, Tc[U ] ∼
exp[−1/(ν(0)U)] where ν(0) is the electronic density of
states (EDOS) at the Fermi surface. It is tempting to
naively propose a replacement U → U(t) in the BCS
formula and propose T drv

c ∼ 〈Tc[U(t)]〉. Since Tc[U ] is
a convex function of U in the weak-coupling limit, one
would then conclude 〈Tc[U(t)]〉 > Tc[〈U(t)〉], i.e. tem-
poral variations of U(t) can increase Tc even if 〈U(t)〉
remains constant or even decrease. Of course, this argu-
ment lacks rigor and T drv

c must be found within a proper
Floquet extension of the BCS theory [28]. To this end,
we assume:

U(t) ≈ U0 + U1 cos(2Ωdrvt), (21)

where U0 and U1, can be read from Eq. (19):

U0 = − g2

2ω0

[
1 +

2α2 ω2
q

ω2
q − 4Ω2

drv

+O(α4)

]
,

U1 =
g2

2ω0

[
2αω2

q

ω2
q − 4Ω2

drv

+O(α4)

]
. (22)

The superconducting gap inherits the periodicity of
U(t) such that ∆(t) = 1

N

∑
k〈ψk,↑(t)ψ−k,↓(t)〉 →∑+∞

n=−∞∆n e
2niΩdrvt. At the onset of pairing, the Flo-

quet BCS gap equation takes the following form [28]:

(1− U0Fn) ∆n +
U1

2
Fn (∆n−1 + ∆n+1) = 0, (23)

where:

Fn = −ν(0)

∫ ωc/2

−ωc/2
dξ

tanh[ξ/(2T )]

2ξ − 2nΩdrv + i0+
. (24)

Here, T is the temperature and ωc is the UV cutoff for
U . For an Einstein phonon with frequency ω0, we ex-
pect ωc ∼ ω0. In principle, Tc must be found such that
Eq. (23) admits a non-trivial solution for {∆n} and since
it is a homogeneous equation in {∆n}, it reduces to the
vanishing determinant condition for an (infinitely large)
matrix.

A closed form solution for Tc seems to be out of reach
in general and one must resort to numerical methods. We
attempt to find an approximate analytic solution with ad-
ditional assumptions U0ν(0)� 1 and U1 � U0. Strictly
speaking, the last assumption does not generally apply to
our problem since |U1| ≥ |U0| near the resonances. Our
main goal here is to demonstrate how temporal varia-
tions in U(t) increases Tc rather than presenting a rigor-
ous analysis; the latter is the objective of the upcoming
sections. Thus, the additional simplifying assumptions
must be taken with this understanding in mind.

As a first step, we observe that ∆n+1/∆n ∼
O(U1/U0) � 1. Therefore, we may neglect ∆n for

|n| ≥ 2 for small U1. This reduces the infinite set of equa-
tions for {∆n} to only three equations for ∆0, ∆1, and
∆−1. Omitting ∆±1 between the equations and assum-
ing ∆0 6= 0, we find the following approximate pairing
condition:

U0F0 +
U2

1

4
F0

(
F1

1− U0F1
+

F−1

1− U0F−1

)
= 1. (25)

Approximate expressions for Fn can be found in the limit
T/ωc, T/Ωdrv � 1 using the Sommerfeld expansion tech-
nique. We quote the final result here:

F0 = −ν(0) [ln(2ωc/T ) + γ − lnπ +O(T/ωc)] ,

Fn = −ν(0)

2

[
− iπ sgn(n) + ln

∣∣∣∣ ω2
c

n2Ω2
drv

− 1

∣∣∣∣
+O(e−ωc/Tc)

]
, (|n| > 0), (26)

where γ ' 0.577 is the Euler-Mascheroni constant. The
final result resembles the BCS formula for Tc, though,
with U0 replaced with an effective interaction Ueff :

T drv
c ' 2eγ

π
ωc exp[−1/(ν(0)Ueff)], (27a)

where:

Ueff ≈


|U0|+

ν(0)U2
1

4
ln

∣∣∣∣ ω2
c

Ω2
drv

− 1

∣∣∣∣ ωc
Ωdrv

� 1,

|U0|+
U2

1

2|U0|
ωc

Ωdrv
∼ 1.

(27b)
We notice that Ueff > |U0| in both cases. The last result
provides a well-founded justification for our preliminary
heuristic argument based on the convexity of Tc[U ].

Finally, we have plotted T drv
c based on the ap-

proximate analytic results obtained in this section
(Eqs. 22, 27a, 27b) in Fig. 6. The left heat map plot
shows the full result, when both dc and ac components
of U(t) are taken into account. It is noticed that Tc is
dramatically enhanced both below and above the reso-
nance. The right plot shows the result when only the dc
component, U0, is kept. While T drv

c is enhanced below
the resonance, it is suppressed for Ωdrv > ω0/2. This
result can be understood by appealing to Fig. 5. The
time-averaged interaction 〈U(t)〉 = U0 is lower than Ueq

for Ωdrv > ω0/2, and Tc is decreased accordingly. In
contrast, including the ac component brings in large os-
cillations ∝ U1 which offset the loss in U0 by allowing
U(t) to exceed Ueq during a fraction of each cycle.

We will obtain a plot similar to Fig. 6 later using a
Floquet extension of the Migdal-Eliashberg theory (see
Fig. 10), and we will find that the approximate ana-
lytic picture provided here remains remarkably accurate.
We conclude this section by noting that had we included
higher-order harmonic corrections in U(t), we would get
additional parametric resonances beside to the main one.
Those would subsequently lead to additional “tongues”
in Fig. 6 around Ωdrv = ω0/4, ω0/8, . . . (see Fig. 10).
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FIG. 6. Heat map plot of T drv
c /T eq

c −1 based on the an-
alytic Floquet-BCS analysis of Sec. III A. The plot on
the left is the result obtained from U(t) = U0+U1 cos(2Ωdrvt).
The plot on the right is obtained by neglecting the ac com-
ponent and setting U(t) = U0 = const. The significant role of
oscillations of U(t) in enhancing Tc is clearly noticeable. Note
that U0 and U1 are both functions of α and Ωdrv as given in
Eq. (22), and Tc is calculated using Eqs. (27a)-(27b). In both
cases, we have set ν(0)Ueq = 0.5 and ωc = ω0.

B. Higher-order nonlinearities, phonon damping,
and parametric resonance

Our discussion in the last two sections was based
on a cubic lattice nonlinearity. We showed that the
nonlinearity leads to a constant renormalization of ωq

and produces a ∼ cos(2Ωdrvt) periodic correction to
ωq at the leading order (see Eq. 6). The scenario re-
mains similar for quartic nonlinearities, save for an ad-
ditional ∼ cos(4Ωdrvt) correction to ωq. This can be
seen by expanding the square brackets in Eq. (7). In
fact, for a nonlinearity ∼ ϕ̂n (n ≥ 3), we find ϕ̂n ≈
〈ϕ̂0(t)〉n−2

∑
q ϕ̂q ϕ̂−q. Subsequently, 〈ϕ̂0(t)〉n−2 can

be expanded in harmonics of 2Ωdrv such that ω2
q →

ω2
q

[
1+
∑n−2
n=0 αn cos(2nΩdrvt)

]
for some {αn}. This anal-

ysis can be naturally extended for any smooth nonlinear
potential. Since all parametric drive terms are harmon-
ics of 2Ωdrv, the physics is expected to remain qualita-
tively similarly to the single harmonic case. For exam-
ple, the case of double parametric drive terms is studied
in Ref. [45], where it is shown if the drive frequencies
are integer multiples of one another, the same instability
“tongue” patterns are obtained. Finally, let us mention
in passing that with a finite phonon damping and for a
fixed driving strength, the infinite cascade of ideal para-
metric resonances at Ωdrv = ω0/(2n) will be truncated
above a certain order [46]. For instance, only two reso-
nances are noticeable in Fig. 4 (black lines). The reason
can be traced back to using a small phonon damping in
the numerics.

C. Intermission

We derived a simple formula for the phonon-mediated
electron-electron attraction U(t) in the presence of para-

metric drive (Eq. 14). We showed that U(t) is indepen-
dent of the initial phonon wavefunction and is fully deter-
mined by the Hamiltonian and the drive. We related U(t)
to the momentum-jump response of a classical parametric
oscillator and used this classical analogy to demonstrate
the parametric amplification of U(t) by appealing to the
classical phase-space trajectories of the parametric oscil-
lator. Finally, we calculated an analytical formula for
Tc using a Floquet generalization of the BCS theory [28]
and demonstrated that the oscillations U(t), as well as
its increased time-average, lead to enhanced Tc.

Parametric amplification, while enhancing Tc at the
first glance, leads to several undesirable consequences as
well. It leads to parametric phonon generation, a well-
known phenomenon in the context of early universe field
theory [47]. The generated phonons heat up the elec-
trons and decrease their coherence. The oscillatory ef-
fective electron-electron interaction U(t) also generates
electron-hole excitations on its own account [28]. An un-
biased and consistent analysis of these competing effects
is a challenging task and requires a rigorous and unified
treatment. In the remainder of the paper, we will develop
such a formalism and revisit the problem one more time
in full detail.

IV. THE FLOQUET-MIGDAL-ELIASHBERG
QUANTUM KINETIC THEORY

Floquet-Boltzmann kinetics
of the lattice and phonons
Classical Quantum

Floquet-Boltzmann
kinetics of electronic
energy distribution

Check Floquet-Migdal-Eliashberg
pairing instability criterion

self-consistency loop

External
drive

FIG. 7. A flowchart for the Floquet-Migdal-Eliashberg
quantum kinetic formalism. The external drive along
width the initial electron propagators determine the evolution
of the coherent (“classical”) lattice displacement and phonon
propagators (“quantum”). Subsequently, the evolution of
electronic energy distribution is calculated on the backdrop of
the driven lattice. This procedure can be iterated until con-
vergence if required. Finally, the Floquet-Migdal-Eliashberg
pairing condition is assessed to determine whether the normal
state exhibits a pairing instability during the evolution. The
thin lines show the “procedural flow” of the calculations. The
thick red lines show the “heat flow”, from the external drive
to phonons, then to electrons, and finally back to phonons
through self-consistency.
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The major steps of the forthcoming calculation is sum-
marized graphically in Fig. 7. Initially, the electron-
phonon system is prepared in a normal-conducting equi-
librium state with temperature Ti > Tc, where Tc is
the equilibrium critical temperature for Cooper pairing.
The external drive is then ramped up and initiates the
nonequilibrium quantum dynamics.

We study the coupled quantum dynamics of the lattice
displacement, phonons, and electrons by deriving and
numerically solving a set of quantum kinetic equations
specifically tailored for investigating driven electron-
phonon systems. We start this theoretical development
from a two-particle irreducible effective active (2PI-EA)
formulation of the Migdal-Eliashberg theory extended to
nonlinear lattices in Sec. IV A, followed by a Floquet gen-
eralization of the ensuing quantum kinetic equations in
Secs. IV C-IV E.

Once the evolution of the system in the normal-
conducting state is calculated, it is checked for the emer-
gence of a Floquet superconducting instability during the
evolution. This step in enabled by deriving a Floquet-
Migdal-Eliashberg gap equation for the onset of pairing
in Sec. V. A summary of the numerical methods is pro-
vided in Appendix F.

A. Two-particle irreducible effective action
(2PI-EA) and real-time evolution equations

We study the nonequilibrium dynamics of the driven
electron-phonon system using the functional technique
of 2PI effective actions (2PI-EA). A prominent feature
of this approach is the guaranteed satisfaction of conser-
vation laws and the absence of secular terms that arise
in non-self-consistent perturbation theory [27]. Both of
these features are necessary for stable and physically
meaningful description of nonequilibrium quantum dy-
namics. In the context of our problem, the effective ac-
tion is a functional of the uniform coherent lattice dis-
placement ϕ, the Nambu closed-time-path (CTP) elec-

tron propagator Ĝ, and the CTP phonon propagator D.
The lattice displacement field (a “classical” object) is
coupled to the phonon propagator (a “quantum” object)
via lattice nonlinearities and lead to the previously dis-
cussed parametric amplification effect.

We will work in the Migdal’s limit ωph/Wel � 1 (ωph is
the typical optical phonon frequency and Wel is the con-
duction electron bandwidth) where electron-phonon ver-
tex corrections are suppressed by the powers of ωph/Wel

and may be controllably neglected [16, 48]. In the ideal
Migdal limit ωph/Wel → 0, the 2PI-EA, Γ[ϕ,D,D] trun-
cated to the two-loop order in lattice nonlinearities is
given as:

Γ[ϕ,D, Ĝ] = Scl[ϕ] +
i

2
tr lnD−1 +

i

2
tr[D−1

0 D]

− i tr ln Ĝ−1 − i tr[Ĝ−1
0 Ĝ] + Γ2[ϕ,D, Ĝ]

Γ2[ϕ,D, Ĝ] = i
∑
k

gk,k

∫
C

dt ϕ(t) tr
[
Ĝk(t, t+) σ̂3

]
− 1

2

∑
q

∫
C

dt1 dt2 Πq(t1, t2) iDq(t2, t1)

+
iNκ4

4

∫
C

dt ϕ2(1)D`(t, t)−
Nκ4

8

∫
C

dt [D`(t, t)]2

+
iNκ3

2

∫
C

dt ϕ(t)D`(t, t). (28a)

Here, Γ2[ϕ,D, Ĝ] is the two-loop part of the action,

ϕ(t) =
√
N 〈ϕq=0(t)〉 is the uniform coherent displace-

ment of the lattice which is induced via coupling to the

external drive |F (t)|2, Ĝk(t1, t2) ≡ −i
〈
TC [Ψk(t1)Ψ†k(t2)]

〉
is the Nambu closed-time-path (CTP) electron propaga-
tor, and Dq(t1, t2) ≡ −i

〈
TC [ϕq(t1)ϕ−q(t2)]

〉
is the CTP

phonon propagator. The interaction part of the effec-
tive action Γint[ϕ,D, Ĝ] has the following diagrammatic
representation:

Γint[ϕ, Ĝ,D] = + +

+ + +

+ + (28b)

The solid and wiggly lines denote Ĝ and D, respectively.
The green dots denote ϕ and the cross denotes the exter-
nal field. The pink, green, and black vertices denote the
cubic nonlinearity, quartic nonlinearity, and the electron-
phonon coupling constants, respectively.

The definition and symmetries of CTP propagators as
well as the definition of various real-time components are
given in Appendix B. The bare electron and phonon prop-
agators are given as:

Ĝ−1
0,k(t1, t2) = (i∂t1I− ξkσ̂3) δC(t1, t2),

D−1
0,q(t1, t2) = − 1

2ωq
(∂2
t1 + ω2

q) δC(t1, t2), (28c)

and the classical action of the coherent lattice displace-
ment is given as:

Scl[ϕ] = N

∫
dt
[
− 1

4ω0
ϕ(t) (∂2

t + ω2
0 + γ0ω0∂t)ϕ(t)

+
Λ

2
|F (t)|2 ϕ(t) +

κ4

4!
ϕ4(t) +

κ3

3!
ϕ3(t)

]
. (28d)

We have introduced a small phenomenological Ohmic
friction γ0ω0∂t for ϕ to model the effect of classical dis-
sipation due to coupling to other lattice modes. In prin-
ciple, the friction must be accompanied by a stochastic
Langevin noise for consistency. The presence of a strong
driving term, however, dominates over the Langevin
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noise in practice and allows us to neglect the latter. Fi-
nally, the electron-hole bubble Πq is defined as:

Πq(t1, t2) =
1

N

∑
k

|gk,k+q|2

× tr
[
Ĝk+q(t1, t2) σ̂3 Ĝk(t2, t1) σ̂3

]
, (28e)

and the local phonon propagator D` appearing in the last
three terms of (28a) is defined as:

D`(t1, t2) =
1

N

∑
q

Dq(t1, t2). (28f)

We note that the external drive only appears in the clas-
sical action Scl[ϕ] and couples to ϕq=0. The latter di-
rectly couples to finite-q phonons via nonlinearities (see
the fifth and sixth diagrams in Eq. 28b), and to electrons

if gk,k 6= 0 (SSH-type phonons, see the forth diagram in

Eq. 28b).
The equations of motion are found by imposing the

stationarity condition on Γ with respect to ϕ, G, and D.
For the classical displacement, we find:

1

2ω0

(
∂2
t + ω2

0 + γ0ω0∂t
)
ϕ(t)− κ4

6
ϕ3(t)− κ3

2
ϕ2(t)

− κ4

2
χ(t)ϕ(t) =

Λ

2
|F (t)|2 +

κ3

2
χ(t) + η(t), (29)

where:

χ(t) ≡ 1

N

∑
q

iDq(t, t), (30a)

η(t) ≡ i

N

∑
k

gk,k tr
[
Ĝk(t, t+) σ̂3

]
. (30b)

Here, χ(t) is the phonon tadpole and η(t) is the electron-
mediated classical force on the uniform lattice displace-
ment. The evolution of D is given by the following set of
Kadanoff-Baym (KB) equations:

− 1

2ωq

[
∂2
t1 + ω2

q

]
Dq(t1, t2) = δC(t1, t2)

+ V (t1)Dq(t1, t2) +

∫
C

dτ Πq(t1, τ)Dq(τ, t2),

(31a)

− 1

2ωq

[
∂2
t2 + ω2

q

]
Dq(t1, t2) = δC(t1, t2)

+ V (t2)Dq(t1, t2) +

∫
C

dτ Dq(t1, τ) Πq(τ, t2),

(31b)

where:

V (t) ≡ −κ4

2
χ(t)− κ4

2
ϕ2(t)− κ3 ϕ(t) (32)

is a local time-dependent potential acting on phonons.
Aside from χ(t) which is a phonon self-interaction, the

second and third terms are responsible for the parametric
drive of phonons in connection to the analysis given in
Sec. III.

Finally, the evolution of the CTP Nambu electron
propagator G is given by the following set of KB equa-
tions:[
i∂t1I− ξkσ̂3 − ϕ(t1) gk,k σ̂3

]
Ĝk(t1, t2) =

δC(t1, t2) +

∫
C

Σ̂k(t1, τ) Ĝk(τ, t2),

(33a)[
i∂t2I− ξkσ̂3 − ϕ(t2) gk,k σ̂3

]
Ĝk(t1, t2) =

δC(t1, t2) +

∫
C
Ĝk(t1, τ) Σ̂k(τ, t2),

(33b)

where the Nambu self-energy is given as:

Σ̂k(t1, t2) =
1

N

∑
k′

|gk,k′ |2 σ̂3 Ĝk′(t1, t2) σ̂3 iDk−k′(t1, t2),

(34)
which is the usual Migdal-Eliashberg self-energy in real
time. Explicit equations for the retarded (R), advanced

(A), and Keldysh (K) components of Ĝ and D can be
worked out from Eqs. (33a)-(33b) and Eqs. (31a)-(31b)
using Langreth rules [49], respectively.

In principle, the solution of the coupled integro-
differential equations derived in this section, while being
a daunting task, yields a complete and unbiased anal-
ysis. Given that our goal in the present paper is to
give a transparent account of the key mechanisms that
play a role in enhancing or suppressing superconductiv-
ity, we find it rather beneficial to simplify the model to
the greatest possible extent without sacrificing any qual-
itative physics.

