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A minimal model for the hybrid superconductor-semiconductor nanowire Majorana platform is developed that
fully captures the effects of the low-energy renormalization of the nanowire modes arising from the presence
of the parent superconductor. In this model, the parent superconductor is an active component that participates
explicitly in the low-energy physics, not just a passive partner that only provides proximity-induced Cooper pairs
for the nanowire. This treatment on an equal footing of the superconductor and the semiconductor has become
necessary in view of recent experiments, which do not allow a consistent interpretation based just on the bare
semiconductor properties. The general theory involves the evaluation of the exact semiconductor Green function
that includes a dynamical self-energy correction arising from the tunnel-coupled superconductor. Using a tight
binding description, the nanowire Green function is obtained in various relevant parameter regimes, with the
parent superconductor being treated within the BCS-BdG prescription. General conditions for the emergence
of topological superconductivity are worked out for single-band as well as multi-band nanowires and detailed
numerical results are given for both infinite and finite wire cases. The topological quantum phase diagrams are
provided numerically and the Majorana bound states are obtained along with their oscillatory energy splitting
behaviors due to wavefunction overlap in finite wires. Renormalization effects are shown to be both qualitatively
and quantitatively important in modifying the low-energy spectrum of the nanowire. The results of the theory are
found to be in good qualitative agreement with Majorana nanowire experiments, leading to the conclusion that
the proximity-induced low-energy renormalization of the nanowire modes by the parent superconductor is of
fundamental importance in superconductor-semiconductor hybrid structures, except perhaps in the uninteresting
limit of extremely weak superconductor-semiconductor tunnel coupling. Implications of the general theory for
obtaining true zero energy topological Majorana modes are pointed out.

I. INTRODUCTION

Study of Majorana fermions or, more precisely, Majo-
rana zero energy modes (often also called ’Majorana bound
states’), along with the closely related topic of topological
superconductivity is among the most active current research
areas in physics, attracting interest not only from theoretical
and experimental physicists, but also from materials scientists,
computer scientists and engineers, mathematicians, and elec-
trical engineers [1, 2]. Majorana modes are the robust gap-
less (i.e. zero-energy) boundary states that form naturally at
the surfaces (or the edges) of bulk-gapped topological super-
conductors.The broad inter-disciplinary interest in the subject
arises from the possibility of using a Majorana platform to
carry out topological quantum computation, which is fault-
tolerant and, in principle, does not necessitate quantum error
correction [3, 4]. More importantly, there is a deep aspect
of the physics at play here: the fact that localized Majorana
zero modes obey non-Abelian anyonic (i.e. neither fermionic
nor bosonic [5, 6]) braiding statistics and are therefore strange
topological objects of fundamental interest in their own right,
quite distinct from their proposed applications in topological
quantum computation.

Although there are many proposed techniques for cre-
ating Majorana modes in the laboratory [7–10], such as
fractional quantum Hall effects [11–13] and topological in-
sulators in contact with superconductors [14], the method
that has attracted the most experimental interest involves a
semiconductor-superconductor hybrid structure [15], where,
through proximity effect, a parent superconductor induces

topological superconductivity in a strongly spin-orbit coupled
semiconductor in the presence of an applied magnetic field.
The particular system that is actively studied in many labora-
tories [16–27] is a one-dimensional semiconductor nanowire
(e.g., InSb, InAs) with strong spin-orbit coupling in proximity
to a bulk superconductor (e.g., Al, NbTiN) and in the pres-
ence of an external magnetic field applied along the wire, or,
more generally, along a direction perpendicular to the spin-
orbit coupling field. It has been established theoretically that
such a system becomes a topological superconductor when the
Zeeman spin splitting in the nanowire is above a certain criti-
cal value [15, 28–30]. In fact, at this critical value of the spin
splitting the system undergoes a topological quantum phase
transition [11, 15] from an ordinary, topologically-trivial su-
perconductor (with a bulk gap, but no boundary states) to
a topological superconductor with a bulk gap and Majorana
modes at the wire ends. In long wires, these Majorana modes
manifest themselves as robust midgap zero-energy states in-
side the bulk topological superconducting gap. For short
wires, the end Majorana modes may couple to each other pro-
ducing oscillatory energy splittings away from zero as a func-
tion of wire length, chemical potential, and/or magnetic field.
The topological gap itself turns out to be proportional to the
strength of the effective spin-orbit coupling, while the critical
field strength (or more precisely, the critical spin-splitting) de-
pends on the effective coupling strength between the semicon-
ductor and the superconductor and on the chemical potential
of the wire. Theoretical research shows that this phenomenon
of proximity-induced topological superconductivity (and the
associated creation of Majorana zero modes), which requires
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the presence of proximity effect, Zeeman spin splitting, and
spin-orbit coupling, is stable to realistic effects of disorder
[31, 32], interaction [33–35], and multichannel or multisub-
band effects in the nanowire (i.e. the nanowire not being in
the strict one-dimensional limit) [36, 37], provided that these
effects are not too strong. There are now many concrete pro-
posals to use these nanowires as parts of elaborate topological
quantum circuits in order to carry out Majorana braiding, fu-
sion, and measurement so that practical topological quantum
computing becomes feasible in the near future [38–47].

Much excitement stems from the fact that the theoretical
proposals and predictions for creating topological supercon-
ductivity in semiconductor wire-superconductor hybrid struc-
tures have led to experiments showing evidence for the pos-
sible existence of Majorana zero modes at the wire ends
[16, 18–22, 25–27]. A serious problem, however, has been
the fact that, in spite of six years of intense experimental ac-
tivity that has uncovered some signs for the possible existence
of Majorana modes, no definitive conclusion can be drawn. In
addition, there are many nagging discrepancies between the-
ory and experiment casting a dark cloud over the whole sub-
ject. One example of such a discrepancy is the persistence
of a soft gap [48] with considerable subgap features, which
greatly complicate the Majorana interpretation of the results,
since the Majorana mode is itself a particular subgap state (al-
beit, in ideal conditions, precisely at midgap). We note that the
“soft gap” is a pseudogap characterized by a finite, sometimes
substantial, low-energy density of states, as revealed, for ex-
ample, by the differential conductance in a charge tunneling
measurement[16]. Following theoretical suggestions for im-
proving the superconductor-semiconductor interface in order
to optimize the proximity effect [49], there has been substan-
tial progress in creating ’hard’ proximity gaps in nanowires
[22, 26] at zero or low magnetic field values. However,
these hard gaps disappear in the putative finite-field topolog-
ical regime where the Majorana mode presumably appears.
In fact, all experiments reporting evidence for Majorana zero
modes suffer from the gap being extremely soft precisely in
the regime where the evidence for the Majorana zero modes
emerges, notwithstanding the achievement of a hard gap in
the low-field, topologically-trivial regime. This unwanted fea-
ture occurs in spite of the nanowires being relatively disorder-
free and essentially ballistic, as far as their zero-field transport
properties are concerned.

A closely related problem is that the experimental Majo-
rana zero mode, which is observed as a zero-bias conductance
peak in a charge tunneling measurement, seems to have a con-
siderable width around zero energy. This broadening is com-
parable to the (soft) topological gap itself [25–27]! This is
in sharp contrast to the theoretical prediction of a sharp zero
energy Majorana mode, with resolution-limited broadening in
long wires, signaled by a zero-bias conductance peak that is
quantized at zero temperature and has a width that is only con-
trolled by temperature and by the transparency of the tunnel
barrier. Although there have been ad hoc attempts [50, 51] to
explain these disturbing features by introducing ’dissipation’
as the possible broadening mechanism, the source and the
microscopic physics for such Majorana-broadening (which is

much larger than the thermal broadening) remains unknown.
A broad Majorana mode centered around zero energy is un-
suitable for topological quantum computation (and, strictly
speaking, it is not a non-Abelian anyon). For example, this
broadening may simply be hiding a large splitting of the Ma-
jorana mode into two (or more) finite-energy modes due to
the wavefunction overlap between Majorana modes localized
around different points along the wire. A far more danger-
ous possibility is that the broad peak may be associated with
a cluster of low-energy-fermionic hybrid states representing
combinations of the Majorana mode with sub-gap states from
the parent superconductor. If so, then the broad zero-energy
Majorana features observed experimentally are closely con-
nected with the renormalization of the low-energy spectrum,
both effects being generated by the parent superconductor. In
hybrid systems where the Majorana broadening is comparable
to the topological gap, which is the actual situation suggested
by the experimental results reported so far, the possibility of
successful anyonic braiding experiments and eventual topo-
logical quantum computation becomes hopeless [41, 52].

Another serious problem has been the absence in the ex-
perimental data of the predicted Majorana splitting oscilla-
tions [53–55], which should be ubiquitously present in short-
enough wires as the magnetic field is increased. Actually, a
recent experiment [24] has reported the observation of Ma-
jorana oscillations (although somewhat indirectly, through
Coulomb blockade peaks), but these oscillations seem to de-
crease with increasing magnetic field in direct conflict with
the theoretical predictions. In addition, the experiments of-
ten see many prominent extra features (e.g., gaps opening and
closing as functions of both magnetic field and gate voltage),
which are simply not present in the minimal theories used ex-
tensively for describing superconductor-semiconductor Majo-
rana nanowire systems. Independent of the important question
of whether the topological Majorana zero mode has actually
been observed experimentally or not, it has become clear that
the existing theoretical models are unable to provide even a
zeroth order systematic description for the experimental data,
e.g., at the level of the qualitative understanding of the in-
duced superconducting proximity effect itself. The current
work is devoted to the development of the appropriate ze-
roth order model capable of describing the low-lying energy
spectrum of the nanowire in the presence of the superconduct-
ing proximity-effect induced by the parent superconductor.
The main ingredient of this new theory is that it includes the
parent superconductor as an active ingredient in the physics
of the heterostructure, instead of considering it simply as an
inert source for producing Cooper pairs that travel into the
nanowire. Our main message is that the parent superconduc-
tor has to be included explicitly into the theory, even at the ze-
roth order. In particular, we will bring considerable evidence
that the parent superconductor plays a key role in renormal-
izing all low energy properties of the nanowire. We empha-
size that this key role of the parent superconductor is partic-
ularly manifest in the strong/intermediate coupling regimes,
i.e. when the effective semiconductor - superconductor cou-
pling is larger than/comparable to the superconducting energy
gap. The rather ambitious goal of the current paper is to es-
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tablish the minimal model for semiconductor-superconductor
hybrid structures by providing detailed results regarding the
low-energy physics of the system that include renormaliza-
tion effects arising from the presence of the parent supercon-
ductor. We believe that, in addition to introducing the minimal
model for the study of semiconductor-superconductor hybrid
structures, the current work provides strong evidence that the
parent superconductor plays a crucial role in determining the
low-energy physics of the hybrid system (i.e., the properties
of the system at energies lower than the parent superconduct-
ing gap) and, consequently, treating it as an active ingredient
represents a necessary step toward understanding the features
present in the experimental works on Majorana nanowires.

The possibility of the parent superconductor playing a non-
trivial role in determining the nanowire properties has been
mentioned and discussed in a few specific instances in a
somewhat piecemeal manner [28, 56–61]. In particular, the
fact that disorder in the parent superconductor could drasti-
cally (and adversely) affect the nanowire topological behav-
ior (at least) in the strongly tunnel-coupled superconductor-
semiconductor hybrid system has been already emphasized
theoretically [60, 62]. Our goal, however, is to develop the
essential minimal model for describing the hybrid structure,
where the superconductor could, for example, couple differ-
ently to different subband levels in the nanowire and, more
importantly, could generate proximity-induced inter-subband
coupling. This leads to qualitatively new physics, which is
absent in the extensively-used minimal model where the prox-
imity effect is simply incorporated as an ad hoc pairing term
in the nanowire Hamiltonian. Our approach is to treat the
semiconductor, the superconductor, and the semiconductor-
superconductor coupling on an equal footing right at the
Hamiltonian level [see Eq. (1) in Sec. II, for example]. The
Green function description [see Eq. (3)] is equivalent to the
Hamiltonian model and does not involve any additional ap-
proximation. We make approximations, of course, motivated
by physical and numerical considerations, but these approx-
imations, which are included in the model Hamiltonian, can
be systematically relaxed if experimental results warrant such
improvement, at the cost of more demanding numerical cal-
culations. We show that treating the parent superconductor
explicitly, at the Hamiltonian level or as a self-energy con-
tribution to the Green function, introduces qualitatively new
features in our theory, which are (1) in agreement with ex-
periments, and (2) cannot really be incorporated in an ad hoc
manner. For example, the near-zero energy midgap spectrum
of the nanowire (i.e. the part of most interest to Majorana zero
mode considerations) could be drastically different from what
one finds in the minimal model where the proximity effect is
simply put in by hand. We find the renormalization effects
introduced by the superconductor to be subtle and often intu-
itively non-obvious since the superconductor may very well
affect different energy levels (and their coupling) differently
in the nanowire. Although the renormalization effects are ob-
viously much more important in the strong-coupling regime
where the coupling at the superconductor-semiconductor in-
terface is large, we find nontrivial renormalization also in the
intermediate coupling regime. It is only in the extreme weak-

coupling regime, where the induced superconducting gap is
very small, that we recover the results of the standard exten-
sively used minimal model, but this limit may not be of much
practical significance since one is interested in having as large
an induced bulk gap as possible because the topological pro-
tection of the Majorana modes is supplied entirely by the size
of the energy gap. Experimental systems with very small in-
duced superconducting gaps are, therefore, of rather limited
interest, while the extremely weak coupling regime, where the
commonly-used minimal model strictly applies, is of purely
academic interest.

In summary, the main objectives of this work are i) to
demonstrate that the low-energy physics of semiconductor-
superconductor hybrid structures depends critically on the
properties of the parent superconductor and ii) to establish the
minimal theoretical ingredients necessary for describing this
critical dependence. To accomplish these objectives, we per-
form a detailed numerical analysis of a tight-binding model
consisting of Ny parallel chains (representing the semicon-
ductor wire) coupled to a large (semi-infinite) superconductor.
The parent superconductor is treated within the Bogoliubov -
de Gennes method and its effects are incorporated through a
(frequency-dependent) interface self-energy, which does not
require additional approximations. The specific model that
we use in this work is rather simple in order to facilitate the
analysis and make the results more transparent. We emphasize
that generating quantitative results to be compared with exper-
iments on semiconductor-superconductor structures is not one
of the goals of this study. Our main finding is that in the inter-
mediate/strong coupling regime the presence of the parent su-
perconductor has a critical impact on the low-energy physics
of the hybrid structure. More specifically, the parent super-
conductor is directly responsible for a coupling-dependent
renormalization of the low-energy spectrum and generates a
proximity-induced coupling of different semiconductor bands
leading to rather counterintuitive behaviors in multi-band sys-
tems. In addition, the presence of sub-gap states in the parent
superconductor can lead to catastrophic consequences for the
stability of the Majorana zero modes predicted to emerge in
the hybrid structure. To accurately capture these effects, the
theoretical description of the hybrid structure has to include
the parent superconductor at the dynamical level, e.g., as a
frequency-dependent self-energy.