B. The trimmed-down model

In this section, we present and discuss several sim-
plifying approximations which we adopt in the rest of
the paper. These assumptions are presented in a single
section, rather than incrementally, for better clarity.

Holstein-type electron-phonon coupling— Depending on

the nature of the electron-phonon coupling, gk,k′ may

assume different dependencies on k and k′. For Holstein-
type phonons, appropriate for describing longitudinal op-

tical (LO) phonons, gk,k′ only depends on the net mo-
mentum of the electron-hole excitation, i.e. gk,k′ ∼
gk−k′ . On the other hand, for Su-Shrieffer-Hieger (SSH)

type phonons, gk,k′ will depend on the individual mo-
menta. We restrict our analysis to Holstein-type coupling
here.

For a realistic description of an electron-phonon sys-
tem, some aspects of the Coulomb interaction must be
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incorporated into the model, in particular, the renormal-
ized electron dispersion ξk and screening of the electron-

phonon coupling g
(scr)
k−k′ ≈ gk−k′/ε(Ω,k−k′) [44]. Here, ε

is the dielectric function and Ω is the relevant energy scale
of the dynamical screening process which is commonly set
to zero. In our problem, the largest relevant frequency
for dynamical screening is set by external drive and the
optical phonon peak frequency, whichever is the largest.
In the regime relevant to the experiments, both are an
order of magnitude smaller than the typical plasma fre-
quency ωp. For example, ωp ≈ 0.5 ∼ 2 eV for fulleride
superconductors whereas the typical frequency of optical
phonons is ωph ≈ 10 ∼ 100 meV [13]. Therefore, we
may safely use the static Thomas-Fermi (TF) dielectric
function:

g
(scr)
k−k′ '

gk−k′

εTF(k− k′)
=

gk−k′

1 + q2
TF/|k− k′|2 . (35)

The screened coupling in the long wavelength
|k − k′| � qTF is almost perfectly screened. As a
consequence, (1) the direct coupling of the uniform
q = 0 lattice displacement to conduction electrons
(described by the forth diagram in Eq. (28b) and
Eq. (30b)) is vanishingly small and can be neglected; (2)
the time-dependent correction gk,k ϕ(t) to the electron
dispersion in Eqs. (33a)-(33b) vanishes as well.

Non-dispersive (Einstein) optical phonons— So far, we
have assumed a general dispersion ωq for the optical
phonon. We neglect the phonon dispersion hereafter,
i.e. ωq → ω0, which an excellent approximation for a
large class of materials, including fulleride superconduc-
tors [14].

Local approximation for Πq— In the absence of Πq

phonon self-energy correction appearing on the right
hand side of Eqs. (31a)-(31b) and using Einstein
phonons, the phonon propagator Dq will have no q-
dependence. Therefore, the q-dependence of Dq is en-
tirely induced by Πq. The q-dependence of the lat-

ter is inherited from gk,k′ and the electron dispersion

ξk (See Eq. 28e) and is non-universal. In an attempt
to simplify the model, we propose a local approxima-
tion for Πq in the spirit of dynamical mean field theory
(DMFT) [23, 50, 51]:

Πq(t1, t2)→ Π`(t1, t2) ≡ 1

N

∑
q

Πq(t1, t2). (36)

The local approximation for Πq has an important
practical advantage. It removes the q-dependence from
Dq and allows us to study a single momentum mode.

Fermi-surface averaged (FSA) electron self-energy— The
Cooper pairing process in the majority of conventional
superconductors only involves electrons within in a thin
shell about the Fermi surface. This observation is the

basis of a widely used approximation where the Migdal-
Eliashberg electron self-energy Σ̂k is replaced with its
Fermi-surface averaged (FSA) approximation:

Σ̂k(t1, t2)→ Σ̂(t1, t2) ≡ 〈〈Σ̂k(t1, t2)〉〉FS. (37)

This approximation, being akin to DMFT-type ap-
proximation, fully retains the dynamical structure
of the self-energy while simplifying the momentum
summations by removing the spatial structure of the
self-energy. We remark that the FSA approximation is
indeed an excellent approximation while adopting the
previous two approximations: for a local Holstein-type
electron-phonon coupling and Einstein phonons, Σ̂k

naturally loses is k-dependence (see Eq. 34).

Flat electronic density of states (EDOS)— We neglect
the variations of the EDOS ν(ξ) and pin it to its
value at the Fermi surface ν(0). This is an excellent
approximation in three-dimensional systems.

Ideal Migdal’s limit— We work in the ideal Migdal’s limit
ωph/Wel → 0.

C. Floquet-Boltzmann quantum kinetic formalism

Slowly varying
Fourier components

An arbitrary observable
in a driven system

FIG. 8. An illustration of Floquet-Boltzmann kinetic
formalism. An arbitrary observable in a driven system is
expected to have fast temporal variations on the scale of the
driving frequency and a slowly varying envelope. By decom-
posing the observable into the harmonics of the driving fre-
quency using short-time Fourier transforms.

Despite the simplifications proposed to the model in
Sec. IV B, the solution of the KB equations and ob-
taining the two-time propagators remains a challenging
numerical task. Provided that the external perturbing
field varies on time and length scales longer than the
intrinsic microscopic time and scale of the many-body
system, the KB equations can be controllably reduced
to one-time kinetic-type equation using the machinery
of Wigner transforms and gradient expansion [25, 49].
The case of driven systems is subtler though since the
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external drive F (t) has both fast and slow components:
even though the temporal variations of the amplitude
Fenv(t) occurs on long time scales (compared to the
phonon period), the multiplicative oscillatory factor
cos(Ωdrvt) varies on the same scale as the phonon fre-
quency in the interesting nearly-resonant regime. In this
section, we show that by introducing Floquet bands via
short-time Fourier transforms, we can performs gradient
expansion on the amplitude of Fourier components and
derive Boltzmann-type quantum kinetic equations. This
procedure is schematically shown in Fig. 8.

Floquet-Wigner (FW) transform— Let A(t1, t2) be an

arbitrary two-time function, such as the Ĝ(t1, t2) and
D(t1, t2). The Wigner transform A(ω, t) is formally de-
fined as:

A(ω, t) =

∫ +∞

−∞
dτ eiωτ A(t+ τ/2, t− τ/2). (38)

Here, t = (t1 + t2)/2 is the center-of-mass (COM) time
and τ = t1−t2 is the relative time on which we perform a
Fourier transform. The COM-time dependence vanishes
at equilibrium. By continuity, we expect the presence
of a slowly-varying external field to induce a similarly
slowly-varying COM-dependence on A(ω, t). This per-
mits a controllable series expansion in successive COM-
time derivatives of A(ω, t) in the collision integrals [49].
In case of periodically driven systems, however, the fast
oscillatory component of the external field can induce
fast harmonics on the COM-dependence of all two-time
quantities. To make a connection with Fig. 8, one must
identify ψ(t) asA(ω, t) for a fixed value of ω. In principle,
we can resolve the t-dependence of A(ω, t) into Fourier
harmonics of the drive using short-time Fourier trans-
forms:

A(ω, t) =
∑
n

An(ω; t) e−inΩt, (39)

where formally An(ω; t) =
∫ +∞
−∞ dt′W (t′ −

t) einΩt′ A(ω, t′). We express the COM-time of the
harmonics as a label, i.e. An(ω; t), to emphasize on the
quasi-static nature of the Fourier amplitudes. Here, Ω
is the principal frequency of the driving term. In the
present context, Ω = 2Ωdrv since the external drive
appears as |F (t)|2 in the model. W (t) is a window
function normalized to unity and concentrated near
t = 0 with support in the time interval ∼ (−τW ,+τW )
where Ω−1 � τW � |Fenv(t)|/|F ′env(t)|. The shape
of the window function is immaterial so long as this
condition is satisfied [52]. We refer to the collection of
{An(ω, t)} as the Floquet-Wigner transform of A(t1, t2)
and hereafter, we assume that the Floquet components
admit a controlled series expansion in COM time
derivatives.

Floquet-Groenewold-Moyal (FGM) product formula—
The convolution integrals appearing on the right hand

side of KB equations can be formally expressed as a se-
ries expansion using Groenewold-Moyal (GM) product
formula [53, 54]:

(A ? B)(ω, t) = exp

[
i

2

(
∂Bt ∂

A
ω − ∂At ∂Bω

)]
A(ω, t)B(ω, t).

(40)
The left hand side represent the convolution integral of
A and B followed by a Wigner transform. Expanding the
exponentiated differential operator and truncating the se-
ries at finite orders yields an approximate expression for
the convolution of A and B in terms of the time and fre-
quency derivatives of their Wigner transforms. In par-
ticular, truncating the series at the first order yields the
well-known gradient expansion formula which forms the
basis of quantum kinetic equations [25]. This procedure
can be readily generalized to the case of Floquet-Wigner
transforms. To this end, we plug the Floquet-Wigner ex-
pansion of A and B (as given in Eq. 39) in Eq. (40) and
take a short-time Fourier transform of both sides. The
final result is:

(A ? B)n(ω; t) =

∫ +∞

−∞
dt′W (t′ − t) einΩt′

× exp

[
Ω

2

(
nB∂

A
ω − nA∂Bω

)
+
i

2

(
∂Bt ∂

A
ω − ∂At ∂Bω

)]
×
∑
nA,nB

AnA(ω; t)BnB(ω; t) e−i(nA+nB)Ωt. (41)

The COM time derivatives have been resolved into a part
acting on the phasor and a part acting on the Fourier

amplitudes, i.e. ∂t → −inA/BΩ + ∂
A/B
t . Performing the

t′-integral is trivial since by construction, we can neglect
the COM time variations {An(ω; t} and {Bn(ω; t} within
the support of the window function. Using the formal
Taylor’s expansion formula eαxf(x) = f(x+α), we finally
obtain:

(A ? B)n(ω, t) =
∑
nA,nB

δ(n− nA − nB)

× exp

[
i

2

(
∂Bt ∂

A
ω − ∂At ∂Bω

)]
AnA,−nB(ω; t)BnB,nA(ω; t),

(42)

where we have defined:

An,m(ω; t) ≡ An(ω −mΩ/2; t). (43)

We refer to labels n and m in An,m(ω; t) as Floquet
band index and Floquet quasi-momentum, respectively,
in analogy to the Bloch band theory. Eq. (42) will be
referred to as Floquet-Groenewold-Moyal (FGM) product
formula. Expanding the exponentiated differential
operator to linear order, we obtain the FGM gradient
expansion formula.
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D. Floquet-Boltzmann quantum kinetic equations
for phonons

The formalism outlined in the previous section can be
used to obtain quantum kinetic-like (“one-time”) equa-
tions for the nonequilibrium evolution of the lattice dis-
placement and phonon propagators in the presence of a
periodic drive with a slowly varying envelope.

Starting with Eq. (29), taking a short-time Fourier
transform of the sides and neglecting the second-order
derivatives, we find:[

(γ0ω0 − 2inΩ) ∂t + ω2
0 − n2Ω2

]
ϕn

− ω0κ

3

∑
n1,n2

ϕn1 ϕn2 ϕn−n1−n2

− ω0κ3

∑
n1

ϕn1
ϕn−n1

− ω0κ4

∑
n1

ϕn1
χn−n1

− ω0κ3 χn = ω2
0 Φn +O(∂2

t ). (44a)

We have dropped the t-arguments for brevity, O(∂2
t ) is

a mnemonic for neglecting the second-order time deriva-
tive, and Φn is the Fourier amplitude for the external
drive. For the drive given in Eq. (3), we have:

Φn(t) =
Λ

2ω0
F 2

env(t)

[
δn,0 +

1

2
δn,−1 +

1

2
δn,1

]
, (44b)

and Ω ≡ 2 Ωdrv. χn is found using Eq. (30a):

χn(t) =
1

2

∫ +∞

−∞

dω

2π
iDKn (ω; t). (44c)

Next, we consider the retarded component of the KB
equation for D. Taking a FW transform of the sides of
Eqs. (31a)-(31b) and using the FGM gradient expansion
formula in the collision convolution integrals, we find:

[
D−1(ω + nΩ/2) +

i

2
∂ωD

−1(ω + nΩ/2) ∂t

]
DRn (ω; t) = δn,0 +

∑
n1

[
1− i

2
∂Dω ∂

V
t

]
Vn1

(t)DRn−n1,n1
(ω; t)

+
∑
n1

[
1 +

i

2
∂Π
ω ∂
D
t −

i

2
∂Dω ∂

Π
t

]
ΠR
`;n1,n1−n(ω; t)DRn−n1,n1

(ω; t) +O(∂2
t ), (45a)[

D−1(ω − nΩ/2)− i

2
∂ωD

−1(ω − nΩ/2) ∂t

]
DRn (ω; t) = δn,0 +

∑
n1

[
1 +

i

2
∂Dω ∂

V
t

]
DRn−n1,−n1

(ω; t)Vn1(t)

+
∑
n1

[
1 +

i

2
∂Dω ∂

Π
t −

i

2
∂Π
ω ∂
D
t

]
DRn1,n1−n(ω; t) ΠR

`;n−n1,n1
(ω; t) +O(∂2

t ), (45b)

where D−1(ω) ≡ (ω2 − ω2
0)/(2ω0) is the bare inverse

phonon propagator in the frequency time. V (t) was de-
fined earlier in Eq. (E8) and is the self-consistently deter-
mined potential that parametrically drives the phonons.
The Fourier amplitudes of V (t) are trivially found as
Vn(t) = −(κ4/2)

∑
n1
ϕn1

(t)ϕn−n1
(t) − (κ4/2)χn(t) −

κ3 ϕn(t). We have employed local approximation for Π.
The phonon propagator thus can be thought of either as
that of a single momentum-mode or as the momentum-
summed (local) one. We do not need a separate evolution

equation for the advanced propagator since it can be de-
termined from the retarded propagator via the identity
DAn (ω; t) = [DR−n(ω; t)]∗.

The kinetic equations for the Keldysh phonon prop-
agator is found in a similar fashion. First, we use the
Langreth rules to find an explicit KB equation for DK ,
followed by a FW transform and FGM gradient expan-
sion of the collision integral convolutions. The final result
is:

[
D−1(ω + nΩ/2) +

i

2
∂ωD

−1(ω + nΩ/2) ∂t

]
iDKn (ω; t) =

∑
n1

[
1− i

2
∂Dω ∂

V
t

]
Vn1

(t) iDKn−n1,n1
(ω; t)

+
∑
n1

[
1 +

i

2
∂Π
ω ∂
D
t −

i

2
∂Dω ∂

Π
t

] [
Π

(`),R
n1,n1−n(ω; t) iDKn−n1,n1

(ω; t) + iΠK
`;n1,n1−n(ω; t)DAn−n1,n1

(ω; t)
]

+O(∂2
t ), (46a)[

D−1(ω − nΩ/2)− i

2
∂ωD

−1(ω − nΩ/2) ∂t

]
iDKn (ω; t) =

∑
n1

[
1 +

i

2
∂Dω ∂

V
t

]
iDKn−n1,−n1

(ω; t)Vn1(t)
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+
∑
n1

[
1 +

i

2
∂Dω ∂

Π
t −

i

2
∂Π
ω ∂
D
t

] [
DRn1,n1−n(ω; t) iΠK

`;n−n1,n1
(ω; t) + iDKn1,n1−n(ω, t) ΠA

`;n−n1,n1
(ω; t)

]
+O(∂2

t ). (46b)

Even though Eqs. (45a)-(46b) have a more complex pre-
sentation compared to the original KB equations, they
are significantly simpler to work with in practice: con-
volution integrals have been reduced to discrete Floquet
index summations, and the two-time structure has been
reduced to the COM time and the relative frequency ω
which does not appear in a convolution. Finally, we re-
mark that the electron-hole bubble Π` acts as a dissi-
pation source (“bath”) for phonons, and must be deter-

mined by solving the evolution equations for Ĝ in a fully
self-consistent treatment. We will argue later that it can
be approximately calculated using bare electron propa-
gators at the initial temperature as long as heating does
not bring up the energy density of electrons to phonon
energy scales. Approximate expressions for Π` have been
provided in Sec. E 1 (see Eq. E17). We show Π` acts as
an quantum Ohmic bath for phonons, and gives rise to a
Lamb shift of the Einstein oscillator.

E. Floquet-Boltzmann quantum kinetic equations
for electrons

We can obtain quantum kinetic equations for the
nonequilibrium evolution of electrons in a similar to

phonons. Before embarking on deriving these equations,
we take a short detour to derive explicit expressions for
the Migdal-Eliashberg and employ the approximations
discussed in Sec. IV B.

1. Migdal-Eliashberg self-energy: the general case

Our goal in this section is derive explicit expressions for
various real-time components of the Migdal-Eliashberg
self-energy, starting from Eq. (34). To keep the notation
uncluttered, we will work out the results for a general
Wigner-transformed propagators as a first step. We
employ the approximations discussed in Sec. IV B step
by step. The simplified self-energy expressions for
Floquet-Wigner-transformed propagators are readily
found in the end as an special case.