The rest of the paper is organized as follows. In section
II, we introduce a minimal model for describing the hybrid
structure that explicitly includes both the parent superconduc-
tor and the semiconductor nanowire, which are treated on an
equal footing. In Sec. III, we study the infinite wire case us-
ing this new model, focusing on the induced gap and the phase
diagram. These results are compared with the finite wire situ-
ation presented in Sec. IV, which is the bulk of the paper since
it corresponds to the experimentally relevant nanowires. We
conclude in section V with a summary of our main findings
as well as a discussion of open questions and possible future
directions. A large number of numerical results are presented
throughout the text showing the low energy spectrum of the
nanowire in order to explicitly bring out the key importance
of the superconductor-induced renormalization.
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II. THEORETICAL MODEL

In general, the Hamiltonian describing a semiconductor
wire proximity-coupled to a conventional s-type superconduc-
tor has four basic terms,

H = HSM +HSC +HSM−SC +Hext, (1)

whereHSM andHSC are the Hamiltonians of the semiconduc-
tor (SM) wire and of the superconductor (SC), respectively,
HSM−SC describes the coupling between the two components
of the hybrid structure, and Hext includes contributions from
external fields, such as magnetic fields and electrostatic po-
tentials. The specific form of each term in Eq. (1) depends on
the details of the structure (e.g., materials, geometry, etc.) and
on the degree of complexity that we want to incorporate into
the model (e.g., number of bands, presence of disorder, etc.).
Using tight binding models is particularly convenient for de-
scribing the SM-SC coupling. Let us assume that the SM wire
is defined on a certain lattice LSM, while the superconductor
is defined on LSC. The generic form of the coupling term is

HSM−SC =
∑
i,α

∑
`,σ

(
t̃ασi` c

†
iαa`σ + h.c.

)
, (2)

where i ∈ LSM and ` ∈ LSC are lattice sites near the SM-SC
interface, α labels orbital and spin degrees of freedom corre-
sponding to the SM wire, and σ represents the orbital and/or
spin degrees of freedom of the superconductor. The annihi-
lation operators for electrons inside the SM and the SC are
ciα and a`σ , respectively, and the hopping across the SM-SC
interface is characterized by the elements t̃ασi` of a coupling
matrix T̃ .

The low-energy physics of the proximity-coupled SM wire
can be described in terms of the Green function G(ω) = (ω−
H)−1 corresponding to the total Hamiltonian from Eq. (1). In
the real space representation G is a matrix labeled by a set of
parameters m = {r, λ, τ}, where r ∈ LSM ∪ LSC are lattice
indices, λ labels spin and orbital degrees of freedom, and τ
corresponds to the particle-hole degree of freedom. The equi-
librium low-energy physics of the SM wire can be extracted
from the block labeled by indices associated with SM degrees
of freedom. More specifically, we define the effective Green
function of the SM wire as [Geff(ω)]mn = [G(ω)]mn for all
m = {i, α, τ}, n = {j, β, τ ′} with i, j ∈ LSM. The effective
Green function can be expressed in terms of HSM, Hext, the
superconducting Green function GSC(ω) = (ω − HSC)−1,
and the coupling matrix T̃ . Explicitly, we have [10, 28, 63]

Geff(ω) = [ω −HSM −Hext − Σ(ω)]
−1
, (3)

where Σ(ω) = (T ⊗ τz)GSC(ω) (T † ⊗ τz) is an interface
self-energy that incorporates the effect of the coupling to the
superconductor. Here, τz is a Pauli matrix associated with the
particle-hole degree of freedom and all quantities in Eq. (3)
are matrices indexed by the set of parameters {i, α, τ}. Work-
ing with Geff corresponds to ‘integrating out’ the SC degrees
of freedom. However, we emphasize that deriving Eq. (3)

involves no approximation, hence the low-energy physics de-
scribed by Geff is exactly the same as that described by the
Hamiltonian in Eq. (1).

For this study we use the generic Green function frame-
work defined by Eq. (3). Since our focus is the basic un-
derstanding of the proximity-induced renormalization of the
low-energy physics, we model the system using simple tight-
binding Hamiltonians. This involves a relatively small num-
ber of independent parameters, thus simplifying the analysis
while completely capturing the basic physics. Specifically, we
model the semiconductor wire (including the effects of exter-
nal fields) as a set of Ny coupled parallel chains described by

HSM +Hext = −
∑
i,δ

tδsm

(
c†ici+δ + c†i+δci

)
+
i

2

∑
i,δ

αδR

(
c†i+δx σ̂yci − c

†
i+δy

σ̂xci − h.c.
)

+
∑
i

(Vi − µ)c†ici + Γ
∑
i

c†i σ̂xci, (4)

where σ̂µ, with µ = x, y, z, are Pauli matrices. The posi-
tion is labeled by i = (ix, iy), with 1 ≤ iy ≤ Ny desig-
nating the chain and 1 ≤ ix ≤ Nx representing the position
along the chain. The nearest neighbors corresponding to the
longitudinal and transverse directions are given by δx = ±1
and δy = ±1, respectively. The matrix elements for hopping
along and across the chains are tδxsm = t0 and tδysm = t′0, re-
spectively, and the chemical potential of the wire is µ. We
note that the purely one-dimensional case, Ny = 1, is a sit-
uation extensively considered in the earlier literature. Our
use of a multi-chain (Ny > 1) model allows multiband and
interband-coupling effects to be included in the theory in a
straightforward manner. In fact, the corresponding bands rep-
resent the confinement-induced 1D subbands, which are de-
termined by the geometry of the wire cross section and the
effective confinement potential in the nanowire. The second
term in Eq. (4) describes the Rashba spin-orbit coupling and
the strengths of the longitudinal and transverse components of
this coupling are characterized by the coefficients αδxR = αR

and αδyR = α′R, respectively. The position-dependent local
term Vi describes the effective electrostatic potential gener-
ated by external gates and by the charge inside the wire. Fi-
nally, the Zeeman splitting corresponding to a magnetic field
applied along the wire is characterized by the parameter Γ.

The superconductor is modeled at the mean-field level us-
ing the Bogoliubov - de Gennes formalism (BdG) and is as-
sumed to be a bulk system, while the SM-SC interface is as-
sumed to be planar. Within these approximations, the effect
of the superconductor is captured by a local self-energy pro-
portional to the surface Green function of the superconductor
[10, 64],

Σii′(ω) = −δii′ γ̃i

[
ω + ∆0σ̂y τ̂y√

∆2
0 − ω2

+ ζτ̂z

]
, (5)

where γ̃i = t̃2iνF is the effective SM-SC coupling, with t̃i
being the nearest-neighbor hopping across the SM-SC inter-
face at position i and νF the surface density of states of the
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SC metal at the Fermi energy [64]. The Pauli matrices σ̂µ
and τ̂µ are associated with the spin and Nambu spaces, re-
spectively, and ζ represents a proximity-induced shift of the
chemical potential. Below, we take ζ = 0, for simplicity (as
well as to minimize the number of unknown parameters). We
note that the derivation of Eq. (5) involves several approxima-
tions and restrictive assumptions [10, 64]. For example, we
first calculate the Green function GSC(ω, |i − j|) on the sur-
face of a semi-infinite (half-space) superconductor and notice
that it is a rapidly decreasing function of the distance |i − j|.
Next, for simplicity, we work in the local approximation and
neglect all contributions with i 6= j. Assuming that such a
local surface Green function is a good approximation for the
parent superconductor (which, obviously, is not semi-infinite),
we construct the self-energy for an arbitrary semiconductor-
superconductor interface as Σij(ω) =

∑
` t̃i`GSC(ω, `)t̃`j ,

where t̃i` is the hoping matrix across the interface.
We emphasize that, while the framework defined by Eq. (3)

is quite general, the self-energy (5) and the the Hamiltonian
(4) contain significant simplifying assumptions. In particu-
lar, the self-energy does not include non-local contributions
Σii′ with i 6= i′ and, more importantly, does not incorpo-
rate Coulomb and finite size effects (e.g., due to finite thick-
ness in thin superconducting islands), as well as effects due
to the presence of disorder and finite magnetic fields. These
effects are expected to have important consequences in real
devices and should be taken into account for a quantitative
comparison with experiment. However, since these are sec-
ondary effects in the context of the proximity-induced renor-
malization, we do not discuss them explicitly. In addition,
including some these non-essential complications in the the-
ory has, at this stage, some degree of arbitrariness, since the
experimentally-relevant parameters describing them are sim-
ply not known. We emphasize that generating a “realistic”
model of the semiconductor-superconductor hybrid structure
is not one of the goals of this work. Instead, our focus is
to establish the general framework in which the low-energy
physics of this type of structure has to be investigated theo-
retically. More specifically, we demonstrate that this frame-
work has to incorporate the frequency dependence of the self-
energy. The exact form of this self-energy for a given hybrid
structure is beyond the scope of this study.

III. INFINITE WIRES: INDUCED GAP AND PHASE
DIAGRAM

Consider now an infinitely-long, uniform system described
by Eqs. (3-5). After Fourier transforming with respect to ix,
the effective Green function takes the form

G−1
eff (ω, k) = ω

(
1 +

ˆ̃γ√
∆2

0 − ω2

)
+

∆0
ˆ̃γσ̂y τ̂y√

∆2
0 − ω2

(6)

−
(
ξ(k)− t′0λ̂x + Γσ̂x + αR sin kσ̂y

)
τ̂z +

1

2
α′Rλ̂yσx,

where ξ(k) = −2t0 cos k − µ is the (single band) energy dis-
persion in the absence of spin-orbit coupling, the coupling ma-
trix ˆ̃γ has matrix elements δij γ̃j , and the matrices λ̂x and λ̂y

of dimension Ny ×Ny have the form

λ̂x =

 0 1 0 . . .
1 0 1 . . .
0 1 0 . . .
. . . . . . . . . . . .

 , λ̂y =

 0 −i 0 . . .
i 0 −i . . .
0 i 0 . . .
. . . . . . . . . . . .

 , (7)

if Ny ≥ 2 and λ̂x = λ̂y = 0 for Ny = 1. To simplify the
notation, we omit all unit matrices in Eq. (6). The simplest
case, which corresponds to the single-chain model (Ny = 1),
is characterized by an effective Green function of the form

Geff(ω, k) =

(
A(ω, k) D(ω)
−D(ω) −AT (−ω,−k)

)−1

, (8)

where AT represents the transpose. Explicitly, we have

A(ω, k) =

(
ω(1 + γ̃ω)− ξ(k) −Γ + iαR sin k
−Γ− iαR sin k ω(1 + γ̃ω)− ξ(k)

)
(9)

and

D(ω) =

(
0 −∆0γ̃ω

∆0γ̃ω 0

)
(10)

where we have used the simplifying notation γ̃ω =

γ̃/
√

∆2
0 − ω2. In general, the superconducting proximity ef-

fect is accounted for through the frequency-dependent terms
proportional to the coupling matrix ˆ̃γ. Note that within the lo-
cal self-energy approximation and assuming nearest-neighbor
hopping across the interface this matrix is diagonal, but, in
general, off-diagonal terms may be present. For example, if
the hopping across the interface has finite range, the coupling
matrix contains off-diagonal terms and becomes k-dependent.
Explicitly, we have

[ˆ̃γ(k)]iyjy =
∑
jx

∑
`

t̃i` ν
`y
F t̃`j e

ik(jx−ix), (11)

where i = (ixiy), j = (jxjy), and the dependence of ν`yF on
`y takes into account the possibility that the superconductor
may cover the SM wire only partially. Of course, in the case of
nearest-neighbor hopping this reduces to [ˆ̃γ]iyjy = δiyjy γ̃jy ,
with γ̃jy = t̃2 ν

`y
F , where the sites in the chain `y (in the

SC) are the nearest neighbors of the sites corresponding to the
chain jy (in the SM wire). Again, the dependence of γ̃jy on
the chain index models the realistic situation corresponding to
a semiconductor wire partially covered by the s-wave super-
conductor. Finally, the low-energy states of the hybrid system
are given by the poles of the Green function and can be ob-
tained by solving the equation

det[Geff(ω, k)] = 0. (12)

A. Single band approximation

The simplest case corresponds to a system characterized by
confinement-induced nanowire bands that are well-separated,
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FIG. 1. (Color online) Dependence of the induced gap on the ef-
fective SM-SC coupling. The dashed line corresponds to the weak-
coupling expression ∆ind = γ̃∆0/(γ̃+∆0), while the orange (gray)
line is obtained by solving Eq. (15). The black line is the induced gap
for a two-band system with the SM-SC coupling matrix given by Eq.
(20), inter-band spacing ∆ε = 2 meV, and no transverse spin-orbit
coupling.

i.e., the inter-band gaps are large compared to the SM-SC ef-
fective coupling, t′0 � γ̃j . In this case, the bands can be
treated as independent and we can model a generic band us-
ing a single-chain model, i.e., Eq. (6) with Ny = 1. Without
the renormalization corrections, this is the nanowire model
that was extensively used so far in the literature for studying
the Majorana modes in hybrid SC-SM structures. With the
self-energy contribution due to the parent superconductor, the
energies of the low-lying states with k = 0 can be obtained
from Eq. (12), which reduces to

ω

(
1 +

γ̃√
∆2

0 − ω2

)
= (±)

√
µ̄2 +

γ̃2∆2
0

∆2
0 − ω2

± Γ, (13)

where the signs of the two right hand side terms are indepen-
dent and µ̄ = ξ(0), i.e., the chemical potential measured from
the bottom of the band (in the absence of spin-orbit coupling).

The topological quantum phase transition (TQPT) between
the trivial and topological superconducting phases is charac-
terized by the vanishing of the quasiparticle gap at k = 0.
Consequently, we can determine the critical Zeeman field Γc
at the transition by looking for the solution of Eq. (13) with
ω = 0. We have

Γc =
√
µ̄2 + γ̃2. (14)

Note that Eq. (14) is similar to the “standard” expression
of the critical field, Γc =

√
µ̄2 + ∆2

ind, where ∆ind is the
so-called induced gap. However, the minimum critical field,
which obtains at µ̄ = 0, is determined by the effective
semiconductor-superconductor coupling γ̃, rather than the in-
duced gap, ∆ind. We mention that in general these two quan-
tities are different, except in the very weak coupling limit (see
below).