As a starting point, we transform Eq. (34) to the
Wigner representation and employ the decomposition of
propagators defined in Eqs. (B4a)-(B4b) in terms of their
Keldysh and spectral components. The calculation is el-
ementary and the final result is:

Σ̂Rk (ω, t) =
1

2N

∑
k′

|gk,k′ |2
∫

dω′

2π

dν

2π

1

ω − ω′ − ν + i0+

{
iDKk−k′(ν, t) Ǎk′(ω

′, t) + ρk−k′(ν, t) iǦKk′ (ω′, t)
}
,

iΣ̂Kk (ω, t) =
1

2N

∑
k′

|gk,k′ |2
∫

dω′

2π

dν

2π
(2π)δ(ω − ω′ − ν)

{
iDKk−k′(ν, t) iǦKk′ (ω′, t) + ρk−k′(ν, t) Ǎk′(ω

′, t)
}
. (47)

where the capped Nambu propagators are defined ac-
cording to Eq. (B6). We define the Eliashberg func-
tion [55] F ρξ,ξ′(ν), as well as a Keldysh Eliashberg function

iFKξ,ξ′(ν) as:

F ρξ,ξ′(ν, t) ≡
ν(0)

ν(ξ) ν(ξ′)

1

N2

∑
k,k′

|gk,k′ |2
2π

ρk−k′(ν, t)

× δ(ξk − ξ) δ(ξk′ − ξ′), (48a)

iFKξ,ξ′(ν, t) ≡
ν(0)

ν(ξ) ν(ξ′)

1

N2

∑
k,k′

|gk,k′ |2
2π

iDKk−k′(ν, t)

× δ(ξk − ξ) δ(ξk′ − ξ′). (48b)

In the special case of Einstein phonons where iDKq and

ρq have no q-dependence, we find:

F ρξ,ξ′(ν, t) ≡
α2(ξ, ξ′)

2π
ρ(ν, t), (49a)

iFKξ,ξ′(ν, t) ≡
α2(ξ, ξ′)

2π
iDK(ν, t), (49b)

where the energy-resolved dimensionless coupling con-
stant α2(ξ, ξ′) is defined as:

α2(ξ, ξ′) ≡ ν(0)

ν(ξ) ν(ξ′)

1

N2

∑
k,k′

|gk,k′ |2 δ(ξk − ξ) δ(ξk′ − ξ′),

(50)

which in turn in the limit of flat EDOS and constant gk,k′

evaluates to α2(ξ, ξ′) → ν(0) g2 ∼ const. The Fermi-
surface averaged (FSA) self-energy is readily found as:
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Σ̂R(ω, t) ≡ 〈〈Σ̂Rk (ω, t)〉〉FS =

∫ +W/2

−W/2
dξ′

ν(ξ′)

ν(0)

∫ +∞

−∞

dω′

2π

∫ +∞

−∞

dν

ω − ω′ − ν + i0+

× 1

2

{
iFK0,ξ′(ν, t) Ǎξ′(ω

′, t) + F ρ0,ξ′(ν, t) iǦKξ′ (ω′, t)
}
, (51a)

iΣ̂K(ω, t) ≡ 〈〈iΣ̂Kk (ω, t)〉〉FS =

∫ +W/2

−W/2
dξ′

ν(ξ′)

ν(0)

∫ +∞

−∞

dω′

2π

∫ +∞

−∞
dν (2π)δ(ω − ω′ − ν)

× 1

2

{
iFK0,ξ′(ν, t) iǦKξ′ (ω′, t) + F ρ0,ξ′(ν, t) Ǎξ′(ω

′, t)
}
. (51b)

Since the FSA self-energy has no momentum dependence,
the k-dependence of the resulting electron propagators is
induced from the bare electron dispersion ξk. Hence, we
have legitimately replaced the k′ momentum labels with
ξ′, and k′ momentum summations with EDOS-weighted
ξ′ integrals over the bandwidth [−Wel/2,+Wel/2]. At
this point, we employ the remaining approximations dis-
cussed in Sec. IV B, i.e. flat EDOS, infinitely large elec-
tronic bandwidth Wel compared to the phonon scale, con-

stant gk,k′ , and dispersionless phonons. In particular, the
last two imply that the Eliashberg functions do not de-
pend on ξ′. The final result reads:

Σ̂R(ω, t) =
1

2

∫ +∞

−∞

dω′

2π

∫ +∞

−∞

dν

ω − ω′ − ν + i0+

×
[
iFK(ν, t) Ǎ(ω′, t) + F ρ(ν, t) iǦK(ω′, t)

]
, (52a)

iΣ̂K(ω, t) =
1

2

∫ +∞

−∞

dω′

2π

∫ +∞

−∞
dν (2π)δ(ω − ω′ − ν)

×
[
iFK(ν, t) iǦK(ω′, t) + F ρ(ν, t) Ǎ(ω′, t)

]
. (52b)

where:

Ǎ(ω, t) ≡
∫ +∞

−∞
dξ Ǎξ(ω, t), (53a)

iǦK(ω, t) ≡
∫ +∞

−∞
dξ iǦKξ (ω, t), (53b)

are local electronic spectral and Keldysh functions as ob-
tained by summing over all momentum states:

F ρ(ν, t) ≡ F ρ0,0(ν, t) = ν(0) g2 ρ(ν, t), (54a)

FK(ν, t) ≡ FK0,0(ν, t) = ν(0) g2DK(ν, t). (54b)

Finally, we find it useful to parametrize the strength of
the electron-phonon coupling in terms of the dimension-
less mass enhancement factor of an ideal Einstein oscil-
lator at equilibrium [18]:

λ ≡ 2

∫ ∞
0

dν
F ρideal(ν)

ν
=

2g2ν(0)

ω0
. (55)

2. Migdal-Eliashberg self-energy: the normal state

The results of the previous section were worked out for
a general Nambu electron propagator. We specialize the
result to the normal non-paired state in this section. A
Nambu functions are diagonal in the normal state and the
Nambu structure of the self-energy and the ensuing KB
equations can be simplified. Starting with the general
ansatz,

ĜRξ =

( GRξ 0

0 ḠRξ

)
, Σ̂R/K =

(
ΣR/K 0

0 Σ̄R/K

)
,

(56)
and using Lemma 1(b) from Appendix B, we find:

Ǎξ(ω, t) = Âξ(ω, t) =

(
Aξ(ω, t) 0

0 Aξ(−ω, t)

)
, (57)

where we have defined Aξ(ω, t) = −2 ImGRξ (ω, t) as the
normal spectral function. The kinetic energy variable ξ
appears as a convenient scalar surrogate for k after using
FSA self-energies (see the discussion after Eq. 51b). We
have also used Lemma 1(d) to relate the time-reversed
spectral function Āξ(ω, t) ≡ Im ḠRξ (ω, t) to Aξ(ω, t), i.e.

Āξ(ω, t) = Aξ(−ω, t). We further define an unrestricted
ansatz for iGKξ in compliance with Lemma 1(c) and 1(e):

iĜKξ (ω, t) =

(
ψξ(ω, t) Aξ(ω, t) 0

0 −ψξ(ω, t) Aξ(−ω, t)

)
,

(58)
where ψ(ω, t) is an odd real function of ω that encodes the
statistics of electrons in the normal state. For example, in
thermal equilibrium, the Kubo-Martin-Schwinger (KMS)
boundary condition implies:

ψeq
ξ (ω, t)→ 1− 2nFD(ω) = tanh(βω/2). (59)

We further define the local electron statistics as:

ψ(ω, t) =
1

2π

∫ +∞

−∞
dξ iGKξ (ω, t). (60)

In theory, the ΣR/K can be expressed as functionals of
ψ, iDK , and ρ. An explicit formula for ΣR/K [ψ, iDk, ρ]
can be found using Eqs. (52a)-(52b), Eqs. (54a)-(54b),
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Eq. (58), and the following crucial lemma:

Lemma (GR momentum summation formula): As-
suming (1) infinite electronic bandwidth limit, and (2) a
momentum-independent retarded self-energy as in Fermi
surface averaging approximation and local approximation
(DMFT), the following identity holds:∫ +∞

−∞
dξ GRξ (ω, t) = −iπ. (61)

The proof is given in Appendix C. An immediate corol-
lary is: ∫ +∞

−∞
dξ Aξ(ω, t) = 2π. (62)

Combining Eqs. (52a)-(52b), Eqs. (54a)-(54b),
Eq. (58), and Eq. (61), we find the sought after explicit
self-energy functionals:

ΣR(ω, t) =

∫ +∞

0

dω′
∫ +∞

−∞
dν

[
N+(ω′, ν; t)

ω − ω′ − ν + i0+

+
N−(ω′, ν; t)

ω + ω′ − ν + i0+

]
, (63a)

iΣK(ω, t) = π

∫ +∞

−∞
dν ψ(ω − ν, t) iFK(ν, t), (63b)

where:

N±(ω, ν; t) ≡ 1

2

[
iFK(ν, t)± ψ(ω, t)F ρ(ν)

]
. (64)

It is noteworthy that ΣR/K only depends on the local
electron statistics ψ(ω, t) and not the ξ-response ψξ(ω, t).
Finally, Lemma 3(a) and 3(b) from Appendix B and the

above result imply Σ̄R/K(ω, t) = ΣR/K(ω, t), i.e. Σ̂ is

proportional to the identity matrix in the normal state.
This result is strictly a consequence of the ideal Migdal
limit. One can show ΣR − Σ̄R ∝ 1/Wel in a finite
bandwidth model. This completes our discussion of the
Migdal-Eliashberg self-energy in the normal state.

3. Floquet-Boltzmann kinetic equation for electrons

An explicit Floquet-Boltzmann kinetic equation can be
derived for electrons in the normal state using the result
of the previous section and the KB equations. To this
end, we write the Keldysh component of Eqs. (33a)-(33b)
using FSA self-energy:

[+i∂t1 − ξ]GKξ = ΣR ? GKξ + ΣK ? GAξ , (65)

[−i∂t2 − ξ]GKξ = GRξ ? ΣK + GKξ ? ΣA, (66)

Subtracting the sides of these equations from one another
and performing a Wigner transformation, we find:

∂t iGKξ = ΣR ?GKξ +ΣK ?GAξ −GRξ ?ΣK−GKξ ?ΣA. (67)
Integrating both sides over ξ, using Eq. (61), and the
definition of the local electron statistics (see Eq. 60), we
find a simple evolution equation for ψ(ω, t):

∂tψ = iΣK − i
(
ΣR ? ψ − ψ ? ΣA

)
. (68)

As an intermediate consistency check, at equilibrium
where ψ = tanh(βω/2) and the GM product reduces to
an algebraic product, the right hand side evaluates to
iΣK(ω)+2iIm[ΣR] tanh(βω/2) which vanishes in light of
the KMS boundary condition. Thus, the thermal state
remains stationary as expected.

For a periodically driven system with a slowly varying
drive envelope, expanding the convolution integrals using
first-order FGM product formula yields:

∂tψn,m = inΩψn,m + iΣKn,m[ψ]− i
∑
n′

(
ΣRn′,−n+n′+m[ψ]ψn−n′,n′+m − ψn′,−n+n′+m ΣAn−n′,n′+m[ψ]

+
i

2
∂ωΣRn′,−n+n′+m[ψ] ∂tψn−n′,n′+m −

i

2
∂tΣ

R
n′,−n+n′+m[ψ] ∂ωψn−n′,n′+m

− i

2
∂ωψn′,−n+n′+m ∂tΣ

A
n−n′,n′+m[ψ] +

i

2
∂tψn′,−n+n′+m ∂ωΣAn−n′,n′+m[ψ]

)
+O(∂2

t ). (69)

The Floquet components of self-energy functionals are
worked out easily from Eqs. (63a)-(63b):

ΣRn (ω; t) =

∫ +∞

0

dω′
∫ +∞

−∞
dν

[
N+
n (ω′, ν; t)

ω − ω′ − ν + i0+

+
N−n (ω′, ν; t)

ω + ω′ − ν + i0+

]
, (70a)

iΣKn (ω; t) = π
∑
n′

∫ +∞

−∞
dν ψn−n′(ω − ν; t) iFKn′ (ν; t),

(70b)
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where:

N±n (ω′, ν; t) =
1

2

[
iFKn (ν; t)±

∑
n′

ψn−n′(ω; t)F ρn′(ν; t)

]
.

(71)
The advanced self-energy is readily obtained using the
symmetry relation ΣAn,m(ω; t) = ΣAn (ω − mΩ/2; t) =

[ΣR−n(ω − mΩ/2; t)]∗ = [ΣR−n,m(ω; t)]∗. Self-energies

with finite Floquet quasi-momentum, e.g. ΣRn,m(ω; t) are

found by shifting ΣRn,m(ω; t) ≡ ΣRn (ω − mΩ/2; t) (see
Eq. 43).

In the fully self-consistent scheme, one must integrate
Eq. (69) together with the previously derived kinetic
equations for the lattice displacement and phonon prop-
agator self-consistently. We note that Eq. (69) is an im-
plicit integro-differential equation for ∂tψn,m in disguise

due to the presence of derivative terms ∂tΣ
R/A[ψ]. We

will discuss the numerical approach for solving this equa-
tion in Sec. F.

V. MIGDAL-ELIASHBERG THEORY OF
FLOQUET SUPERCONDUCTING INSTABILITY

We derived a set of tractable evolution equations for
the driven system in the normal state. In this section,
we derive a criterion to identify the instability of the
normal state toward forming a Floquet superconduct-
ing state. This criterion follows from a careful linear re-
sponse analysis as follows: we introduce a small fictitious
pairing potential (i.e. an off-diagonal self-energy term)
to the time-dependent self-energy obtained in the nor-

mal state: Σ̂R(ω, t) → ΣR(ω, t)I + φ̂(ω, t). Here, φ̂(ω, t)
is off-diagonal in the Nambu space. The off-diagonal
self-energy, in turn, induces an anomalous (off-diagonal)

propagator δF̂ [φ̂] which in turn generates the pairing po-
tential. The introduced pair potential may only persist

if and only if Σ̂R[Ĝ+δF̂ [φ̂]]− Σ̂R[Ĝ] ≡ φ̂. This procedure
is shown diagrammatically as:

= (72)

Since the self-energy is a linear functional of ϕ̂, satisfiabil-

ity of the above equation for a non-trivial φ̂ requires the
linear operator I−DGG to have a non-trivial null space.
This operator is precisely the inverse vertex operator that
appears in the two-particle propagator ∼ GG(I−DGG)−1.
This, the pairing condition is formally equivalent to re-
quiring a zero-energy pole in the two-particle propagator,
the well-known Thouless criterion for spontaneous sym-
metry breaking [56]. The precise condition for a driven
nonequilibrium system is complicated due to nonequi-
librium propagators and Floquet bands, and requires a
careful implementation of the outlined steps, which is the

goal of the next sections. As a first step, we will work
out the pairing instability criterion for an arbitrary nor-
mal state. The results will be used to find the pairing
condition for quasi-steady Floquet states.

A. Pairing instability criterion for arbitrary
nonequilibrium states

We start the analysis by revisiting the KB equations
for the retarded Nambu propagator using the FSA self-
energy and in the Wigner representation:[

+ (i/2) ∂t + ω] ĜRξ (ω, t)− ξ σ̂z ĜRξ (ω, t) = I

+
[
Σ̂R ? ĜRξ

]
(ω, t), (73a)

[
− (i/2) ∂t + ω] ĜRξ (ω, t)− ξ ĜRξ (ω, t) σ̂z = I

+
[
ĜRξ ? Σ̂R

]
(ω, t). (73b)

As discussed in the earlier remarks, we assume the fol-
lowing ansatz at the onset of pairing:

Σ̂R[φ](ω, t) = ΣR(ω, t) I+ φ̂(ω, t),

ĜRξ [φ](ω, t) = ĜRξ (ω, t) + δF̂Rξ [φ](ω, t) +O(φ2),

ĜKξ [φ](ω, t) = ĜKξ (ω, t) + ψξ(ω, t) δÂξ[φ](ω, t) +O(φ2),

(74)

where φ̂ is the infinitesimal pairing potential, ĜR/Kξ and

ΣRI denote the unperturbed Nambu propagators and
self-energy in the normal state, respectively, ψξ is the
electron statistics in the unperturbed normal state (see

Eq. 58, and δF̂Rξ [φ] and δÂξ[φ] denote the off-diagonal
linear response of the retarded propagator and the spec-
tral function, respectively. Using Lemma 1(b) of Ap-
pendix B, we have:

δǍξ[φ](ω, t) = iσ̂x

[
δF̂Rξ [φ](ω, t)− δF̂Rξ [φ](ω, t)∗

]
σ̂x.

(75)
Here, we have assumed that the pairs formed at the onset
of transition have the same statistics ψξ as the normal
electrons. Inserting the ansatz in Eqs. (73a)-(73b), sum-

ming the sides and keeping terms to linear order in φ̂, we
find:

2ω δF̂Rξ [φ]− ξ
{
σ̂z, δF̂Rξ [φ]

}
= φ̂ ? ĜRξ + ĜRξ ? φ̂

+ ΣR ? δF̂Rξ [φ] + δF̂Rξ [φ] ? ΣR. (76)

Since δF̂Rξ is fully off-diagonal,
{
σ̂z, δF̂Rξ

}
= 0. Inte-

grating both sides of Eq. (76) over ξ, using Eq. (61) to
replace the ξ-summed normal retarded propagators with
the universal value of −iπ, we find:

2ω δFR[φ] = −2πi φ+ ΣR ? δFR[φ] + δFR[φ] ?ΣR. (77)
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Without the loss of generality, we have assumed φ̂ = φ σ̂x
and δF̂R[φ] = δFR[φ] σ̂x to distill the Nambu matrix
structure on the last equation.

Solving the equation above for arbitrary Σ(ω, t) and
φ(ω, t) is a formidable task due to the intricate differ-
ential structure of the GM product formula. However,
we will show later that it can be reduced to a sim-

pler algebraic structure using the properties of Floquet-
Boltzmann states. Here, we proceed with the general ob-
servation that δFR[φ], and subsequently δǍ[φ] as given
by Eq. (75), are computable linear functionals of φ. Pro-
jecting out the off-diagonal component of the retarded
Migdal-Eliashberg self-energy (Eq. 52a), we find:

φ(ω, t) =
1

4

∫ +∞

−∞

dω′

2π

∫ +∞

−∞

dν

ω − ω′ − ν + i0+

{
iFK(ν, t) Tr

[
σ̂x δǍ[φ](ω′, t)

]
+ F ρ(ν, t) Tr

[
σ̂x iδǦK(ω′, t)

] }
. (78)

This is the sought after self-consistency relation be-
tween the pairing potential and the induced anoma-
lous response. Eq. (75) implies Tr

[
σ̂x δǍξ[φ](ω, t)

]
=

+4 Im δFRξ [φ](ω, t). Furthermore, Lemma 1(d) of Ap-
pendix B implies that this quantity is a real odd func-
tion of ω. These considerations allow us to simplify the
pairing self-consistency condition, Eq. (78), to:

φ(ω, t) =

∫ +∞

0

dω′

ω′
K(ω, ω′; t) ∆[φ](ω′, t), (79)

where:

∆[φ](ω, t) ≡ −ω
π

Im δFR[φ](ω, t), (80a)

K(ω, ω′; t) ≡
∫ +∞

−∞
dν

[
N−(ω′, ν;T )

ω + ω′ − ν + i0+

− N+(ω′, ν; t)

ω − ω′ − ν + i0+

]
. (80b)

Eq. (79) is a functional eigenvalue equation for φ(ω, t).
As mentioned earlier, the paired state is stable if and
only if Eq. (79) admits a non-trivial solution for φ(ω, t).