Formally, we define the induced gap ∆ind(µ) as the mini-
mum with respect to k of the lowest energy quasiparticle state

given by Eq. (12) at Γ = 0. For a single band, this quantity
is practically independent of the chemical potential for values
of µ above the bottom of the band. We denote this constant
as ∆ind. One can show that ∆ind can be obtained by setting
µ̄ = 0 in Eq. (13). Using this observation, we determine the
induced gap by solving the equation

∆ind

√
∆0 + ∆ind = γ̃

√
∆0 −∆ind. (15)

In the weak coupling limit, ∆ind � ∆0, we obtain ∆ind =
γ̃∆0/(γ̃ + ∆0) ≈ γ̃ and the equation for the critical field re-
duces to the “standard” form. In general, however, ∆ind < γ̃
and the critical Zeeman field is generically larger than the
value predicted based on the induced gap. The numerical so-
lution of Eq. (15) for arbitrary coupling strength is shown in
Fig. 1.

From Eq. (13) we notice that the quasiparticle gap goes lin-
early to zero with the applied magnetic field as one approaches
the TQPT. The effective g-factor can be determined from the
corresponding slope. However, we emphasize that the slope
geff = 1

µB
|dω/dB|, where B is the magnetic field and µB

the Bohr magneton, represents the proximity-renormalized g-
factor, rather than the “bare” g-factor, g0. Explicitly, we have

geff =
g0

1 + γ̃/∆0
. (16)

In the intermediate (γ̃ ∼ ∆0) and strong (γ̃ � ∆0) coupling
regimes the effective g-factor has values that are significantly
smaller than the bare semiconductor value g0. This has obvi-
ous experimental implications since the TQPT is defined by
the spin splitting [see Eq. (14)], which connects with the ex-
perimental tuning parameter – the magnetic field – through
the renormalized g-factor.

B. Multi-band systems

In the previous section we have shown that for a one-
dimensional system the phase boundary is determined by the
chemical potential and the effective SM-SC coupling, being
independent of the bulk gap and the spin-orbit coupling, while
the induced gap is determined by ∆0 and γ̃, again, being αR-
independent. In the multi-band case the situation is, in general
different and more complex. The difference arises from the
presence of an additional energy scale: the inter-band spac-
ing, which is represented in our model by the inter-chain hop-
ping t′0. In addition, the spin-orbit coupling acquires a trans-
verse component represented in Eq. (6) by the last term (i.e.,
the term proportional to α′R). However, we emphasize that
this Rashba-type spin-orbit coupling is a simplified effective
model that may not capture all aspects of this phenomenon
and a more detailed modeling may be necessary for quanti-
tative predictions. Such a detailed modeling, which is non-
generic and depends crucially on all the specific features char-
acterizing the nanowire and its environment, is beyond the
scope of the current study.

We distinguish two basic limits: i) The independent band
regime, which is realized in systems with large inter-band
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spacing, t′0 � γ̃, or systems characterized by a SM-SC ef-
fective coupling that does not mix different bands, e.g., a ma-
trix ˆ̃γ in Eq. (6) that is diagonal. Note that the symmetry
of the SM-SC coupling is not generic, hence in practice the
independent band regime is expected to be relevant only in
systems with well-separated bands, typically at very low oc-
cupancy. ii) The coupled band regime, which corresponds to
t′0 ∼ γ̃ and an arbitrary spatial profile of the SM-SC coupling.
Note that the spectrum of a semiconductor wire is character-
ized by sets of nearly-degenerate higher-energy bands. The
coupled band regime is expected to become relevant when the
chemical potential is in the vicinity of such nearly-degenerate
bands.

To illustrate the main features associated with the two
regimes described above, we consider a two-chain model,
Ny = 2, which corresponds to a system that has the chem-
ical potential in the vicinity of two orbital bands that are well
separated from the rest of the spectrum. Of course, a quantita-
tive analysis requires the detailed modeling of the transverse
degrees of freedom of the SM wire, but here we focus on the
key aspects of the proximity-induced low-energy renormaliza-
tion in the presence of generic inter-band coupling, which are
clearly captured by the simplified model.

The independent band regime is fully characterized by the
results obtained for a single band. Indeed, let us consider Eq.
(6) for Ny = 2. For simplicity we neglect the transverse spin-
orbit coupling and check numerically the accuracy of this ap-
proximation. It turns out that this is an excellent approxima-
tion for all reasonable values of α′R. The critical fields Γc1 and
Γc2 corresponding to the low- and high-field boundaries of the
topological superconducting phase are given by the following
generalization of Eq. (14)

Γc1 = min
[√

(µ− ε1)2 + γ̃2,
√

(µ− ε2)2 + γ̃2
]
,

Γc2 = max
[√

(µ− ε1)2 + γ̃2,
√

(µ− ε2)2 + γ̃2
]
,(17)

where ε1,2 = −2t0 ∓ t′0 designate the bottoms of the two
bands. We note that Eq. (17) can be conveniently expressed
using the band, rather than the chain (i.e., real space) rep-
resentation in terms of the effective couplings γn associated
with each band. In general, if γ̃ij = [ˆ̃γ]ij is the position-
dependent SM-SC effective coupling given by Eq. (11) and
φn(i) is the transverse component of a wave function associ-
ated with band n, we have

[γ̂]nm ≡ γnm = 〈φn|ˆ̃γ|φm〉. (18)

Generally, the matrix γnm contains off-diagonal terms that
couple different bands. However, for our simple model this
matrix is diagonal and we have γ1 = γ2 = γ̃, where γn ≡ γnn
designates a diagonal element. The generalization of Eq.
(17) for a system with an arbitrary number of independent
bands corresponds to a low-field phase boundary of the form
Γc1 = min[

√
(µ− ε1)2 + γ2

1 ,
√

(µ− ε2)2 + γ2
2 , . . . ].

In the independent band regime, the induced gap associ-
ated with band n is given by Eq. (15) with γ̃ → γn. In gen-
eral, different bands are characterized by different values of

a

a

a

a

IBA

FIG. 2. (Color online) Induced gap as function of the chemical po-
tential for a system with ∆0 = 0.25 meV and γ = 0.375 meV.
The full lines are calculated in the absence of transverse spin-orbit
coupling, while the dashed lines correspond to α′

R = 0.9 meV. The
curves with an upturn below µ = −1 meV correspond to an inter-
band spacing ∆ε = 2 meV (with the bottom of the lowest band at
ε1 = −1 meV), while the curves with an upturn at higher values of µ
are for ∆ε = 0.5 meV (ε1 = −0.25 meV). The top four curves are
generated within the independent band approximation (IBA) with a
coupling matrix γ̂ = γI2, while the other four lines correspond to
scenario (a) with the coupling matrix given by Eq. (19). The µ-
independent value of ∆ind for the top four curves is given by Eq.
(15).

the SM-SC coupling, hence by different values of the induced
gap. The minimum gap is determined by the occupied band
with the lowest value of γn, i.e., the weakest coupled band.