B. Pairing instability criterion for quasi-steady
Floquet states

As mentioned earlier, solving Eq. (77) for arbitrary
nonequilibrium states is a challenging task and requires
resorting to numerical methods in general. This task is
significantly simpler in special cases such as stationary
states where all time derivatives vanish, or quasi-steady
Floquet states where the Fourier amplitudes of all in-
volved quantities are approximately stationary. In both
cases, Eq. (77) can be cast into an algebraic equation
and be solved either numerically or by perturbation. To
study the case of quasi-steady Floquet states, we take a
Fourier transform of the sides of Eq. (77) in t and ne-
glect the time derivatives of Fourier amplitudes in con-
volutions. Physically, the latter is justified if the pair
formation rate is faster than the macroscopic time scale
over which the quasi-stationary Floquet-Boltzmann state
evolves. Replacing the GM products appearing in the

right hand side of Eq. (77) with the leading order FGM
product formula, we find:

(2ω −mΩ) δFRn,m(ω; t) = −2πi φn,m(ω; t)

+
∑
n′

ΣRn′,m−n+n′(ω; t) δFRn−n′,m+n′(ω; t)

+
∑
n′

ΣRn′,m+n−n′(ω; t) δFRn−n′,m−n′(ω; t). (81a)

The FGM product formula mixes different Floquet quasi-
momentum states of ΣR and δFR. We have further in-
troduced an arbitrary Floquet quasi-momentum label by
shifting ω → ω−mΩ/2 on both sides toward a more uni-
form notation. The above equation can be thought of as
an infinite dimensional linear system for δFRn,m. In prac-
tice, one truncates Floquet bands and quasi-momenta to
obtain a proper finite linear system (e.g. see Ref. [22]).
The finite system is then solved numerically or by per-
turbation to find an explicit linear relation between the
Floquet components of δF and φ:

δFRn,m(ω; t) =
∑
n′,m′

Qn,m
n′,m′(ω; t)φn′,m′(ω; t). (81b)

We note that Qn,m
n′,m′(ω; t) only depends on the unper-

turbed retarded self-energy in the normal state. Dia-
grammatically, this step is equivalent to attaching the
pair propagator to φ an in the right hand side of Eq. (72).
This expression, together with Eq. (80a), yield the sought
after explicit relation between the gap and the pairing
potential:

∆n(ω; t) =
iω

2π

∑
n′,m′

{
Qn,0
n′,m′(ω; t)φn′,m′(ω; t)

−
[
Q−n,0n′,m′(ω; t)

]∗
φ∗n′,m′(ω; t)

}
. (82)

Taking a Fourier transform of the sides of Eq. (79) in t
and neglecting time derivatives as before, we find:

φn′,m′(ω; t) =
∑
n′′

∫ +∞

0

dω′

ω′
Kn′′,m′(ω, ω

′; t)
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×∆n′−n′′(ω
′; t), (83)

where:

Kn,m(ω, ω′; t) =

∫ +∞

−∞
dν

[
N−n (ω′, ν; t)

ω −mΩ/2 + ω′ − ν + i0+

− N+
n (ω′, ν; t)

ω −mΩ/2− ω′ − ν + i0+

]
. (84)

Plugging φn′,m′ from Eq. (83) into Eq. (82) yields the
final functional eigenvalue equation for the Floquet gap
at the onset of pairing:

∆n(ω; t) =
iω

2π

∑
n′,n′′,m′

{
Qn,0
n′,m′(ω; t)

∫ +∞

0

dω′

ω′
Kn′′,m′(ω, ω

′; t) ∆n′−n′′(ω
′; t)

−
[
Q−n,0n′,m′(ω; t)

]∗ ∫ +∞

0

dω′

ω′
K∗n′′,m′(ω, ω

′; t) ∆∗n′−n′′(ω
′; t)

}
. (85)

It is worthwhile to take a moment and study this equa-
tion in some detail. We recall that Qn,m

n′,m′ is derived
from the normal-state self-energy and relates the anoma-
lous response to the pairing potential (see Eq. 81b).
Thus, this quantity brings in the physics of quasiparti-
cle propagation in the normal state such as lifetime and
residue. On the other hand, the phonon propagator en-
ters through Kn,m and therefore, it brings in the retarded
phonon-mediated attraction between the quasiparticles
(see Eqs. 84 and 71).

Finally, let us consider the static non-driven limit of
Eq. (85) as a consistency check where all Floquet indices
and summations can be dropped. In this limit, Eq. (81a)
admits a simple algebraic solution:

δF(ω) = − iπ

ω − ΣR(ω)
φ(ω), (86)

implying Qn,0
n′,m′(ω) = −iπ δn,0 δn′,0 δm′,0

[
ω − ΣR(ω)

]−1
.

Plugging this into Eq. (85), we find:

∆(ω) = Re

[
1

Z(ω)

∫ +∞

0

dω′

ω′
K(ω, ω′) ∆(ω′)

]
, (87)

where Z(ω) = [ω − ΣR(ω)]/ω as it is usually defined
in the context of Migdal-Eliashberg theory. This coin-
cides with the result obtained earlier by by Scalapino,
Schrieffer, and Wilkins [38] for equilibrium systems. Our
result is a proper generalization of the static Migdal-
Eliashberg pairing criterion to arbitrary nonequilibrium
states [Eq. (79)], and particularly to Floquet states
[Eq. (85)].

In practice, we monitor the eigenvalue spectrum of the
linear functional posed by Eq. (85) as the system evolves
in the normal state. The normal state is deemed unsta-
ble as soon as the lowest eigenvalue crosses zero. The
same procedure applies to equilibrium states, where one
calculates the normal-state self-energy of electrons at dif-
ferent temperatures and decreases the temperature until
the lowest eigenvalue crosses zero.

VI. REVISITING THE PROBLEM: RESULTS
FROM THE FLOQUET-MIGDAL-ELIASHBERG

THEORY

The machinery of Floquet-Migdal-Eliashberg (FME)
quantum kinetics allows us to fill out the missing details
in the preliminary analysis given in Sec. III. In particu-
lar, we can study the role of competing factors such as
parametric phonon generation and the heating of elec-
trons in order to assess whether the mechanism laid out
in Sec. III persists in transient dynamics.

At this point, we have developed all the necessary
tools to solve the problem using the full FME formal-
ism, Fig. 7. As outlined above, the electron-phonon sys-
tem is initially prepared in an equilibrium normal state
with temperature Ti > Tc, where Tc is the critical super-
conducting transition temperature for the given system
parameters. The drive is smoothly ramped up according
to:

|F (t)|2 =
I0
2

[1 + tanh(t/τdrv)] cos2(Ωdrvt), (88)

where I0 denotes the intensity of the drive. We restrict
our numerical analysis to weak and intermediate cou-
plings where the phononic and electronic quantities can
be calculated iteratively as described below.

As a first step, the electrons are assumed to re-
main in the equilibrium state, effectively providing a

fixed-temperature Ohmic quantum bath Π
(0)
` (ω) for the

phonons. Explicit expressions for Π
(0)
` are given in Ap-

pendix E 1). The Floquet-Boltzmann equations for the
lattice displacement {ϕn(t)} and phonon propagators
{iDKn (ω; t), ρn(ω; t)} are then numerically integrated for-
ward in time as described in Appendix F 1. Subsequently,
the Floquet-Boltzmann equations for the energy distri-
bution of electrons {ψn(ω; t)} are numerically solved as
described in Appendix F 2. If deemed necessary, this two-
pass iterative calculation is looped until a self-consistent
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nonequilibrium solution is obtained for both phonons and
electrons. For our choice of parameters, we found addi-
tional iterations to be unnecessary by the virtue of the
large separation of energy scales between phonons and
electrons and weak coupling. Finally, we study the FME
pairing instability condition throughout the evolution in
order to assess whether the normal state exhibits the
pairing instability at some time.

We remark that the system is assumed to evolve in
the normal state throughout the simulation. The present
formalism detects the instability toward Cooper pairing.
Studying the full Floquet superconducting gap formation
and its dynamics is a more challenging problem and is
better suited to be studied via a Floquet extension of the
time-dependent Landau-Ginzburg (TDGL) formalism.

We present the results in two stages. As a first step,
in order to gain insight into parameter regimes of maxi-
mally enhanced superconductivity, we hold the electrons
in thermal states with different temperatures (e.g. by
coupling them to a large and infinitely efficient heat
bath). We proceed by letting the driven phonons set-
tle to a stationary Floquet driven-dissipative state and
calculate the Tc of electrons on its backdrop. This proce-
dure is similar to calculating Tc in equilibrium by study-
ing the eigenvalue spectrum of Eq. (85), however, using
the driven phonon propagators.

Finally, we study the full evolution of the coupled
system by allowing the electrons evolve on par with
phonons. This allows us to investigate the transient
nature of the superconducting instability. We find that
the heating of electrons destroys the instability at late
times and stabilizes the normal state as seen in the
experiments [12].

Choice of physical parameters— The trimmed-down
model is fully specified by a few physical parameters:
electron-phonon coupling g, electronic density of states
at the Fermi level ν(0), optical phonon frequency ω0, the
phenomenological damping of the coherent lattice dis-
placement γ0, and the drive coupling strength Λ. We
trade g and ν(0) with the mass enhancement factor at
equilibrium λeq and local phonon damping γ`. These di-
mensionless quantities are defined in Eqs. (55) and (E17)
and we quote them again here for reference:

λeq ≡
2g2ν(0)

ω0
, γ` ≡ 4πg2ν(0)2. (89)

We set λ = 0.5 and γ` = 0.2 in the numerics, which
correspond to typical values for fulleride superconduc-
tors [39]. We study cubic and quartic nonlinearities
separately. The majority of the results are presented for
a cubic nonlinearity. As we argued earlier in Sec. III B,
both types of nonlinearity lead to qualitatively similar
phenomena. We set κ3 = 0.1ω0, κ4 = 0 for “cubic
results”, and κ3 = 0, κ4 = 0.1ω0 for “quartic results”.
These values are expected to reflect the typical intrinsic
lattice nonlinearities.

Normalization constants— Quantities with the dimen-
sion of energy are presented in the units of Ω0, the
renormalized phonon frequency at equilibrium defined in
Eq. (F2), an the time axes are scaled with respect to τph,
the renormalized period of phonons at equilibrium:

Ω0 ≡
√
ω2

0 + 2ω0ω̄L + 2ω0U0, τph ≡
2π

Ω0
. (90)

Here, ω̄L is the effective Lamb shift of phonons as a
matter of coupling to electrons which can be neglected
in the weak coupling regime. U0 is determined by self-
consistently solving the set of equations given in Eq. (F1)
and represents the phonon frequency correction due to
lattice nonlinearities. Finally, we parametrize the fully
ramped-up drive amplitude by the dimensionless quan-
tity A defined as:

A ≡ lim
t→∞

Λ

2ω0
I0 F

2
env(t) =

Λ I0
2ω0

, (91)

and set τdrv = 5 τph in Eq. (88).

Notation— We often discuss period-averaged quantities
along with their temporal variances, respectively defined
as:

〈O(t)〉 ≡ Ωdrv

π

∫ +π/(2Ωdrv)

−π/(2Ωdrv)

dτ O(t+ τ),

Var[O(t)] ≡ Ωdrv

π

∫ +π/(2Ωdrv)

−π/(2Ωdrv)

dτ [O(t+ τ)− 〈O(t)〉]2

(92)

where O(t) is an arbitrary observable. Note that the
effective drive period is π/Ωdrv since the principal har-
monic of all observables is 2Ωdrv (see the discussion after
Eq. 39). If O(t) is given as a Fourier series with slowly-
varying amplitudes, i.e. O(t) =

∑∞
n=−∞On(t) e2niΩdrvt,

then 〈O(t)〉 = O0(t) and Var[O(t)] ≡∑∞n=1 |On(t)|2.

A. Stage I: Driven phonons, thermal electrons

Fig. 9 shows a typical example of phonon propagators
subject to nearly-resonant drive in the presence of lat-
tice nonlinearities. Panel (a) shows a heat map of the
period-averaged Keldysh phonon propagator iDK

n=0(ν; t)
at a function of relative frequency ν and COM time
t. The most prominent feature is the red-shift of the
phonon peak frequency. The red-shift is a direct con-
sequence of the lattice nonlinearity: with a cubic non-
linearity ∼ κ3 ϕ̂

3, the drive shifts the equilibrium po-
sition of the lattice on average, producing a frequency
renormalization ∆ω2

ph ∼ κ3〈ϕ̂〉. For a nearly-resonant

drive, nonlinear effects dominate the value of 〈ϕ̂〉 such
that sign[〈ϕ̂〉] = −sign(κ3). As a result, ∆ω2

ph < 0 re-
gardless of the sign of κ3 for a strong nearly-resonant
drive. In other words, the cubic nonlinearity always soft-
ens the lattice. This phenomenon resembles the usual
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(a) (b1)

(b2)

(c1)

(c2)
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FIG. 9. Evolution of phonon propagators in response to a ramped-up external drive for drive frequency Ωdrv =
0.4 Ω0 and maximum drive amplitude A = 0.75. The physical parameters are set to κ3 = 0.1, κ4 = 0, and γ` = 0.2 Ω0.
The leftmost panel shows n = 0 (periods-averaged) Keldysh phonon propagator. The redshift of the phonon peak is clearly
noticeable. The next two columns show the real and imaginary parts of n = 1, 2 propagators. Notice the absence of a single
quasiparticle peak. Panels (d) and (e) show the period-averaged squeezing correlations and the density of phonon excitations,
respectively. Both quantities increase as the external field is ramped up. Finally, panel (f) shows the time-dependent mass
enhancement factor as defined in the text, along with its time average (green solid line) and the lower and upper envelopes
(blue and red lines, respectively). Notice the significant increase in the mass enhancement factor, as well as its high amplitude
oscillations.

Cubic nonlinearity
w/ Floquet phonon propagators

Quartic nonlinearity
w/ Floquet phonon propagators

Cubic nonlinearity
w/ static phonon propagators

Quartic nonlinearity
w/ static phonon propagators

>

>

FIG. 10. The relative change of Floquet superconduct-
ing transition temperature with respect to equilib-
rium, TFloq

c /T eq
c − 1, in the equilibrium electron ap-

proximation. The left and right columns show the results
for cubic and quartic nonlinearities, κ3 = 0.1 Ω0, κ4 = 0 and
κ3 = 0, κ4 = 0.1 Ω0, respectively. The top row is obtained us-
ing full Floquet phonon propagators whereas n > 0 Floquet
components (dynamical effects) are neglected in the bottom
row.

physics of thermal expansion where the drive plays the
role of heating.

Panels (b1-2) and (c1-2) show the higher Floquet com-
ponents of the Keldysh phonon propagator, both of which
show emergent features as the drive is ramped up. It is
noticed that |iDK2 | < |iDK1 | suggesting that the role of
higher Floquet bands become increasingly smaller. Most
strikingly, it is noticed that n > 0 Floquet phonons do
not admit a single coherent peak in contrast to the n = 0
case. As a consequence, Eqs. (45a)-(46b) do not admit
a reliable Boltzmann “quasiparticle” limit, justifying our
usage of the more cumbersome quantum kinetic formal-
ism.

One consequence of the drive is parametric genera-
tion of phonons [47] and squeezing of lattice momentum
fluctuation [28]. Panel (d) and (e) show the evolution
of these quantities as a function of COM time t. Ap-
pendix D shows how these quantities can be calculated
from iDK(ω, t). As expected, both of these observables
significantly increase as the drive is ramped up. The
emergence of squeezed states is a well-known hallmark
of parametrically driven harmonic oscillators. Finally,
panel (f) shows the instantaneous mass enhancement fac-
tor λ(t) defined as:

λ(t) = ω0λeq

∑
n

∫ ∞
0

dν

ν
ρn(ν; t) e2inΩdrvt. (93)

This quantity plays a similar role in the Migdal-
Eliashberg theory as ν(0)U(t) in the BCS theory (the lat-
ter was defined in Sec. III). For instance, Tc ≈ ω0 e

−1/λeq

in the equilibrium Migdal-Eliashberg theory [18]. It is no-
ticed that λ(t) has a strong oscillatory component. The
period-average of λ(t) during one drive period and the
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FIG. 11. Density of phonon excitations (left), period-average (middle) and time-variance (right) of the mass
enhancement factor. The electrons are kept in a thermal state at temperature T = 0.04 Ω0. These quantities are calculated
in the stationary driven-dissipative state of phonons.
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FIG. 12. Time evolution of the energy statistics of electrons for Ωdrv = 0.4 Ω0, A = 0.75, and τdrv = 5 τph. From
left to right, the plots show the period-averaged (n = 0) energy statistics, its first and second Floquet components, and the
period-averaged scattering rate 〈Γ(ω, t)〉 ≡ −2i Im[ΣRn=0(ω; t)] of electrons. The heating of electrons is noticeable in panel (a)
as the drive is ramped up, as well as the increase in the scattering rate in panel (d).

lower and upper envelopes are shown as green, blue, and
red solid lines.

The Floquet superconducting transition temperature
TFloq
c can be determined for each choice of Ωdrv and A

by calculating the eigenvalue spectrum of the FME gap
functional (Eq. 85, eigs∆, for different electronic temper-
atures and locating the first zero-crossing of the lowest
eigenvalue min eigs∆.

Fig. 10 shows the results separately for cubic and quar-
tic nonlinearities. The top row corresponds to a calcu-
lation using full Floquet phonon propagators. The bot-
tom row is obtained using only n = 0 (period-averaged)
phonon propagators. Strong driving near parametric res-
onances lead to the instability of the lattice due to non-
linearities. This stems of the our choice of Vph(ϕ) (see
Eq. 2) which is only valid for low-amplitude deformations
and becomes unphysical for large deformations. These
unstable regions are hatched in the heat map plots and
indeed coincide with the three first parametric resonances
at Ωdrv/Ω0 ≈ 1/2, 1/4, 1/8.

The full Floquet result (top row) shows a dramatic en-
hancement of Tc, reaching beyond three times the equilib-
rium value near the resonances. Neglecting the ac com-
ponents, only a moderate enhancement of Tc is found,

and only away from the resonances. In particular, Tc is
suppressed above the main resonance in the static ap-
proximation in contrast to the full Floquet result. This
finding is strikingly similar to the analytic Floquet BCS
analysis of Sec. III A; see Fig. 6.

To shed light on this finding, we have plotted the den-
sity of excited phonons 〈∆nph(t)〉 as well as the mean
and variance of λ(t) during a drive period as a function
of Ωdrv and A in Fig. 11. It is noticed that (1) 〈λ(t)〉 is
enhanced and suppressed below and above the main reso-
nance, respectively, similar to the analysis of Sec. III and
as summarized in Fig. 5; (2) both 〈∆nph〉 and Var[λ(t)]
are increase significantly above the main resonance. Ne-
glecting n > 0 components of the phonon propagator and
neglecting Var[λ(t)] go hand in hand. The high density
of phonon excitations and the suppression of 〈λ(t)〉 above
the resonance imply decreased quasiparticle lifetime and
electron-electron attraction, respectively, both of which
are unfavorable for Cooper pairing. This explains sup-
pression of Tc above the main resonance in the static ap-
proximation. Away from the resonances, the moderate
enhancement of 〈λ(t)〉, which has its roots in the phonon
frequency red-shift and is present in the static approx-
imation, explains the moderate enhancement of Tc. Fi-



25

0 20
t/τph

−0.2

−0.1

0.0

0.1

m
in

ei
gs

∆
Ωdrv = 0.3 Ω0

A = 0.25

A = 0.50

A = 0.75

0 20
t/τph

−0.4

−0.2

0.0

0.2

m
in

ei
gs

∆

Ωdrv = 0.4 Ω0

A = 0.25

A = 0.50

A = 0.75

0 20
t/τph

−0.4

−0.2

0.0

0.2

m
in

ei
gs

∆

Ωdrv = 0.5 Ω0

A = 0.25

A = 0.50

A = 0.75

0 20
t/τph

−0.1

0.0

0.1

0.2

m
in

ei
gs

∆

Ωdrv = 0.6 Ω0

A = 0.25

A = 0.50

A = 0.75

FIG. 13. Assessment of the Floquet-Migdal-Eliashberg (FME) pairing condition for a ramped up external
drive with different frequencies and amplitudes. The red segments indicate regions where the lowest eigenvalue of
the FME gap functional is negative, signaling the pairing instability. The dashed lines show the hypothetical case if the
electrons were to remain in their initial thermal state (no heating). The nonlinearity is cubic, the initial temperature is set to
Ti = 0.04 Ω0 ' 1.2T eq

c , and the physical parameters are chosen as described in Sec. VI.
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nally, we remark that including n > 0 components brings
in large Var[λ(t)]. In the example shown in Fig. 9(f), the
upper envelope of λ(t) is nearly three times as large as
λeq. As we argued earlier in Sec. III A, Tc is a convex
functional of the interaction parameter in the weak cou-
pling limit such that temporal variation of interaction
can increase Tc even if the period-average remains fixed
or even decrease.

B. Stage II: Driven phonons, evolving electrons

The notion of superconducting transition temperature
is only well-defined in thermal states. Once the elec-
trons are allowed to evolve as a matter of coupling to
phonons, a different diagnostic will be needed to assess
the enhancement or suppression of the superconducting
transition. Here, we attempt to model a realistic experi-
mental scenario: we prepare the electron-phonon system
in Ti > Teq, ramp up the drive, and calculate the ensu-
ing nonequilibrium dynamics of phonons and electrons.
Since Ti > Tc in the beginning, the lowest eigenvalue
of the FME gap functional begins as a positive value.
Whether it remains positive throughout the evolution or
crosses zero at some point is our diagnostic. This allows
us to study the instability of the normal state toward
Cooper pair formation but does not describe the physics
of gap formation. The latter can be addressed with an
extended formalism based on the the present develop-
ments.

Fig. 12 shows an example of the evolution of the Flo-
quet components of the ξ-summed (local) energy statis-
tics of electrons {ψn(ω; t)} defined in Eq. (60), along
with their period-averaged scattering rate 〈Γ(ω, t)〉 ≡
−2i Im[ΣRn=0(ω; t)]. The prominent features are (1) the
heating of electrons, manifested as the decreased slope of
ψ0(ω; t) at ω = 0 as the drive is ramped up, (2) emergence
of electrons in n > 0 Floquet bands, and (3) increased
(decreased) spectral broadening (lifetime) of quasiparti-
cles.

Fig. 13 shows the evolution of the lowest eigenvalue
of the FME gap functional, min eigs∆, for Ωdrv/Ω0 =
0.3, 0.4, 0.5, 0.6 and A = 0.25, 0.50, 0.75. The nonlinear-
ity is cubic and the choice of physical parameters is as
described in the introductory remarks of this section, im-
plying T eq

c ' 0.034 Ω0. The initial temperature chosen
as Ti = 0.04 Ω0 ' 1.2T eq

c . The dashed lines show the
hypothetical case where the electrons are kept at Ti (no
heating). Red segments indicate where min eigs∆ < 0.
The most favorable outcome occurs for lower frequency
driving, e.g. Ωdrv = 0.3 Ω0, where the pairing instabil-
ity persists for a long time. In all cases, heating of elec-
trons tends to stabilize the normal state with long enough
driving. This is most easily noticeable for Ωdrv = 0.4 Ω0

where the instability is confined to a short interval. For
Ωdrv = 0.5 Ω0, 0.6 Ω0, we find min eigs∆ > 0 at all times
for all three drive strengths. The strong heating of elec-
trons prohibits pairing even though in the absence of

heating (dashed lines), pairing would have ensued.

The desirability of lower frequency driving for enhanc-
ing the pairing instability can be understood by appeal-
ing to the different nature the two competing effects,
parametric amplification of the retarded response on one
hand, and parametric phonon generation on the other
hand. As we argued early on, the former is the main
mechanism for enhancing Tc and the latter is the main
suppressant. Heating of electrons and the decreased co-
herence of quasiparticles are both consequences of the
interaction with the generated high-energy phonons.

Parametric generation of phonons is an on-shell pro-
cess. For low frequency driving, phonons may only
be generated through accumulation of multiple energy
quanta from the drive. These higher order processes,
however, become increasingly less probable. In contrast,
(1) the retarded response does not need to satisfy an
on-shell energetic condition, and (2) the cascade of low-
frequency parametric resonances at Ω0/(2n) extend the
range of parametric amplification to very low frequencies.
For a fixed driving strength and finite damping, the in-
finite cascade of parametric resonance “tongues” will be
truncated at a certain lower frequency. This is exempli-
fied in Fig. 4 in which only two resonances are present, or
in Fig. 10 where only three lattice instability tongues are
found. Nevertheless, the presence of even a few higher or-
der resonances enables the amplification of the retarded
response for reasonably low frequency drives.

To substantiate these arguments with numerical re-
sults, we have plotted the evolution of 〈∆nph(t)〉 and
λ(t) in Fig. 14, and electronic effective mass 〈m∗(t)〉 and
damping 〈Γ(t)〉 in Fig. 15. As before, time-averaging is
performed during one drive period. We notice that for
Ωdrv = 0.3 Ω0 both 〈∆nph(t)〉 and 〈Γ(t)〉 remain nearly
two orders of magnitude smaller than the on-resonance
drive Ωdrv = 0.5 Ω0. In contrast, 〈m∗(t)〉 and λ(t) are
at most a factor of four smaller. Thus, we indeed expect
a negligible undesirable suppression while still benefiting
from parametric amplification of λ(t).

The energy distribution of the electrons at t = 30 τph

is shown in Fig. 16. It is noticed that the distribu-
tion barely changes from the initial thermal state for
Ωdrv = 0.3 Ω0, in agreement with the aforementioned ar-
guments regarding suppressed parametric phonon gener-
ation below the resonance. In all cases, a decent Fermi-
Dirac fit can be obtained. For a on-resonant driving fre-
quency Ωdrv = 0.5 Ω0, the effective temperature reaches
T eff
f ≈ 0.22 Ωdrv (see the figure caption). Even in such

cases, the energy density of electrons remains low enough,
obviating performing a self-consistency feedback loop to
phonons (see Fig. 7).

Finally, we note that the light-induces superconduct-
ing state is expected to persist beyond the predictions
of the present analysis in the experiments. On the one
hand, the formation of a superconducting gap leads to in-
creased coherence of electrons and suppress scatterings.
On the other hand, the bulk electrons and phonons that
remain unaffected by the pump pulse act as a low tem-
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the initial temperature Ti = 0.04 Ω0. The thin solid lines
correspond to Ωdrv/Ω0 = 0.3, 0.4, 0.5 with decreasing slope,
respectively. The measurement time is t = 30 τph. The fi-
nal effective temperatures are T eff

f /Ω0 ≈ 0.04, 0.17, 0.22 for
Ωdrv/Ω0 = 0.3, 0.4, 0.5, respectively.

perature heat bath for the driven subsystem and keep it
from excessive heating. Exploring these aspects of the
problem is left for future works and is further discussed
in Sec. VII.

C. Predictions for time-resolved angle-resolved
photo-emission spectroscopy experiments

(tr-ARPES)

Up to this point, we have developed the theory of para-
metric amplification of electron-phonon coupling within
a model that is general and material-agnostic. Whether
or not, and how, the mechanism is realized in a spe-
cific material depends on a number of factors such as the
phonon spectra, strength of nonlinearities, and the se-
lection rules that dictate and presence or absence of the
required nonlinear phonon couplings. These questions
can be investigated either by performing ab initio cal-
culation or through further experimental scrutiny. The
interaction of electrons with periodically driven phonons
will necessarily induce a certain degree of periodicity in
electronic observables. This can be see, for example, in
Fig. 12 where the energy statistics develop Floquet com-
ponents as the drive is ramped up. Here, we will show
that the signal measured in tr-ARPES experiments will
help reveal the formation of Floquet bands. The experi-
mental observation of electronic Floquet bands provides
strong evidence for the role of coherent driving in en-
hancing Cooper pairing.

The tr-ARPES signal can be theoretically calculated

from the lesser electron Green’s function [57] as follows:

I(k, ω, t) ∝ Im
1

2πσ2
pr

∫
dt1

∫
dt2 G<ξk(t, t′) e−(t1−t)2/2σ2

pr

× e−(t2−t)2/2σ2
pr eiω(t−t′), (94)

where σpr is the temporal resolution of the probe field

which generically satisfies σpr � Ω−1
drv. The Gaussian

window functions thus simply serve as picking up the
“period-averaged” lesser Green’s function, which coin-
cides with n = 0 Floquet component of G. Thus,

I(k, ω, t) ∝ ImG<ξk;n=0,m=0(ω; t). (95)

Up to transitory effects, the lesser Green’s function can
be calculated as G< = GR ? Σ< ? GA [26]. To leading or-
der, we may approximate convolutions with zeroth-order
FGM product formula. Each of the required ingredients
for calculating G< can be obtained using the results al-
ready available to us. As a first step, we solve the Dyson’s
equation for GRn;ξ(ω; t):

(ω −mΩ/2− ξ) + GRξ;n,m(ω; t) = δn,0

+
∑
n′

ΣRn′,n′−n+m(ω; t)GRξ;n−n′,n′+m(ω; t) +O(∂t).

(96)

Having calculated ΣRn,m(ω; t) previously from solving the

Floquet-Boltzmann for electrons, GRξ;n,m(ω; t) is obtained
by truncating the above equations in Floquet bands and
solving it as a proper linear system. The advanced
Green’s function is found immediately using the iden-
tity GAξ;n,m(ω; t) = GR∗ξ;−n,m(ω; t). By definition, the

lesser electron self-energy Σ< is related to ΣR/A/K as
Σ< = (ΣK − ΣR + ΣA)/2. Taking a FW transform, we
find:

Σ<n,m(ω; t) =
1

2

[
ΣKn,m(ω; t)− ΣRn,m(ω; t) + ΣR∗−n,m(ω; t)

]
,

(97)
where we have used the identity ΣAn,m(ω; t) =

ΣR∗−n,m(ω; t). With the knowledge of Σ<n,m, GRξ;n,m,

and GAξ;n,m, G<ξ;n=0,m=0 is calculating by employing the
zeroth-order FGM formula twice. The final result is:

G<ξ;0,0 =
∑

nR,nL,nA

δ(nR + nL + nA)

× GRξ;nR,−nL−nA Σ<nL,−nA+nR GAξ;nA,nR+nL , (98)

where we have dropped the common (ω; t) arguments for
brevity. This procedure is formed for a range of ξ, and
Eq. (95) is used to find the intensity of the tr-ARPES
signal.

Fig. 17 shows an example of the predicted tr-ARPES
signal for Ωdrv = 0.4 Ω0 and A = 0.75 as a function
of ω and ξ. We have traded the momentum transfer
with ξ ≡ εk − εF , the kinetic energy measures from
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FIG. 17. Probing the formation of electronic Floquet bands via tr-ARPES experiments. The heat map plots show
the intensity of the signal at different times in the logarithmic scale. The inset plots show the instantaneous amplitude of the
drive during ramp-up. The white dashed lines indicate the dispersion of the main quasiparticle peak. The drive parameters
are chosen as Ωdrv = 0.4 Ω0 and A = 0.75. The nonlinearity is cubic, and the physical parameters are chosen as described
in Sec. VI. Note the progressive formation of Floquet quasiparticle bands and the softening of the polaronic kink in the main
quasiparticle dispersion as the system heats up. The time-averaged effective mass at the Fermi surface is inversely proportional
to the slope of the main quasiparticle dispersion at ξ = 0 and is shown separately in Fig. 15 for better visibility.

the Fermi surface. The period-averaged quasiparticle
dispersion Eξ is obtained by locating the main coher-
ent peak of the period-averaged retarded propagator by
solving Re [GRξ;n=0(Eξ; t)]

−1 = 0 and is shown as white
dashed lines. Before the drive is ramped up, the signal
matches what is expected from a coupled electron / op-
tical phonon system at equilibrium [18]: filled states for
ω < 0, decreased quasiparticle coherence at ω = ±Ω0,
and a larger effective mass for |ω| < Ω0. The effective
mass is obtained as m/〈m∗(t)〉 = dEξ(ω = 0)/dξ|ξ=0

and is shown in the second column of Fig. 15 for the
same drive parameters as Fig. 17.

An intriguing feature of Fig. 17 is the progressive for-
mation of electronic Floquet bands as the drive is ramped
up. The dynamical formation of Floquet bands in driven
systems has been observed before experimentally in tr-
ARPES spectroscopy of topological insulators [58]. The
frequency spacing between the emerging Floquet bands
is set by 2Ωdrv. Therefore, the ARPES experiment along
with the available spectroscopic measurements of the
phonon spectra will inform about the origin of the persis-
tent drive after the pump pulse is gone. We remark that
the higher Floquet bands might be challenging to ob-
serve from noisy measurements due to the small weight
of these extra features. For example, at t = 15 τph and
for the strong drive parameters used in Fig. 17, the in-
tensity of the first Floquet band is nearly four orders of
magnitude smaller than the main quasiparticle peak.

VII. CONCLUSIONS AND OUTLOOK

In this paper, we studied the parametric resonances of
driven nonlinear lattices and discussed its role in enhanc-
ing the effective phonon-mediated electron-electron at-

traction. We presented the analysis in two stages. First,
we gave a qualitative and intuitive account using pertur-
bation theory, classical dynamics, and the Floquet BCS
theory in Sec. III in order to elucidate the mechanism
of parametric amplification of phonon-mediated Cooper
pairing. Next, we developed a quantum kinetic formalism
based on an extension of the Migdal-Eliashberg theory
to driven systems and nonlinear lattices in Sec. IV C and
revisited the problem one more time and in full detail
in Sec. VI. The numerically tractable quantum kinetic
formalism allowed us to study both the intricate tran-
sient and long-time dynamics of the system following the
pump pulse. In particular, we investigated the role of
parametric phonon generation and subsequent heating
of electrons in destroying the transient superconducting
instability. Finally, we predicted the transient forma-
tion of electronic Floquet bands as an experimentally ob-
servable consequence of parametrically driven phonons in
Sec. VI C. This prediction can be tested in time-resolved
ARPES experiments and can be used to establish co-
herent driving at work and better understand material-
specific mechanisms of parametric drive generation.

This work can be extended in several directions. So
far, we have studied the evolution of the system in the
normal-conducting state and treated Cooper pairing as
an instability. An important extension of this work is
to take into account dynamical symmetry breaking and
the formation of the Floquet superconducting gap. This
can be done most naturally by generalizing the Floquet-
Boltzmann kinetic equation of electrons to symmetry
broken states and deriving a time-dependent Ginzburg-
Landau theory for the slowly-varying Floquet compo-
nents of the gap {∆n(x, t)}. This extension allows us to
address a broad range of largely unexplored theoretical
questions, such as the scaling behavior of the coherently-
driven system in the critical regime, and the nature of
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Kibble-Zurek defects [59, 60] formed as a result of non-
adiabatic preparation of the ordered state. Furthermore,
extension to gapped states allows us to calculate the
nonequilibrium optical conductivity and make a more
direct connection to pump-probe experiments [12]. A
related problem is the question of the lifetime of the
transient superconducting state. We find superconduc-
tivity as a transient phenomenon as shown in Fig. 13.
It arises when electron-phonon interaction is already en-
hanced and before electrons have been heated too much.
To give a more detailed analysis of the duration of the
transient regime, we need to allow for opening of the
quasiparticle gap which we expect to make transient su-
perconductivity last longer.

The role of light-induced changes in the screened
Coulomb interaction has been recently highlighted in the
phenomenology of the light-induced superconductivity in
K3C60 in Refs. [12, 32]. Furthermore, the shortcom-
ings of Migdal-Eliashberg theory for providing an ac-
curate description of fullerene superconductors and ne-
cessity of beyond-Migdal vertex corrections have been
indicated in Ref. [61]. Therefore, it is desirable to ex-
tend the present formalism to include both Coulomb in-
teraction and beyond-Migdal vertex corrections [15] and
to study their role to the extent relevant to the mech-
anism discussed in this paper. In equilibrium, the ef-
fects of retarded Coulomb interaction can be incorpo-
rated in the Migdal-Eliashberg theory using the Morel-
Anderson (MA) pseudo-potential [42, 62, 63]. A nonequi-
librium extension of this result is lacking and must be
worked out. A naive application of the equilibrium re-
sult suggests that the MA pseudo-potential µ∗ = µc/[1+
µc log(εF /ωph)] directly decreases the mass enhancement
factor, i.e. λ(t) → λ(t) − µ∗. Here, µc = ν(0)Uc and Uc
is the typical screened Coulomb interaction between con-
duction electrons. In this paper, we showed that para-
metric driving enhances Cooper pairing by increasing
〈λ(t)〉 and its temporal variations. Since the Coulomb
interaction does not directly play a role in the paramet-
ric resonance of the lattice, we expect our conclusions to
remain valid. Moreover, Ref. [32] suggests that µc effec-
tively decreases in the pumped system, in which case, the
parametric amplification of λ(t) and decreased µ∗ both
work toward enhancing Cooper pair formation in K3C60.
The role of dynamical vertex corrections and the status of
Migdal’s theorem, in particular in the presence of the ex-
ternal drive, is less clear and must be carefully reassessed
via real-time techniques in the spirit of the analysis pro-
vided for dynamical electron-mediated nonlinearities in
Appendix E.

We note that photo-induced enhancement of super-
conductivity has also been observed in high-Tc cuprates
[64] along with several theoretical proposals for explain-
ing these experiments [20, 65–69]. Cuprate supercon-
ductors are considerably more complicated than conven-
tional electron-phonon superconductors that we consid-
ered in this paper. Superconductivity in these materi-
als is likely to be of non-phononic origin and there are

several competing orders. However, we expect that the
ideas explored here may be relevant for light-enhanced
superconductivity in these materials as well. For exam-
ple, periodic lattice modulation changes the strength of
magnetic exchange interactions and may lead to paramet-
rically amplified electron-paramagnon coupling. Param-
agnons are expected to play the role of phonons in un-
conventional superconductors.

Last but not least, another intriguing future research
direction which is also of much technological interest, is
to extend the present analysis to open driven-dissipative
systems along with accurate material-specific ab initio
calculations. The transient light-induced superconduct-
ing state can be enhanced further or even stabilized
by continuous pumping of the lattice and simultaneous
cooling. Such a hybrid “pumped-and-cooled” device
may operate more efficiently compared to the usual
refrigerated superconductor depending on the highest
achievable effective critical temperature and the pump
absorption power of the material.

Note added— Shortly after the submission of our work,
the work by Murakami at al. appeared [70] that studies
non-equilibrium superconductivity via Floquet DMFT
approach in a related electron-phonon model which in
addition includes coupling to electronic and phononic
baths. The study mainly focuses on non-equilibrium
steady states in the presence of continuous pumping and
finds a net suppression or destruction of superconduct-
ing coherence. The paper also explores the initial dy-
namical instability of the normal state and the decay
of superconducting fluctuations, though, an appreciable
transient instability is not noticed. Given the significant
differences between the two models and the explored pa-
rameters regimes, in particular, the high initial tempera-
ture T = 3Tc and coupling to thermal baths that lead to
significant suppression of pairing coherence, we believe
the results of Murakami at al. are not in contradiction
with ours. Further insights can be attained with a more
systematic study of the parameter space of the models.
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Appendix A: The parametrically driven harmonic
oscillator

We studied the problem of parametrically driven har-
monic oscillator formally in Sec. III in the context of the
resonant amplification of phonon response. Some of the
technical details were left out and we present them here.