Next, we consider the coupled band regime, which is char-
acterized by nonzero values of the off-diagonal effective cou-
pling γnm and small inter-band spacings. We focus on two
specific forms of the SM-SC coupling that correspond to (a)
the SC being coupled to only one SM chain and (b) the SM-
SC coupling having non-local components. The correspond-
ing coupling matrices in the chain (ˆ̃γ) and band (γ̂) represen-
tations are:

(a) ˆ̃γ =

(
2 0
0 0

)
γ, γ̂ =

(
1 1
1 1

)
γ, (19)

(b) ˆ̃γ =

(
9 −3
−3 1

)
γ

2
, γ̂ =

(
1 2
2 4

)
γ. (20)

Note that all these matrices depend on a single parameter,
γ, which characterizes the strength of the SM-SC coupling,
and that both scenarios involve a proximity-induced coupling
between the two bands, i.e., γ12 6= 0. By comparison,
the independent band regime discussed above corresponds to
ˆ̃γ = γ̂ = γI2, where I2 is the 2× 2 identity matrix.

The induced gap ∆ind(µ) corresponding to scenario (a) is
shown in Fig. 2 for different values of the inter-band spac-
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ing ∆ε = ε2 − ε1 = 2t′0 and different transverse spin-orbit
couplings. For comparison, we also show the corresponding
gap in the independent band regime. Focusing first on the
independent band approximation (IBA, top four curves), we
notice that the constant value of the induced gap at large µ is
given by Eq. (15), i.e., ∆ind = 0.167 meV, independent of
the inter-band splitting ∆ε and the transverse Rashba coeffi-
cient α′R. The only feature that depends on these parameters is
the upward turn in ∆ind(µ) with decreasing chemical poten-
tial. This upturn corresponds to the chemical potential getting
below the bottom of the lowest-energy band, i.e., the system
becoming completely depleted. The change in the location of
this upturn merely reflects the dependence of the energy of
the bottom of the lowest band on ε1 and α′R. Finally, we note
that the slope of the upturn, which is (minus) one in the weak-
coupling limit, ∆ind(µ) ≈ −µ̄, becomes strongly renormal-
ized in the intermediate-coupling regime (γ = 1.5∆0) studied
here.

Next, we discus scenario (a), which corresponds to one SM
chain being coupled to the superconductor. This is a crude
model of a semiconductor wire half-covered by a supercon-
ductor, such as the systems recently studied experimentally
in Copenhagen using InAs/Al core-shell-nanowire structures
[23? –25]. If the inter-band spacing is large, ∆ε � γ, the
system behaves qualitatively the same as in the independent
band approximation. This is illustrated by the top two curves
marked by an (a) in Fig. 2. The only difference is that the
µ-independent ∆ind is slightly lower than the value given by
Eq. (15). The situation is completely different when ∆ε and
γ become comparable, as illustrated by the lower two curves
in Fig. 2. Most notable are the drastic drop of the induced gap
and the strong dependence on the transverse Rashba coupling.
Intuitively, we can understand these effects as a result of the
proximity-induced coupling of two nearly-degenerate bands.
The “bare” transverse modes associated with the two bands,
which have the same coupling to the SC, as expressed by Eq.
(19), are not directly related to the eigenstates of the compos-
ite system, since γ̂ has off-diagonal coupling elements. We
can introduce new “perturbed modes” that are weakly coupled
to each other. However, one of these modes is strongly cou-
pled to the SC, while the other is characterized by a weaker
effective coupling. In the degenerate band limit (t′0 → 0),
for example, the “perturbed modes” are localized on chain ‘1’
(with effective coupling γ1 = 2γ and chain ‘2’ (with effective
coupling γ2 = 0), respectively. The weakly coupled mode is
responsible for the lower values of the induced gap. In ad-
dition, the “perturbed modes” depend on the transverse spin-
orbit coupling, which explains the strong dependence on α′R
in this regime.

We have argued that in the coupled band regime, which is
characterized by the presence of proximity-induced inter-band
coupling and inter-band spacings comparable to the effective
SM-SC coupling, the low-energy physics of the hybrid sys-
tem is controlled by a renormalized “perturbed” mode that has
a weaker effective SM-SC coupling than the “bare” modes.
To illustrate the fact that this mechanism is rather generic,
we calculate the induced gap as function of γ for scenario
(b) given by Eq. (20). The result is shown in Fig. 1 (black

curve). Increasing the SM-SC coupling drives the system into
the coupled band regime, which results in the emergence of a
renormalized mode characterized by a weaker effective SM-
SC coupling. As a result, the induced gap decreases with in-
creasing γ because of the stronger renormalization by the SC
(in contrast to the bare theory, where the induced gap increases
with increasing coupling), which appears puzzling. However,
this feature can be naturally understood within the weakly-
coupled renormalized mode framework described above.

Let us now turn our attention to analyzing the phase dia-
gram. As a general remark, we note that a phase boundary
corresponds to poles of the effective Green function given by
Eq. (6) at k = 0 and ω = 0. Consequently, the phase bound-
aries are independent of the longitudinal Rashba coefficient
αR and the bulk SC gap ∆0. By contrast, the induced gap
is manifestly dependent on ∆0, hence we do not expect any
direct relation between ∆ind and the critical Zeeman field, ex-
cept in the weak coupling limit where ∆ind ≈ γ. The inde-
pendent band regime is described by Eq. (17) and its general-
izations, as discussed above. In the coupled band regime, the
low-field boundary of the topological phase is given by

Γc1(µ) = min

[√
β(µ)−

√
β2(µ)− α(µ),√

β(µ) +
√
β2(µ)− α(µ)

]
, (21)

with,

α(µ) = γ4
12 + [γ2

11 + (ε1 − µ)2][γ2
22 + (ε2 − µ)2]

− 2γ12 [γ11γ22 − (ε1 − µ)(ε2 − µ)] , (22)
β(µ) = γ2

11 + 2γ2
12 + γ2

22 + (ε1 − µ)2 + (ε2 − µ)2,

where γnm are the elements of the coupling matrix γ̂ and εn
is the energy at the bottom of the n-th band. These equa-
tions were derived in the absence of transverse spin-orbit cou-
pling. Ifα′R 6= 0 the phase diagram can be obtained by solving
Eq. (12) numerically and determining the Zeeman fields cor-
responding to zero-energy solutions. Note that the high-field
boundary of the topological phase is given by an equation sim-
ilar to Eq. (21), but with “min”→ “max”.

The dependence of the phase boundaries on the inter-band
spacing for scenario (a) is shown in Fig. 3. The correspond-
ing phase boundaries in the independent phase approximation
are also shown, for comparison. First, we note that the most
significant difference between the two cases occurs when the
chemical potential is above the bottom of the first band but
does not touch the second band, i.e., ε1 < µ < ε2. In this re-
gion, characterized in the independent band approximation by
a point associated with a sub-band crossing where the width
of the topological region vanishes, adding inter-band coupling
results in a significant expansion of topological superconduc-
tivity (cyan/light gray areas in Fig. 3). If the bands are well
separated, ∆ε � γ, the additional topological SC region oc-
curs at large values of the Zeeman field and might not be ex-
perimentally observable. By contrast, for small separations
[see panels (b) and (c)] the phase boundary extends toward
Γ = 0 and proximity-induced band coupling becomes highly
relevant. As discussed above, we can intuitively understand
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(a)

(b)

(c)

De=2 meV

De=0.5 meV

De=1 meV

FIG. 3. (Color online) Topological phase diagram of a two-band sys-
tem with γ = 0.375, α′

R = 0, and three different values of the
inter-band spacing: (a) ∆ε = 2 meV, (b) ∆ε = 1 meV, and (c)
∆ε = 0.5 meV. The blue (dark gray) areas represent the topolog-
ical superconducting phase in the independent band regime. In the
coupled band regime corresponding to Eq. (19), i.e., scenario “a” ,
the topological phase extends into the cyan (light gray) areas. In the
presence of transverse spin-orbit coupling with α′

R = 0.75 meV the
low-field phase boundary is given by the thick red line.

this behavior in terms of an emerging “renormalized mode”
that is weakly coupled to the bulk superconductor and, conse-
quently, determines a topological phase transition at low val-
ues of the Zeeman field.

Typically in the literature it is argued that the phase bound-
aries do not depend on the strength of the spin-orbit coupling.
Strictly speaking, this is only true for the longitudinal com-
ponent of the spin-orbit coupling. The transverse component,
on the other hand, impacts the location of the phase boundary,
as shown in Fig. 3. The red line corresponds to the low-field
phase boundary of a system with coupling matrix given by
Eq. (19) (i.e., scenario “a”) and α′R = 0.75 meV. Note that
for large values of the inter-band gap the change is small, but
it becomes significant with reducing the band separation ∆ε.
Also note that the phase boundary is modified at all values of

(a)

(b)

(c)

g=1.5 meV

g=0.5 meV

g=2.5 meV

FIG. 4. (Color online) Topological phase diagram of a two-band sys-
tem with ∆ε = 2 meV, α′

R = 0, and three different values of the
SM-SC coupling strength: (a) γ = 0.5 meV, (b) γ = 1.5 meV, and
(c) γ = 2.5 meV. The blue (dark gray) regions represent the topolog-
ical superconducting phase in the independent band approximation
with γ1 = γ2/4 = γ. In the coupled band regime corresponding to
Eq. (20), i.e., scenario “b” , the topological phase extends into the
cyan (light gray) areas.

the chemical potential. The effect is equivalent to shifting the
two bands so that ε1 → ε1 − δ and ε2 → ε2 + δ, where δ is
a positive quantity. This effect was already discussed in the
context of Fig. 2, where the shift of ε1 becomes manifest as a
change in the location of the upturn of ∆ind(µ).

We have shown that the topological phase boundaries of a
system with proximity-induced coupled bands is significantly
different from the phase boundaries in the absence of this cou-
pling, particularly at low values of the Zeeman field. Our
analysis suggests that this effect becomes significant when the
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inter-band separation is comparable with the SM-SC coupling
strength γ. To confirm this conclusion, we consider a system
with fixed band separation and different values of the SM-SC
coupling strength. Also, to show that the effects discussed
above are not dependent on the bands being equally coupled
to the SC, we focus on scenario “b” from Eq. (20). Note that
in the corresponding independent band approximation the up-
per band has an effective SM-SC coupling four times larger
than the lower band, γ2 = 4γ1 = 4γ. The phase diagrams are
shown in Fig. 4. One can easily observe all the qualitative fea-
tures discussed above. In particular, when the effective cou-
pling strength becomes comparable with the inter-band sep-
aration the topological phase boundary extends into the low
Zeeman field region, a phenomenon that can be naturally in-
terpreted in terms of an emerging weakly-coupled “renormal-
ized band”.

We conclude this section with a brief summary of the main
results. For the induced gap, we distinguish a low-coupling
regime and an intermediate/strong coupling regime based on
the relative strengths of the SM-SC coupling and bulk SC gap.
For γ < 0.5∆0 the system is in the weak coupling regime and
the induced gap is well approximated by the standard expres-
sion ∆ind = γ∆0/(γ + ∆0). At larger couplings we need
to also consider the effects of proximity-induced inter-band
coupling. In the independent band regime ∆ind is well de-
scribed by the single-band approximation given by Eq. (15),
while in the coupled band regime the effective coupling is
strongly renormalized and ∆ind has a non-monotonic depen-
dence on γ. The phase diagram is independent of ∆0, but de-
pends strongly on the ratio between the effective coupling and
the inter-band spacing. Again, the independent band regime
is well described by the single band approximation [see Eq.
(17)], while in the coupled band regime the topological phase
can extend significantly, most importantly at low values of
the Zeeman field [see Eq. (21)]. Note that, in principle,
the proximity-induced inter-band coupling may be important
even in the weak-coupling regime, as long as as the effective
SM-SC coupling is comparable with the inter-band spacing,
γ ≈ ∆ε � ∆0. The existence of nearly degenerate semi-
conductor bands makes the coupled band regime relevant in
systems with high occupancy.

IV. FINITE WIRES: QUASIPARTICLE GAP AND
MAJORANA SPLITTING

The analysis of the infinite wire has shown that the strength
of the coupling between the semiconductor and the supercon-
ductor has a profound impact on both the induced gap and the
phase diagram. However, our main focus is to understand the
effect of this coupling on Majorana bound states, particularly
on the energy splitting associated with overlapping Majoranas
and the quasiparticle gap that protects these modes. To this
end, we turn our attention to finite systems, which can host
Majorana modes localized near the ends of the wire.

For concreteness, we consider a relatively short wire of
length Lx = 0.8 µm, which in the weak coupling approxi-
mation corresponds to a system that hosts strongly overlap-

ping Majorana modes at the two ends of the wire. The hy-
brid system is modeled as a set of parallel chains coupled to
a superconductor (SC) using Eqns. (3), (4), and (5). The val-
ues of model parameters used in the numerical calculations
are: t0 = 1656.5/a2

x meV, where ax is the lattice constant
in nanometers (typically a = 10 nm), t′0 = 4.0 meV (unless
specified otherwise), αR = 15.0/ax meV, α′R = 0.9 meV
(unless specified otherwise), and Vi = 0. The value of t0
corresponds to an effective mass m∗ = 0.023m0. We note
that in the weak coupling limit γ̄i = γ � ∆0 the induced
gap is given by the effective coupling, ∆ind ≈ γ, and the dy-
namical corrections are negligible, γ/

√
∆2

0 − ω2 � 1, for
all relevant energy values, ω < ∆ind. In this limit, the sys-
tem can be described in terms of an effective Bogoliubov – de
Gennes (BdG) Hamiltonian Heff = HSM +Hext + Σ, where
the energy-independent interface self-energy is

Σi,i′ = −∆ind σ̂y τ̂y δi,i′ . (23)

We emphasize that most of the theoretical results discussed
in the Majorana nanowire literature are based on this effec-
tive Hamiltonian approximation. The key question that we
want to address is how relevant are these results for systems
that do not satisfy the condition γ � ∆0. We note that in
the experimentally-available SC-SM hybrid structures there is
little control over the interface coupling and, therefore, the
weak-coupling approximation is generically inapplicable. For
example, the intensely studied epitaxial structures [23] are ex-
pected to be in the strong-coupling regime.

A. Zeeman field dependence of the low-energy spectrum

The low-energy spectrum of the SM-SC structure is deter-
mined numerically by solving the equation det[Geff(ω)] = 0,
where the effective Green function is a matrix given by Eq.
(3). First, we focus on the dependence of this spectrum on the
applied Zeeman field Γ [see Eq. (4)]. We note that, in general,
the bulk superconductor is also affected by the presence of the
external magnetic field. The effect can be naturally incorpo-
rated into the theory via the Green function of the SC, i.e., via
Σ(ω). Here, we consider a very simplified model consisting
of a self-energy given by Eq. (5) with a field-dependent bulk
gap ∆0(Γ). However, we emphasize that a better understand-
ing of the parent superconductor at finite magnetic fields in
the presence of disorder remains a major outstanding problem
in this field. Addressing this problem is beyond the scope of
the current work.