We presented the solution of the Heisenberg equation
in terms of four special functions Mαβ(t, t′), α, β = P,Q
(see Eq. 16). These functions can be expressed in terms
of even and odd Mathieu functions and their derivatives
as follows:

MQQ(t, t′) =
s(Ωdrvt) c′(Ωdrvt

′)− c(Ωdrvt) s′(Ωdrvt
′)

s(Ωdrvt′) c′(Ωdrvt′)− c(Ωdrvt′) s′(Ωdrvt′)
,

MQP (t, t′) =
s(Ωdrvt) c(Ωdrvt

′)− c(Ωdrvt) s(Ωdrvt
′)

s(Ωdrvt′) c′(Ωdrvt′)− c(Ωdrvt′) s′(Ωdrvt′)
,

MPQ(t, t′) =
s′(Ωdrvt) c′(Ωdrvt

′)− c′(Ωdrvt) s′(Ωdrvt
′)

s(Ωdrvt′) c′(Ωdrvt′)− c(Ωdrvt′) s′(Ωdrvt′)
,

MPP (t, t′) =
s(Ωdrvt) c′(Ωdrvt

′)− s′(Ωdrvt) c(Ωdrvt
′)

s(Ωdrvt′) c′(Ωdrvt′)− c(Ωdrvt′) s′(Ωdrvt′)
.

(A1)

where s(z) ≡ Se(ω2
q/Ω

2
drv,−αω2

q/Ω
2
drv, z) and c(z) ≡

Ce(ω2
q/Ω

2
drv,−αω2

q/Ω
2
drv, z) denote the odd and even

Mathieu functions with characteristic value ω2
q/Ω

2
drv and

parameter −αω2
q/Ω

2
drv, respectively, and the prime sign

denotes derivatives with respect to z. We showed that
MQP (t, t′) is of particular interest and determines the
retarded phonon response DRQ (t, t′) (see Eq. 17). Here,
we present a series expansion of this function in terms
of the parameter α (see Eq. 12), i.e. MQQ(t, t′) =∑∞
n=0 a

nM
(n)
QQ(t, t′). The first two terms in the series

are given as:

M
(0)
QQ(t, t′) =

Ωdrv

ωq
sin[ωq(t− t′)],

M
(1)
QQ(t, t′) = −ωq cos[Ωdrv(t+ t′)]

2(ω2
q − Ω2

drv)

×
{

(ωq + Ωdrv) sin[(ωq − Ωdrv)(t− t′)]

− (ωq − Ωdrv) sin[(ωq + Ωdrv)(t− t′)]
}
.

(A2)

The higher order terms are increasingly more complex
but can be easily worked out using a computer algebra
system.

Appendix B: Definition and properties of the CTP
Green’s functions

In this appendix, we briefly review the definition of
CTP Green’s functions, their various real-time compo-
nents, and their symmetries.

The CTP Nambu electron propagator is defined as:

Ĝk(t1, t2) = −i
〈
TC

[
Ψk(t1)Ψ†k(t2)

]〉
, (B1)

where Ψk = (ck↑, c
†
−k↓)

T , Ψ†k = (c†k↑, c−k↓), and

Ĝk(t1, t2) is a 2 × 2 matrix in the Nambu space. Here,
C = C+ ∪ C− denotes the round-trip Keldysh contour
where C+ = [t0,+∞) and C− = (+∞, t0], and TC is the
fermionic (anti-symmetric) time ordering operator on C.
Similarly, the real phonon propagator is defined as:

Dq(t1, t2) = −i 〈TC [ϕq(t1)ϕ−q(t2)]〉 , (B2)

where ϕq = b†q+b−q is the Fourier transform of the lattice
displacement operator, and TC is the bosonic (symmetric)
time ordering operator in C. The lesser (<) and greater
(>) real-time Green’s functions are defined as specific
orderings of the two contour times where t1 <C t2 and
t1 >C t2, respectively:

Ĝ<k (t1, t2) = +i
〈

Ψ†k(t2) Ψk(t1)
〉
, (B3a)

Ĝ>k (t1, t2) = −i
〈

Ψk(t1) Ψ†k(t2)
〉
, (B3b)

D<q (t1, t2) = −i 〈ϕ−q(t2)ϕq(t1)〉 , (B3c)

D>q (t1, t2) = −i 〈ϕq(t1)ϕ−q(t2)〉 . (B3d)

The retarded (R), advanced (A), and Keldysh (K) prop-
agators are defined as AR(t1, t2) = θ(t1−t2)[A>(t1, t2)−
A<(t1, t2)], AA(t1, t2) = −θ(t2 − t1)[A>(t1, t2) −
A<(t1, t2)], and AK(t1, t2) = A>(t1, t2) +A<(t1, t2), re-

spectively, where A is either Ĝ or D. We define spec-
tral/statical decomposition of lesser/greater electron and
phonon Green’s functions as follows:

iĜ≷k (t1, t2) =
1

2

[
iĜKk (t1, t2)± Âk(t1, t2)

]
, (B4a)

iD≷q (t1, t2) =
1

2

[
iDKq (t1, t2)± ρq(t1, t2)

]
, (B4b)

These definitions can be thought of as definitions of elec-
tron and phonon spectral functions:

Âk(t1, t2) ≡ i
[
Ĝ>k (t1, t2)− Ĝ<k (t1, t2)

]
, (B5a)

ρq(t1, t2) ≡ i
[
D>q (t1, t2)−D<q (t1, t2)

]
. (B5b)

Similar definitions apply to Green’s functions in
(Floquet-)Wigner representation, and for momentum-
summed Green’s functions. For all Nambu matrix quan-

tities such as Â, iĜK , etc., we define capped Nambu ma-
trices as:

Ǎ ≡ σ̂z Â σ̂z. (B6)
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We finish this appendix by listing a number of useful
symmetry relations in the Wigner representation.

Lemma 1 (symmetries of Nambu functions): We
define time reversal symmetric (TRS) states as being in-
variant under operation (k, ↑) ↔ (−k, ↓). The following
identities hold for a TRS state:

Âk(ω, t)† = Âk(ω, t) (B7a)

Âk(ω, t) = i
[
ĜRk (ω, t)− ĜRk (ω, t)†

]
(B7b)[

iĜKk (ω, t)
]†

= iǦKk (ω, t) (B7c)

Âk(−ω, t) = σ̂x Ǎk(ω, t)∗ σ̂x (B7d)

iĜKk (−ω, t) = −σ̂x
[
iǦKk (ω, t)

]∗
σ̂x (B7e)

(proof) The proofs are elementary and readily follow
from the definitions. The last two identities are less
trivial and require a careful examination of the matrix
elements of Ĝk(ω, t).

Lemma 2 (symmetries of Eliashberg functions):
We define an inversion symmetric (IS) state as being
invariant under operation q ↔ −q. The following iden-
tities hold exactly for inversion symmetric states:

F ρξ,ξ′(ν, t) =
[
F ρξ,ξ′(ν, t)]

∗ = −F ρξ,ξ′(−ν, t) (B8a)

iFKξ,ξ′(ν, t) =
[
iFKξ,ξ′(ν, t)

]∗
= iFKξ,ξ′(−ν, t) (B8b)

(proof) The proofs are elementary and follow from the
definition of Eliashberg functions (Eqs. 48a-48b) and
phonon propagators.

Lemma 3 (symmetries of the Nambu self-energy):
The following identities holds for TRS and IS states:

Σ̂R(−ω, T ) = −σ̂x
[
Σ̌R(ω, T )

]∗
σ̂x (B9a)

iΣ̂K(−ω, T ) = −σ̂x
[
iΣ̌K(ω, T )

]∗
σ̂x (B9b)

(proof) Both identities are easily established by calcu-

lating Σ̂R/K(−ω, T ) using Eqs. (52a)-(52b), changing
integration variables ω′, ν → −ω′,−ν and using Lemma
1 and 2 identities to change the sign of the frequencies
that appear in the electron and phonon propagators.

Appendix C: Proof of GR momentum summation
formula

In this section, we give a proof for GR momentum sum-
mation formula (Eq. 61) using perturbation theory. One
of the assumptions of the lemma is the independence of
ΣR from the momentum variable k. As a result, GR de-
pends on k only via the electronic dispersion ξk. There-
fore, we may trade the momentum variable in GR with ξ
without loss of generality. The Dyson series for GR is:

GRξ = GR0,ξ + GR0,ξ ? ΣR ? GR0,ξ
+ GR0,ξ ? ΣR ? GR0,ξ ? ΣR ? GR0,ξ + . . . , (C1)

where:

GR0,ξ =
1

ω − ξ − i0+
, (C2)

is the non-interacting retarded Green’s function. Let us
consider the second term in the series:

GR0,ξ ? ΣR ? GR0,ξ = GR0,ξ exp

[
i

2
~∂t ~∂ω −

i

2
~∂t ~∂ω

]
×
(

ΣR exp

[
i

2
~∂t ~∂ω −

i

2
~∂t ~∂ω

]
GRξ,0

)
. (C3)

Since ∂tGRξ,0 = 0, if in addition we had ∂tΣ
R(ω, t) = 0,

we would simply get [GR0,ξ]2 ΣR. Expanding the differ-
ential operators in the exponents, it is easily noticed
that every t-derivative of ΣR is accompanied either by
∂ωGR0,ξ = −[GR0,ξ]2, or by GR0,ξ∂ωΣR. Therefore, derivative

corrections due to t-dependence of ΣR are accompanied
by at least one extra power of GR0,ξ. Thus,

GR0,ξ?ΣR?GR0,ξ = [GR0,ξ]2 ΣR+[GR0,ξ]3×O(∂tΣ
R)+. . . (C4)

This result is easily generalized to the nth term in the
Dyson series:

GR0,ξ ? ΣR ? GR0,ξ ? . . . ? GR0,ξ = [GR0,ξ]n [ΣR]n−1

+ [GR0,ξ]n+1 ×O(∂tΣ
R) + . . . (C5)

With this observation, let us integrate the sides of
Eq. (C1) over ξ, considering only the first n terms in
the series. The integral over the first term is trivial:∫ +∞

−∞
dξ GR0,ξ =

∫ +∞

−∞

dξ

ξ − ω + i0+
= −iπ. (C6)

Using Eq. (C4), it is easily shown that the integral over
the second term vanishes:∫ +∞

−∞
dξ GR0,ξ ? ΣR ? GR0,ξ =

ΣR
∫ +∞

−∞

dξ

(ω − ξ + i0+)2

+O(∂tΣ
R)

∫ +∞

−∞

dξ

(ω − ξ + i0+)3
+ [. . .] = 0.

(C7)

This result is due to the fact that every term in the ex-
pansion of the Groenewold-Moyal series has at least a sec-
ond order pole. This the same result holds for all higher
order terms in the Dyson series. Assuming that the or-
der of limit and integrations can be interchanged, and
that the Dyson series converges, we find that the only
non-trivial contribution stems from the non-interacting
Green’s function. This proves the sought after result:∫ +∞

−∞
dξ GRξ =

∫ +∞

−∞
dξ GR0,ξ = −iπ. (C8)
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Appendix D: Calculating phonon excitation density
and phonon squeezing from iDK

We formulated the problem in Sec. IV in
terms of the real phonon propagator Dq(t1, t2) ≡
−i 〈TC [ϕq(t1)ϕ−q(t2)]〉. While this formulation is
convenient and compact, it does not immediately yield
useful physical observables such a phonon number
nq(t) ≡ 〈b†q(t)bq(t)〉 or the anomalous correlations

κq(t) ≡ Re[〈bq(t)b−q(t)〉]. Here, we show that both
quantities can be readily calculated from the Keldysh
phonon correlator in the Wigner representation,
DKq (ω, t), by performing appropriate frequency inte-
grations. This is enabled by the observation that the
interaction and drive terms in the Hamiltonian both
commute with ϕ̂q. The only non-commuting term is the
lattice kinetic energy. Thus, the Heisenberg equation for
ϕ̂q takes the following simple form:

∂tϕ̂q(t) = 2ωqπ̂q(t). (D1)

We assume the q ↔ −q symmetry in this section and
set ~ = 1. The last equation allows us obtain ππ corre-
lators by calculating appropriate time derivatives of DK .
Defining Pq(t1, t2) ≡ −i 〈TC [πq(t1)π−q(t2)]〉, Eq. D1 im-
mediately implies:

Pq(t1, t2) =
1

4ω2
q

∂t1∂t2 Dq(t1, t2). (D2)

At equal times, the Keldysh ϕϕ and ππ correlators eval-
uate to a combination of our sought-after observables, nq
and κq:

(i/2)DKq (t, t) ≡ 1 + 2nq(t) + 2κq(t), (D3a)

(2i)PKq (t, t) ≡ 1 + 2nq(t)− 2κq(t), (D3b)

which together with Eq. (D2) yields:

nq(t) =
1

4
iDKq (t, t) +

1

4
∂t1∂t2 iDKq (t1, t2)|t1=t2=t −

1

2
,

(D4a)

κq(t) =
1

4
iDKq (t, t)− 1

4
∂t1∂t2 iDKq (t1, t2)|t1=t2=t.

(D4b)

In the Wigner representation, ∂t1∂t2 → ν2 and we find:

nq(t) =
1

4

∫ +∞

−∞

dν

2π

(
1 +

ν2

ω2
q

)
iDKq (ν, t)− 1

2
, (D5a)

κq(t) =
1

4

∫ +∞

−∞

dν

2π

(
1− ν2

ω2
q

)
iDKq (ν, t). (D5b)

The anomalous phonon density can be related to
phonon squeezing with additional considerations. First,

we observe Im[〈bq(t)b−q(t)〉] = 0 in our problem
since nonlinearities produce modulation of ϕq ϕ−q (as
opposed to πq π−q; see Sec. III). Assuming that a

low temperature state is maintained at all times and
weak electron-phonon coupling, the phonon state can
be approximated as product of two-modes squeezed
states of ±q on the top of a coherent state for

q = 0, i.e. |Φ(t)〉 ∼ {∏q exp[ξq(t)(b†q b
†
−q −

b−q bq)]} exp[
√
Nϕ0(t)(b†0 − b0)/2] |0〉 throughout the

evolution. Here, ξq(t) is the momentum-squeezing
strength and ϕ0(t) is the coherent displacement. For
q 6= 0, this ansatz provides the following relation be-
tween the squeezing parameter ξq(t) and the anomalous
phonon density:

κq(t) =
1

2
sinh[2ξq(t)] (D6)

For weak nonlinearities, the squeezing is also weak
|ξq(t)| � 1 and we find ξq(t) = κq(t) + O(κ3

q). Thus,
the anomalous phonon density directly yields the squeez-
ing parameter. We have shown the period-averaged
〈cosh[ξq(t)]〉−1 ≈ 2〈κ2

q(t)〉 in Fig. 9(d). It is noticed that
squeezing significantly increases as the drive is ramped-
up, consistent with the physics of the parametrically
driven harmonic oscillator.

Appendix E: Electron-mediated phonon dissipation
and nonlinearities

The evolution equation for phonon propagators was
derived in Sec. IV A as well as their counterparts in the
Floquet-Boltzmann kinetic approximation in Sec. IV D.
So long as the evolution of phonons is concerned, elec-
trons play the role of a quantum bath through memory
convolution integrals Πq ?Dq and Dq ? Πq appearing in
Eqs. (31a) and (31b), respectively.

In this section, we derive approximate expressions for
Πq assuming that the electrons remain in the initial
low-temperature degenerate regime. Meanwhile, we also
study the contribution of electrons to phonon nonlinear-
ities. Both objectives can be achieved by integrating out
the electrons from the Lagrangian L[ϕ,Ψ] and obtaining
a phonon-only effective action Seff [ϕ]. Expanding the ef-
fective action in the electron-phonon coupling, we obtain
the bath term at the second order. Higher order terms
give the electronic contribution to lattice nonlinearities.
Since these corrections have a strong dynamical nature,
it is conceivable that they could become large when cer-
tain resonance conditions are met; indeed we find this to
be case. In other words, even though the intrinsic lat-
tice nonlinearities might be small, coupling to conduction
electrons effectively produces large nonlinearities in the
presence of a near-resonant drive.

We start our discussion with the electron-phonon La-
grangian:

L[ϕ,Ψ] = L0[ϕ] +
∑
k

Ψ†k (i∂tI− ξkσ̂3) Ψk

− 1√
N

∑
k,k′

gk,k′ ϕk−k′ Ψ
†
k′ σ̂3Ψk, (E1)
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where L0[ϕ] = −∑q(2ωq)−1 ϕq

(
∂2
t + ω2

q

)
ϕ−q/2 +

(Λ/2) |F (t)|2
√
N ϕq=0 is the quadratic part, including

the external drive. It is most convenient to perform the
calculations in the real time formalism in order to avoid
tedious analytical continuation procedure required in the
Matsubara formalism. Integrating out the electrons, we
find:

Seff [ϕ] =

∫
C

dtL0[ϕ]− iTr ln

[
Ĝ−1

0,k(t, t′) δk,k′

− 1√
N
gk,k′ σ̂3 ϕk−k′(t) δC(t, t

′) (E2)

Here, Ĝ−1
0,k(t, t′) = (i∂t − ξk σ̂3)δC(t, t

′) and the trace im-
plies momentum summation, contour time integration,
and Nambu space summation. Expanding the second
term in powers of g, we find:

Seff [ϕ] = S0[ϕ] +

∞∑
n=1

Sn[ϕ],

Sn[ϕ] =
i

nNn/2

∑
ki

∫
C

dt1 . . . dtn Tr
[
Ĝ0,k1

(t1, t2) σ̂z

× Ĝ0,k2
(t2, t3) σ̂z . . . Ĝ0,kn(tn, t1) σ̂z

]
× gk1,k2

gk2,k3
. . . gkn,k1

× ϕk1−k2
(t2)ϕk2−k3

(t3) . . . ϕkn−k1
(t1). (E3)

The first order correction S1[ϕ] vanishes for Holstein-type
screened electron-phonon couplings (see the discussion
after Eq. 35). The sum of higher order vertices can be
diagrammatically represented as:

∞∑
n=2

Sn[ϕ] = + + + . . .

(E4)
It is convenient to make the forward/backward contour
time indices explicit and perform a Keldysh rotation of
ϕ± fields into symmetric (“classical”) and anti-symmetric
(“quantum”) components, ϕα = Uαβ ϕβ :(

ϕc

ϕq

)
=

1√
2

(
1 1
1 −1

)(
ϕ+

ϕ−

)
. (E5)

The bare action in Keldysh representation reads:

S0[ϕ] = −1

2

∑
q

1

2ωq

∫ ∞
−∞

dt
[
ϕcq (∂2

t + ω2
q)ϕq−q

+ ϕqq (∂2
t + ω2

q)ϕc−q
]

+
Λ

2

∫ +∞

−∞
dt |F (t)|2

√
2N ϕ̄qq=0(t). (E6)

Likewise, the higher order terms in the Keldysh repre-
sentation read:

Sn[ϕ] =
1

n!Nn/2−1

∑
qi

∫ +∞

−∞
dt1 . . . dtn

V α1 ... αn
q1 ...qn (t1, . . . , tn)ϕα1

q1
(t1) . . . ϕαnqn (tn) δ

(∑
i

qi

)
,

(E7)

where:

V α1 ... αn
q1 ...qn (t1, . . . , tn) =

i(n− 1)!

N

∑
k

Tr
[
Ĝ
µ1ν2

0,k+q1
(t1, t2)

× σ̂z Ĝ
µ2ν3

0,k+q1+q2
(t2, t3) σ̂z . . . Ĝ

µnν1

0,k (tn, t1) σ̂z

]
× gk,k+q1

gk+q1,k+q1+q2
. . . gk+q1+...qn−1,k

× Γα1µ1ν1 . . . Γαnµnνn , (E8)

and Γαµν =
∑
β UαβUµβUνβσ

z
ββ is a vertex in the

Keldysh space. Finally, Ĝ0 is the bare propagator in the
Keldysh space:

Ĝ =

(
ĜK ĜR
ĜA 0

)
. (E9)

Note that each matrix element additionally carries a 2×2
Nambu structure. We restrict our analysis to the normal
state hereafter, in which case, the Nambu structure is
immaterial. The Nambu space traces reduce to a mul-
tiplicative factor of 2 (= total spin degeneracy) for each
electron loop. In the following sections, we briefly study
the first few vertices in succession.

1. The second order correction: Landau damping

A direct calculation using Eq. (E8) gives the matrix
elements of Πα1α2

q (t1, t2) ≡ −V α1α2
q,−q (t1, t2):

Πα1α2
q,−q(t1, t2) =

(
0 ΠA

q (t1, t2)
ΠR

q (t1, t2) ΠK
q (t1, t2)

)
, (E10)

where:

ΠA
q (t1, t2) = − i

N

∑
k

|gk,k+q|2
[
GA0,k+q(t1, t2)GK0,k(t2, t1)

+ GK0,k+q(t1, t2)GR0,k(t2, t1)
]
,

ΠR
q (t1, t2) = − i

N

∑
k

|gk,k+q|2
[
GK0,k+q(t1, t2)GA0,k(t2, t1)

+ GR0,k+q(t1, t2)GK0,k(t2, t1)
]
,

ΠK
q (t1, t2) = − i

N

∑
k

|gk,k+q|2
[
GR0,k+q(t1, t2)GA0,k(t2, t1)

+ GA0,k+q(t1, t2)GR0,k(t2, t1) + GK0,k+q(t1, t2)GK0,k(t2, t1)
]
.

(E11)

The bare propagators in equilibrium are functions of
t1 − t2 and admit the following standard Fourier rep-
resentation:

GR/Ak (ω) =
1

ω − ξk ± i0+
,
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GKk (ω) = −2πi δ(ω − ξk)[1− 2nF (ξk)]. (E12)

Calculating Π
R/A/K
q in equilibrium is standard and yields

the well-known Lindhard function [44]:

ΠR/A
q (ω) =

2

N

∑
k

|gk,k+q|2
nF (ξk)− nF (ξk+q)

ω − ξk+q + ξk ± i0+
,

(E13a)

iΠK
q (ω) = −2Im[ΠR

q (ω)] coth(βω/2). (E13b)

Combining S2[ϕ] with the bare action S0[ϕ] yields the
full quadratic part of the effective phonon-only action
Squad[ϕ]:

Squad[ϕ] = −1

2

∑
q

1

2ωq

∫ ∞
−∞

dt1 dt2 ϕ
α1
q (t1)

×
[
(∂2
t1 +ω2

q) σ̂α1α2
x δ(t1− t2) + 2ωqΠα1β1(t1, t2)

]
ϕα2
−q(t2)

+ (Λ/2)

∫ +∞

−∞
dt |F (t)|2

√
2N ϕqq=0(t) (E14)

The quantity Γ
(ph)
q (ω) ≡ −2Im[ΠR

q (ω)] is of particular in-
terest and represents the spectrum of the dissipative bath
the electronic degrees of freedom provide for phonons.
We observe that Γq=0(ω) = 0 for finite ω, which is an
expected consequence of momentum conservation. Thus,
the uniform lattice displacement 〈ϕc(t)〉 experiences no
friction from electrons. Employing the simplifications in-
troduced in Sec. IV B, i.e. flat EDOS, local approxima-
tion for Π, and k,q-independent e-p coupling, we can cal-

culate the local bath spectrum Γ
(ph)
` analytically at T = 0:

Γ
(ph)
` (ω;T = 0) ≡ 1

N

∑
q

Γq(ω;T = 0)

≈ 4π|g|2
∫ 0

−ω
dξ ν(ξ) ν(ξ + ω)

≈
(
4π |g|2ν(0)2

)
ω. (E15)

Given that the energy density of electrons is much lower
than Einstein phonon energy scale in the present context,
it is an excellent approximation to use the last equation
even for nonequilibrium electronic states. The last re-
sult is akin to the well-known Allen’s formula [71] which
is often used to infer electron-phonon coupling from the
phonon linewidth broadening. Finally, one can calcu-
late Re Π(`)(ω;T = 0) within the same approximations
to find:

Re ΠR
` (ω) ≈

2|g|2ν(0)2

∫ Wel/2

0

∫ Wel/2

0

(ξ1 + ξ2) dξ1 dξ2
(ω + i0+)2 − (ξ1 + ξ2)2

.

(E16)

In the Migdal limit, ω � Wel for all ω of inter-
est. To leading order in ω/Wel, we find Re ΠR

` (ω) ≈

−4|g|2ν(0)2 ln(2)Wel which corresponds to a constant
Lamb shift.

In summary, within the validity limits of the simplified
model of Sec. IV B, the dissipative effect of electrons on
the dynamics of optical phonons can be modeled as a
local quantum Ohmic bath:

ΠR
` (ω) ' ωL − iγ`ω/2,

ΠK
` (ω) ' γ` ω coth(βω/2), (E17)

where ωL ≈ −4|g|2ν(0)2 ln(2)W is the Lamb shift and
γ` = 2π ω0 ν(0)λ is the dimensionless friction constant
expressed in terms of the mass enhancement factor λ
(see Eq. 55). Furthermore, the above expressions remain
valid as long as the electrons approximately remain in a
quantum degenerate state.

2. The third-order correction: electron-mediated
cubic nonlinearity

The cubic vertex V α1,α2,α3
q1,q2,q3

has a complicated spatial
and temporal structure due the nonlocality of electrons.
Here, we rather focus on calculating the retarded phonon
self-energy correction that arises from this cubic vertex
rather than a general analysis. Recalling that the lattice
has a large coherent uniform displacement in our prob-
lem, we find that the leading self-energy correction is ob-
tained by contracting one of the legs (the third leg with-
out the loss of generality) with the classical displacement
ϕ0. The resulting self-energy correction, Π∆,q(t1, t2), has
the following diagrammatic representation:

ϕ0(τ)

k + q

kk

t1 t2

qq

Integration over τ , the time argument of ϕ0(τ), is im-
plied. Contracting the third leg with ϕ0 sets α3 to 1, i.e.
to the “classical” Keldysh index. The retarded phonon
self-energy is obtained by further choosing α1 = 2 and
α2 = 1 (e.g. see Eq. E10). Performing the intermediate
Keldysh space traces in Eq. (E8), we find:

V 2,1,1
q,−q,0(t1, t2, τ) =

i
√

2

N

∑
k

|gk,k+q|2gk,k

×
[
GKk+q(t1, t2)GAk (t2, τ)GAk (τ, t1)

+ GRk+q(t1, t2)GKk (t2, τ)GAk (τ, t1)

+ GRk+q(t1, t2)GRk (t2, τ)GKk (τ, t1)
]
. (E18)

Notice that the electron lines, starting form the k + q
line and traversing counter clockwise, assume the follow-
ing Keldysh space labels: KAA, RKA, RRK. It can be
shown that the same structure applies to higher order
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single-electron-loop vertices: with N fermion propaga-
tors in a loop and N − 2 classical field contractions, the
retarded self-energy comprises N terms, and the elec-
tron propagators in each term have Keldysh space labels
[R . . . R]K[A . . . A] in a counter clockwise fashion. The
index subsets [R . . . R] and [A . . . A] comprise N − 1 in-
dices, and either subset can be empty (for example, see
the next section for the quartic vertex).

The overall symmetry factor can be worked out as
follows: 1/3! from the definition of S3[ϕ], 3 choices for
the classical leg, 2 choices for attaching one of the two
remaining legs to the left external point, and a factor

of i2 from the two phonon propagators, amounting to
2× 3× i2/3! = −1. Thus, we obtain:

ΠR
∆,q(t1, t2) = −

∫ +∞

−∞
dτ

2
√
Nϕ0(τ)√

2
V 2,1,1
q,−q,0(t1, t2, τ)

(E19)

Note that ϕq=0(τ) = (1/
√
N)
∑
j ϕj(τ) =

√
Nϕ0(τ),

where ϕj(τ) = ϕ0(τ) is the uniform ionic displacement

at site j. Also, the factor 2/
√

2 arises from the definition

of the “classical” component, i.e. ϕc = (ϕ+
0 + ϕ−0 )

√
2 =

2ϕ0/
√

2. To proceed, we assume ϕ0(τ) = AeiΩτ and a
thermal state for electrons. Taking a Wigner transform
(t1, t2)→ (ω, t), we find:

ΠR
∆,q(ω, t) = (−2i)A

1

N

∑
k

|gk,k+q|2 gk,k
∫ +∞

−∞
dτ eiΩτ

∫ +∞

−∞
dt eiωs

∫
dω1

2π

dω2

2π

dω3

2π
e−iω1s e−iω2(t−s/2−τ)

× e−iω3(τ−t−s/2)
[
GKk+q(ω1)GAk (ω2)GAk (ω3) + GRk+q(ω1)GKk (ω2)GAk (ω3) + GRk+q(ω1)GRk (ω2)GKk (ω3)

]
. (E20)

Performing the time integrals and subsequently the fre-
quency integrals over ω1 and ω2 is a lengthy calculation
and we quote the final result:

ΠR
∆,q(ω, t) = −4AeiΩt

1

N

∑
k

|gk,k+q|2gk,k

× nF (ξk)− nF (ξk+q)

(ω − ξk+q + ξk + i0+)2 − Ω2/4
. (E21)

We recall that the uniform displacement ϕ0(τ) approx-
imately takes the form ϕ0(τ) ≈ ϕ0 + ϕ1 cos(2Ωdrvt) =
ϕ0+(ϕ1/2) e2iΩdrvt+(ϕ1/2) e−2iΩdrvt for a slowly ramped-
up drive (see Eq. 5). Accordingly, the complete cu-
bic self-energy correction is the sum of three terms ob-
tained from replacing (A,Ω) → (ϕ0, 0), (ϕ1/2,+2Ωdrv)
and (ϕ1/2,−2Ωdrv) in Eq. (E21).

Since ΠR
∆,q(ω, t) ∝ gk,k, it vanishes for screened

Holstein-type electron-phonon couplings. Had gk,k been
finite, however, ΠR

∆,q(ω, t) would show a divergent be-
havior for q ≈ 0 and ω ' Ωdrv ' ωq. In any event,
ΠR

∆,q(ω, t) remains O(g3) and non-divergent for Ωdrv ∼
ωq/2. Therefore, the electronic contribution to cubic
lattice nonlinearity and its corresponding phonon self-
energy corrections are negligible. We show in the next
section that the situation is very different for the forth
order correction.

3. The forth-order correction: electron-mediated
quartic nonlinearity

We can similarly calculate the contribution of the quar-
tic vertex (the last diagram in Eq. E4) to the phonon
self-energy. In this case, two diagrams with different

topologies comprise the leading order contribution to the
quartic self-energy correction:

(a)
k + q

kk

t1 t2

qq

ϕ0(τ1)ϕ0(τ2)

k

(b)
k
+
q

k

t1 t2
q q

ϕ0(τ1)

ϕ0(τ2)

k

k
+
q

We attach A1e
iΩ1τ1 and A2e

iΩ1τ2 to two of the external
legs. This can be done in 3×2 = 6 and 2×2 = 4 different
ways for (a) and (b) topologies, respectively, this:

ΠR
�,q(ω, t) = − 1

4!N

∫
ds eiωs

∫
dτ1
√

2N A1 e
iΩ1τ1∫

dτ2
√

2N A2 e
iΩ2τ2

[
6V 2,1,1,1

q,−q,0,0(t+ s/2, t− s/2, τ1, τ2)

+ 4V 2,1,1,1
q,0,−q,0(t+ s/2, τ1, t− s/2, τ2)

]
. (E22)

Performing the intermediate Keldysh space summations
in Eq. (E8), we find:

V 2,1,1,1
q,−q,0,0(t1, t2, τ1, τ2) =

3i

N

∑
k

∑
(a1...a4)∈I4

|gk,k+q|2|gk,k|2

× Ga1k+q(t1, t2)Ga2k (t2, τ1)Ga3k (τ1, τ2)Ga4k (τ2, t2),

V 2,1,1,1
q,0,−q,0(t1, τ1, t2, τ2) =

3i

N

∑
k

∑
(a1...a4)∈I4

|gk,k+q|2|gk,k|2

× Ga1k+q(t1, τ1)Ga2k+q(τ1, t2)Ga3k (t2, τ2)Ga4k (τ2, t1),

(E23)



36

where I4 = {KAAA,RKAA,RRKA,RRRK} denotes
the set of Keldysh space labels of the four electron prop-
agators. After a lengthy but straightforward calculation,
we find the contribution of the first diagram to be:

Π
(a),R
�,q (ω, t) = −3i

2
A1A2 e

i(Ω1+Ω2)t 1

N

∑
k

|gk,k+q|2

× |gk,k|2
∑

(a1...a4)∈I4

∫
dω4

2π
Ga1k+q(ω + ω4 − Ω1/2− Ω2/2)

× Ga2k (ω4 − Ω1 − Ω2)Ga3k (ω4 − Ω2)Ga4k (ω4). (E24)

Similarly, the contribution of the second diagram is found
as:

Π
(b),R
�,q (ω, t) = −2i A1A2 e

i(Ω1+Ω2)t 1

N

∑
k

|gk,k+q|2

× |gk,k|2
∑

(a1...a4)∈I4

∫
dω4

2π
Ga1k+q(ω + ω4 − Ω1/2− Ω2/2)

× Ga2k+q(ω + ω4 + Ω1/2−Ω2/2)Ga3k (ω4 −Ω2)Ga4k (ω4).

(E25)

The ω4-integration is easily performed since for each
choice of Keldysh space labels (a1 . . . a4) ∈ I4, one
of the electrons is on shell (Keldysh) and fixes the
value of ω4. Assuming a coherent displacement like
ϕ0(τ) = ϕ0 + ϕ1 cos(2Ωdrvτ), the resulting self-energy
contributions will have 3 contributions: a constant
(dc) contribution, a contribution ∝ cos(2Ωdrvt), and
a contribution ∝ cos(4Ωdrvt). Each contribution can
be found by making appropriate choices for (A1,Ω1)
and (A2,Ω2). The most interesting contribution is
the one ∝ cos(4Ωdrvt) which is found by substitut-
ing (A1, A2; Ω1,Ω2) → (ϕ1/2, ϕ1/2;±2Ωdrv,±Ωdrv) in
Eqs. (E24)-(E25) and summing up the four contributions.
We quote the final result from this lengthy calculation:

ΠR,ac
�,q (ω, t) =

3

4
ϕ2

1 cos(4Ωdrvt)
1

N

∑
k

|gk,k+q|2|gk,k|2

×
{

[1− 2nF (ξk)]
Ak,q

Bk,q
+ [1− 2nF (ξk+q)]

Ck,q

Dk,q

}
,

(E26)

where:

Ak,q = ξ2
k (ξk+q − ω)(2ξk + 3ξk+q − 3ω)

+ 4ξkΩ2
drv(ξk − 2ξk+q + 2ω)− 64Ω4

drv,

Bk,q =
(
ξ4
k − 20ξ2

kΩ2
drv + 64Ω4

drv

)
(ξk+q − ω)

×
[
(ξk+q − ω)2 − 4Ω2

drv

]
,

Ck,q = ξk+q(2ξk + ξk+q + 2ω) + 4Ω2
drv,

Dk,q = (ξk + ω)(ξ4
k+q − 4Ω2

drv)[(ξk+q + ω)2 − 4Ω2
drv].

(E27)

As in the cubic vertex case, this contribution also van-
ishes for a perfectly screened Holstein-type electron-

phonon coupling since ΠR,ac
�,q (ω, t) ∝ |gk,k|2. In a more

realistic model, gk,k is generically non-vanishing.

The k-integral in Eq. (E26) can be calculated in the
limit q ≈ 0 and assuming a constant electronic density
of states and zero temperature. In the vicinity of the
parametric resonance Ωdrv ∼ ωq/2, we find:

ΠR,ac
�,q≈0(ωq, t) ' cos(2ωqt)

3ν(0) |gk,k|4 ϕ2
1

2ω2
q

× ln

[
2Ωdrv − ωq

4ωq

]
+O(1). (E28)

The logarithmic divergence could be anticipated from
Dk,q ∝ (ω2

q − 4Ω2
drv) in the limit ω = ωq and q ≈ 0.

The above finding has a consequential implication: the
electronic contribution to the lattice nonlinearity, even
though is ∼ O(g2) and small in general, in the presence
of coherent lattice oscillations leads to a self-energy cor-
rection that diverges logarithmically in the vicinity of
Ωdrv ∼ ωq/2. Thus, even if purely ionic contributions to
the lattice nonlinearity is small, large nonlinearities will
be dynamically generated as a matter of coupling to elec-

trons. Also, note that ΠR,ac
�,q≈0(ωq, t) ∝ cos(2ωqt) which is

precisely the COM time-dependence required for giving
rise to parametric amplification of the lattice response as
discussed in Sec. III.

Appendix F: Summary of numerical methods

In this appendix, we provide a summary of numerical
methods for solving the quantum Floquet-Boltzmann ki-
netic equations for the lattice and electronic degrees of
freedom. In reality, the two systems are coupled and must
propagated forward in time self-consistently. The pertur-
bative framework adopted in this work (when physically
permissible), allows us to study the two systems in iter-
ations: the dynamics of the lattice is worked out assum-
ing unperturbed equilibrium electron propagators, the
nonequilibrium correction to electron propagators elec-
trons are worked out on the backdrop of the driven lat-
tice, and so on; see Fig. 7. This iterative procedure is
expected to converge to the self-consistent solution of the
fully coupled system in the weak-coupling limit.

1. Solving the Quantum Floquet-Boltzmann
kinetic equation for lattice displacement and phonon

propagators

The quantum Floquet-Boltzmann kinetic equations for
the lattice displacement and phonon propagators were
worked out in Sec. IV D. The final result is the coupled
system of equations given in Eq. (44a), Eqs. (45a)-(45b),
and Eqs. (46a)-(46b). Coupling to electrons only ap-

pear in the bath term, Π
(`);R/A/K
n,m (ω; t), which we as-

sume is given to us in this section. We take a further
simplifying step and neglect the COM time dependence
of Π(`) which in indeed the case if the bath is approxi-
mately calculated using equilibrium electron propagators
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(see Sec. E 1). The following analysis can be easily gen-
eralized for time-dependent baths, e.g. as required for
the next iterations if one were to follow the perturbative
decoupling recipe mentioned above.

The major difficulty in time-stepping Eqs. (45a)-(45b)
and Eqs. (46a)-(46b) using ODE solvers is three-fold:

1. Time-derivatives appears on both sides of equa-
tions, and ∂t of different Floquet components

∂tDR/Kn,m (ω; t) are coupled due to the lattice nonlin-

earity and the bath. In other words, ∂tDR/Kn,m (ω; t)
is only implicitly given by Eqs. (45a)-(45b) and
Eqs. (46a)-(46b).

2. We have two sets of evolution equations for the
retarded and Keldysh propagators: one obtained
from the forward KB equation (Eqs. 45a and
46a), and another from the backward KB equation
(Eqs. 45b and 46b). In general, these two are com-
plementary. For instance, the direct numerical so-
lution of two-time propagators requires the forward
and backward equations to step the propagators
forward in the first and second times, respectively,
e.g. see Ref. [72]. In the kinetic approximation,
however, only the COM time is stepped forward
while the relative time is transformed to the fre-
quency domain and is carried as a label. In theory,
one may choose to work with either of the forward
or backward equations for time stepping as both
are correct to O(∂t). However, the mixing of large
non-gradient terms and small gradient terms leads
to undesirable numerical errors.

3. We found the system to be marginally stiff, re-
quiring a robust ODE solver with adaptive time-
stepping and local error control. This leads to un-
avoidably long run times. The application of stiff
solvers is challenging as the Jacobian of the system
is dense and is difficult to calculate.

Let us note that we do not need to calcu-
late DA as a separate quantity since the identity
DR(t1, t2) = DA(t2, t1) implies DAn (ω; t) = DRn (−ω; t).
Furthermore, the exact identities DR−n(ω) = [DRn (−ω)]∗,

iDK−n(ω) = [iDKn (−ω)]∗, and iDKn (−ω) = iDKn (ω) allow
us to restrict the numerical calculation to non-negative
Floquet indices.

Setting up the linear system and calculating the explicit

∂tDR/Kn,m (ω; t)— The second issue mentioned above can be
circumvented using anti-symmetric and symmetric com-
binations of Eqs. (45a)-(45b) and Eqs. (46a)-(46b), re-
spectively. The issue of implicitness, however, remains
challenging. In particular, the ω-integral appearing in
χn(t) and the appearance of ∂tUn(t) in the kinetic equa-
tions implies that neither Floquet indinces, nor ω are
“good” numbers. In other words, the kinetic equations
of the lattice displacement and phonon propagators pose

a dense linear system for ∂tDR/Kn,m (ω; t) and ∂tϕn(t). In

order to find ∂tϕn(t) and ∂tDR/Kn,m (ω; t) explicitly, at each

time t, we carefully index ∂tDR/Kn,m (±ω; t) and ∂tϕn(t) for
all (ω, n,m), cast the coupled kinetic equations into a
linear system and solve it via LU decomposition.

We perform the calculations on a regular frequency
grid ω ∈ [−ωM , ωM ] where ωM is a high frequency cutoff.
The grid spacing is chosen as rational fraction of Ω/2
close to 0.1γ` in order to ensure that ω ± nΩ/2 belongs
to the grid. This allows us to identify a large fraction
of unknown time-derivatives and matrix elements with
one another and greatly reduce the dimension of the
linear system. The ω-derivatives are calculated using
the 5-point finite difference approximation, and the
ω-integral appearing in Eq. (44c) is approximated using
the trapezoid rule. We choose the Floquet cutoff nD = 2,
and the frequency cutoff ωM = 2ω0 + 5γ` + (nD + 1)Ω.
This choice ensures that all involved propagators remain
small and negligible for |ω| > ωM . We carefully checked
that increasing ωM and nD had a negligible and con-
trollably small effect on the results. For an ω-grid with
∼ 500 points, one needs to solve a linear system of size
∼ 6000 × 6000 for each calculation of the explicit time
derivatives.

Initial thermal state and renormalized phonon
frequency— The lattice is in a thermal equilibrium
state at the bath temperature before the drive ramped
up. To find conditions describing the equilibrium
state, we set the external drive and time derivatives
to zero in the described evolution equations, assume
ϕn(t) → ϕ0 δn,0, Un(t) → U0 δn,0, χn(t) → χ0 δn,0,

and DR/A/Kn (ω) → δn,0DR/A/K0 (ω). This leads to the
following set of coupled equations:(
ω2

0 −
1

3
ω0κ4 ϕ

2
0 − ω0κ4 χ0 − ωκ3 ϕ0

)
ϕ0 − ω0κ3 χ0 = 0,

DR/A0 (ω) =
2ω0

ω2 − ω2
0 − 2ω0ωL − 2ω0U0 ± iγ`ω

,

iDK0 (ω) =
4ω0γ` ω coth(βω/2)

(ω2 − ω2
0 − 2ω0ωL − 2ω0U0)2 + γ2

`ω
2
,

U0 = −κ4

2
ϕ2

0 −
κ4

2
χ0 − κ3ϕ0,

χ0 =
1

2

∫ +∞

−∞

dω

2π
iDK0 (ω). (F1)

The first and last two equations must be solved self-
consistently, leading to a renormalized phonon frequency:

Ω0 ≡
√
ω2

0 + 2ω0ω̄L + 2ω0U0. (F2)

Numerical time stepping— Provided that {ϕn(t)},
{Un(t)}, {χn(t)}, and {iDR,Kn (ω; t)} are known for all ω
on a regular grid, we obtain the explicit time-derivatives
of these quantities using by solving a linear system as
described earlier. We can then invoke an explicit ODE
solver to perform time-stepping. Here, we integrated
the ODE using the adaptive Runge-Kutta-Fehlberg(4,5)
method with local relative error tolerance of 10−6.
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2. Solving the Quantum Floquet-Boltzmann
kinetic equation for electrons

The quantum Floquet-Boltzmann kinetic equation for
{ψn(ω; t)} (see Eq. 58) was derived in Sec. IV E 3. Simi-
lar to the kinetic equation for the phonons, this kinetic
equation is also a formidably dense implicit integral
equation for {∂tψn(ω; t)} in which all frequencies and
Floquet indices are coupled and defies the immediate
application of an explicit ODE solver. In this section, we
describe a numerical strategy for solving this equation.

Preliminaries— As a first step, we use the exact identities
ψ∗n,m(ω) = ψ−n,m(ω) and ΣAn,m(ω) = [ΣR−n,m(ω)]∗ to cast
Eq. (69) into a more useful form:

∂tψn = inΩψn + iΣKn

− iΣRn′,n′−n ψ∗n′−n,n′ + iΣR,∗n′,n′+n ψn′+n,n′

+
1

2
∂ωΣRn′,n′−n ∂tψ

∗
n′−n,n′ +

1

2
∂ωΣR,∗n′,n′+n ∂tψn′+n,n′

− 1

2
∂tΣ

R
n′,n′−n ∂ωψ

∗
n′−n,n′ −

1

2
∂tΣ

R,∗
n′,n′+n ∂ωψn′+n,n′ .

(F3)

We have dropped the common (ω; t) argument from all
quantities for brevity. Summation over repeated indices
is implied everywhere in this section. The numerical in-
tegration of this equation is complicated by the fact that
the self-energies are functionals of ψ, so that ∂tΣ

R terms
implicitly involve ∂tψ. This functional dependence can
be made explicit using Eqs. (70a)-(70b):

ΣRn (ω; t) = F[iDK ]n(t)

+

∫ ∞
0

dω′ K[ρ]n−n′(ω, ω
′; t)ψn(ω′; t),

iΣKn (ω; t) = π

∫ +∞

−∞
dν iFKn−n′(ν; t)ψn(ω − ν; t). (F4)

where:

F[iDK ]n(t) = −iπ
∫ ∞

0

dν iFKn (ν; t),

K[ρ]n(ω, ω′; t) = K[ρ]PV,+n (ω, ω′; t) + K[ρ]δ,+n (ω, ω′; t)

+ K[ρ]PV,−n (ω, ω′; t) + K[ρ]δ,−n (ω, ω′; t),

K[ρ]PV,±n (ω, ω′; t) = PV

∫ +∞

−∞
dν

ρn(ν; t)

ω ∓ ω′ − ν

K[ρ]δ,±n (ω, ω′; t) ≡ −iπ
∫ +∞

−∞
dν ρn(ν; t) δ(ω ∓ ω′ − ν).

(F5)

The following useful identities can be established us-
ing the symmetries of ψ, FK/ρ, and the properties of
Kramers-Kronig transforms:

K[ρ]PV,±n (−ω, ω′;T ) = K[ρ]PV,∓n (ω, ω′;T ) (F6)

=
[
K[ρ]PV,±−n (−ω, ω′;T )

]∗
, (F7)

K[ρ]δ,±n (−ω, ω′;T ) = −K[ρ]δ,∓n (ω, ω′;T ) (F8)

= −
[
K[ρ]δ,±−n (−ω, ω′;T )

]∗
, (F9)

ΣRn (−ω;T ) = −[ΣR−n(ω;T )]∗, (F10)

iΣKn (−ω;T ) = −iΣKn (ω;T ) = [iΣK−n(ω;T )]∗

(F11)

As a result, we only need to calculate each quantity only
for ω > 0. Also, save for ΣRn , all other quantities can be
calculated for n ≥ 0.

The frequency grid— We proceed by generating a grid
Xω in the interval [0, ωc]. Here, ωc is an appropriate
cutoff ωc � 1/β, ω0,Ω. We generate the grid Xω such
that for all ω ∈ Xω, if ωm ≡ ω + mΩ/2 < ωc, then
ωm ∈ Xω. We call such a grid Xω as a Floquet-closed
grid. We will shortly see that a Floquet-closed grid leads
to a significant reduction in computational complexity
by allowing us to reuse previously calculated integrals.
In practice, it is necessary to generate a non-uniform
grid that emphasizes on the ω . 1/β region. To this
end, we create two uniform grids, Xth

ω ∈ [0, c/β], and
X>
ω ∈ [c/β, ωc], and concatenate them. Crucially, we

choose the grid spacings δωth and δω> such that both
are integer multiples of Ω/(2N) for some N . Once
we have this basic two-scale grid, we pool together
|X>

ω ∪ Xth
ω + mΩ/2| for |m| < mc and keep the unique

points to find Xω.

Calculating the required matrix elements— We assume
that {ψn(ω; t)} are known for ω ∈ Xω and 0 ≤ n ≤
Nψ for some cutoff Nψ ≥ ND. It is trivial to calculate
iΣK numerically based on Eq. (F4) using a quadrature
formula. To find ΣR and ∂tΣ

R, we first calculate F[iDK ]n
and ∂t F[iDK ]n, both of which are trivial. To calculate
the contribution from {ρn}, we calculate the following
quantities:

Kn,jk[ρ](t) ≡
∫ ωj+1

ωj

dω′ Kn[ρ](ωj , ωk; t),

∂t K[ρ]n,jk(t) ≡
∫ ωj+1

ωj

dω′ Kn[∂tρ](ωj , ωk; t),

K̃[ρ]n,jk(t) ≡
∫ ∞
ωc

dω′ Kn[ρ](ωj , ωk; t),

∂t K̃[ρ]n,jk(t) ≡
∫ ∞
ωc

dω′ Kn[∂tρ](ωj , ωk; t), (F12)

for ωj , ωk ∈ Xω. The K̃ terms stem from
∫∞
ωc

dω′ assum-

ing ψn(ω′) ≈ δn,0 for ω′ > ωc. The proper ω′-integrals
must be approximated with quadratures much finer that
Xω grid spacing, and this is necessary since the inte-
grands can vary on shorter scales than the grid spacing
of a practically sized Xω. The improper ω′-integrals can
be calculated using Möbius transformation and then us-
ing standard proper quadratures. Calculating Kn,jk[ρ](t)



39

and Kn,jk[∂tρ](t) is quite expensive as the integrand is
given by a Kramers-Kronig integral and must be ob-

tained numerically for every integration point. Having
calculated these quantities, we may compose the full ex-
pression for ΣRn (ωj ; t) and ∂tΣ

R
n (ωj ; t) approximately as:

ΣR(ωj ; t) ' F[iDK ]n(t) +

Nω−1∑
k=0

K[ρ]n−n′,jk(t)
ψn′(ωj ; t) + ψn′(ωj+1; t)

2
+ K̃n,j [ρ](t),

∂tΣ
R(ωj ; t) ' F[∂tiDK ]n(t) +

Nω−1∑
k=0

∂tK[ρ]n−n′,jk(t)
ψn′(ωj ; t) + ψn′(ωj+1; t)

2

+

Nω−1∑
k=0

K[ρ]n−n′,jk(t)
∂tψn′(ωj ; t) + ∂tψn′(ωj+1; t)

2
+ ∂tK̃n,j [ρ](t). (F13)

Here, Nω is the number of grid points in Xω. We
have also used linear interpolation for the values of ψ
between consecutive grid points. If ωc � 1/β, the high
energy tail of Fermi distribution indeed remains intact
(i.e. we assume ωc is large enough so that no particles
will be excited to energies above ωc). The important
point about using the Floquet closed Xω is that once
we calculate Kn(ωj , ωk) for ωj ∈ Xω, we immediately
get Kn(ωj + mΩ/2, ωk) for all m using a combination
of shifts, inversions, and conjugation (see Eq. F6). In
other words, we do not need to perform the expensive
calculation of K for all m-shifted ω points.

Setting up the linear system and time-stepping— Plug-
ging Eq. (F13) expression into Eq. (F3), we find an
explicit linear system for ∂tψn(ωj ; t) for ωj ∈ Xω.
The ω-derivatives are found using 5-point finite dif-
ference approximation on the Xω grid. This sys-
tem can be mapped to a matrix equation by (1) in-
dexing {Reψn(ωj ; t), Imψn(ωj ; t)} for all n and ωj ∈
Xω, and (2) setting up a mapping from {Reψn(ωj +
mΩ/2; t), Imψn(ωj +mΩ/2; t)} to the corresponding in-
dexed values for all m using the symmetries of ψ. Having
a recipe to calculate ∂tψn(ω; t), we proceed and integrate
the ODE using the adaptive Runge-Kutta-Fehlberg(4,5)
method with local relative error tolerance of 10−6.

3. Numerical analysis of the spectrum of
Floquet-Migdal-Eliashberg gap functional

Calculating the spectrum of the Floquet-Migdal-
Eliashberg (FME) gap functional, given in Eq. (85), in-

volves three steps: (1) calculating Σ
R/K
n,m (ω; t) in the nor-

mal state, (2) calculating the Floquet matrix elements of
the anomalous response Qn,m

n′,m′(ω; t), and (3) calculating
the spectrum of the FME gap functional.

The first step is identical to the procedure described in
Sec. F 2. In the equilibrium-electron approximation, we
use ψn,m(ω; t)→ δn,0 tanh[β(ω−mΩ/2)/2] in calculating

the self-energies rather than using ψn,m(ω; t) found from
solving the Floquet-Boltzmann equation for electrons.

The second step involves inverting the coefficient ma-
trix of δFRn,m(ω; t) which can be read from Eq. (81a).
To this end, we truncate the intermediate n′ Floquet
band index summation to |n′| ≤ Nφ and Floquet quasi-
momentum indices to |m| ≤ Nm. The truncated system
of equations is then carefully mapped to a proper linear

system,
∑+Nφ
n′=−Nφ

∑+Nm
m′=−Nm C

n,m
n′,m′(ω; t) δFRn,m(ω; t) =

−2πi φn,m(ω; t). The Floquet matrix elements of the
anomalous response is readily found by inverting Cn,mn′,m′
in the space of paired Floquet indices (n,m):

Qn,m
n′,m′(ω; t) = −2πi [C−1]n,mn′,m′ . (F14)

In practice, we found the final results to be accurate to
10−4 with the choice Nφ = Nm = ND + 2 where NΣ is
the previously chosen Floquet band cutoff in calculating
the retarded self-energy.

The last step is slightly more involved. The overall
strategy is to formally interpolate ∆n(ω; t) over a finite
grid Gω, plug the interpolation formula in Eq. (85), read
off the coefficients of ∆n(ω ∈ Gω; t), and calculate its
spectrum. Even though a brute-force discretization is
equally applicable in principle, the uniform grid must be
very dense in order to obtain accurate results, leading to
calculating the spectrum of intractably large matrices.
The interpolation procedure allows us to obtain accurate
results using much coarser grids.

Setting up the grid— We generate Gω by concatenating

three grids Gω = G
(1)
ω ∪ G(2)

ω ∪ G(3)
ω where G

(1)
ω is a

uniform grid for ω ∈ [0, 10/β) where β−1 ∼ 0.05 Ω0 is

the typical effective temperature of electrons, G
(2)
ω in

another uniform grid for ω ∈ [10/β, ωc) where ωc ∼ 10 Ω0

is a typical scale beyond which variations of ∆n(ω; t)

becomes negligible, and finally, G
(3)
ω is a log-scaled grid

for ω ∈ [ωc,∞). In practice, we found allocating 100
points for each sub-grid produced results accurate to
10−4.
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Setting up the coefficient matrix— We approximate
∆n(ω; t) over Gω using a linear interpolant:

∆n(ω; t) ≈ ωjω+1 − ω
ωjω+1 − ωjω

∆n(ωjω ; t)

+
ω − ωjω

ωjω+1 − ωjω
∆n(ωjω+1; t), (F15)

where jω is the nearest grid point to the left of ω. Plug-
ging this ansatz into Eq. (85), we find:

∆n(ωj ; t) =
iωj
2π

∑
n′,n′′,m′

|Gω|∑
k=1

{
Qn,0
n′,m′(ωj ; t)

× K∆
n′′,m′(ωj , ωk; t) ∆n′−n′′(ω

′; t)

−
[
Q−n,0n′,m′(ω; t)

]∗
K∆∗
n′′,m′(ωj , ωk; t) ∆∗n′−n′′(ω

′; t)

}
,

(F16)

where:

K∆
n,m(ωj , ωk; t) =

∫ ωk

ωk−1

dω′

ω′
Kn,m(ωj , ω

′; t)
ω′ − ωk−1

ωk − ωk−1

+

∫ ωk+1

ωk

dω′

ω′
Kn,m(ωj , ω

′; t)
ωk+1 − ω′
ωk+1 − ωk

. (F17)

The end points, k = |Gω| and k = 1, only get contri-
butions from the first and second integrals, respectively.
The ω′-integrals are performed via an adaptive Gauss-
Kronrod quadrature and is refined until a tolerance of
10−6 is achieved. The kernel Kn,m(ω, ω′; t) is given by
Eq. (84) and each evaluation requires performing a nu-
merical Kramers-Kronig transform. Calculating the ma-
trix elements K∆

n,m(ωj , ωk; t) is the most computation-
ally expensive part of this section. Finally, we decom-
pose ∆n(ω; t) into real and imaginary parts and use the
relations Re[∆n(ω; t)] = Re[∆−n(ω; t)], Im[∆n(ω; t)] =
−Im[∆−n(ω; t)] to cast Eq. (F16) as a matrix equation.
The coefficient matrix acts on space of bundled labels
(n, j, o) where n is the Floquet index, j is the grid point
index, and o = 0, 1 indicates real and imaginary compo-
nent of ∆n.

Finally, we impose cutoffsN∆ andNm over the Floquet
band index of ∆ and the internal m′ quasi-momentum
summation. The Floquet cutoff for K is NK = ND +Nψ
where ND and Nψ are the previously chosen Floquet cut-
offs for phonon propagators and electron energy statis-
tics, respectively. We found N∆ = Nm = NK + 2 to pro-
duce results accurate to 10−4. Assuming Nψ = ND = 2
and |Gω| = 300, the final coefficient matrix is has a di-
mension 3900×3900 and its spectrum can be easily found
numerically.
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[52] Stéphane Mallat, A wavelet tour of signal processing
(Academic press, 1999).

[53] Hilbrand Johannes Groenewold, “On the principles of
elementary quantum mechanics,” Physica 12, 405–460
(1946).
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