The first significant effect of the proximity-induced low-
energy renormalization is the suppression of the Majorana
splitting oscillations, which is illustrated in Fig. 5. We com-
pare the oscillations that characterize a weak-coupling sys-
tem with ∆0 = 0.82 meV and γ = 0.25∆0 (dashed black
lines) with the oscillations corresponding to an intermediate
coupling regime with ∆0 = 0.25 meV and γ = 1.5∆0 (red
lines). Here, for simplicity, we use the notation ∆0 = ∆0(0).
The upper and lower panels in Fig. 5 correspond to constant
and field-dependent bulk SC gaps, respectively. Note that the
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FIG. 5. (Color online) Majorana splitting oscillations at weak cou-
pling (∆0 = 0.82 meV, γ = 0.25∆0 – dashed black lines) and in-
termediate coupling (∆0 = 0.25 meV, γ = 1.5∆0 – red lines). Both
systems are characterized by an induced gap ∆ ≈ 0.167 meV. The
upper panel corresponds to a constant bulk SC gap, while the lower
panel is for a field-dependent gap that vanishes at Γ = 2 meV. For the
system with intermediate coupling, the higher energy discrete states
with |Eα| < ∆0(Γ) (orange region) are represented by the dark-red
lines, while the continuum above the bulk gap, |Eα| > ∆0(Γ), cor-
responds to the gray area. The results are obtained using a single
chain model (Ny = 1) with fixed chemical potential µ = 0 (relative
to the bottom of the band).

amplitude of the oscillations increases with Γ if ∆0 is con-
stant, while for a field-dependent SC gap this trend reverses
at large values of the Zeeman field. The amplitude of the
Majorana splitting oscillations is correlated with the charac-
teristic length scale of the Majorana bound states. We note
that this length scale is significantly larger in the weak cou-
pling regime (typically in the range 250 − 400 nm for the
parameters used in the calculation) as compared to the inter-
mediate/strong coupling regime, which is characterized by a
Majorana length scale in the range 100− 200 nm.

As a general observation, we note that one can rigorously
define distinct phases only in the thermodynamic limit. By
contrast, in finite systems the topological quantum phase tran-
sition (TQPT) is replaced by a crossover between a regime
characterized by a large gap with no low-energy midgap states
(the “trivial phase”) and one characterized by the presence
of a low-energy midgap mode (the “topological phase”). In
Fig. 5 this crossover is marked by the lowest-field zero of
the Majorana mode. As expected, the weak-coupling regime
(dashed black line) is characterized by a lower value of the

crossover field as compared to the intermediate-coupling case
(red line), consistent with the previous section, in particular
Eq. (14). Concerning higher energy states, we emphasize
that the spectrum of a finite wire coupled to a hard-gap su-
perconductor is always discrete below ∆0(Γ). The “trivial”
to “topological” crossover is signaled by a minimum of the
second-lowest state. These properties are illustrated in Fig. 5
for the case γ = 1.5∆0. The field-dependence of the higher
energy states is represented by the darker-red lines occupying
the highlighted orange region. By contrast, above ∆0(Γ) the
spectrum is continuous (gray area). However, if the bulk su-
perconductor has a finite density of sub-gap states, e.g., at fi-
nite magnetic field in the presence of disorder, the spectrum of
the finite wire becomes continuous at all energies. If the den-
sity of sub-gap states is not too high, this would correspond
to broadening the lines shown in Fig. 5. These effects, which
have crucial consequences from the perspective of quantum
computation, reveal the importance of understanding in detail
the bulk superconductor and being able to optimize its proper-
ties. The bulk superconductor is most certainly not inert and
benign!

Before we continue the discussion on the low-energy spec-
trum, it is instructive to clearly understand the significance of
the spectral lines. The energy Eα(Γ) of a low-energy state α
is obtained by solving the equation det[Geff ] = 0, i.e., find-
ing the poles of the Green function. The corresponding wave
function ψα is partially contained within the SM wire, but it
also extends into the bulk SC. The total spectral weight con-
tained inside the wire is

Zα ≡
∑
i∈LSM

|ψα(i)|2 =

(
1 +

γ√
∆2

0 − E2
α

)−1

. (24)

In the weak-coupling limit, γ � ∆0, we have Zα → 1, i.e.,
the state resides (almost) entirely inside the SM wire. By
contrast, in the strong coupling limit, γ � ∆0, most of the
spectral weight is inside the bulk SC. For example, a Ma-
jorana mode (EM = 0) will only have a fraction ZM =
∆0/(∆0 + γ) ≈ ∆0/γ of the wave function inside the wire.

The information about the partition of the wave function be-
tween the wire and the bulk SC can be obtained by calculating
the density of states inside the wire,

ρ(ω) ≡ − 1

π
Im {Tr[Geff(ω + iη)]} =

∑
α

Zαδ(ω − Eα),

(25)
where η → 0+ and |Eα| < ∆0(Γ). In the weak-coupling
regime the weight of the poles is close to one, while for inter-
mediate/strong coupling the weight is significantly reduced,
i.e., the quasiparticle wave functions leak into the SC. Note
that above ∆0(Γ) there is a continuum of states, each of them
residing almost entirely inside the bulk SC, but having a small
tail inside the SM wire.

A specific example is shown in Fig. 6. The two panels
show the density of states of a SM wire coupled to a SC and
in the presence of a finite Zeeman field. In the bottom panel
the SC gap is ∆0 = 0.25 mev and the SM-SC coupling is
γ = 1.25∆0, while the top panel corresponds to the weak
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FIG. 6. (Color online) Density of states of the SM wire proximity-
coupled to a superconductor. The wire is modeled as a single chain
(Ny = 1). Top: Weak coupling regime with γ = 0.167 meV and
∆0 → ∞. Bottom: Intermediate coupling with γ = 1.5∆0, ∆0 =
0.25 meV. A finite Zeeman field Γ = 0.8γc is applied. The delta
peaks were broaden by hand to reveal their weight.

coupling regime with γ = 0.167 meV and ∆0 → ∞. Note
that these parameters correspond to the same value of the in-
duced gap, ∆ind = 0.167 meV. Three important features de-
serve to be mentioned. First, the spectrum of the SM wire is
discrete below the bulk SC gap ∆0 and continuous above, as
evident from the lower panel. Second, the energy difference
between the low-energy states decreases with increasing the
ratio γ/∆0. Within the energy interval (−0.25, 0.25) meV
there are roughly twice as many states in the bottom panel as
compared to the top panel. This is the most direct manifesta-
tion of the proximity-induced low-energy renormalization and
a consequence of the fact that proximity-coupling modifies the
frequency term in the Green function denominator according
to ω −→ ω(1+γ/

√
∆2

0 − ω2). Third, the spectral weight Zα
inside the wire is reduced by the SM-SC coupling, as one can
easily see by comparing the width of the artificially-broadened
peaks from top and bottom panels in Fig. 6. Of course, spec-
tra, like those in Fig. 5, do not contain information regarding
the reduced spectral weight of various states, but this feature
may be important when discussing the “visibility” of certain
modes, e.g., when calculating tunneling conductances and lo-
cal densities of states.

Returning to the Zeeman field dependence of the low-
energy spectrum, a natural question concerns the possible dif-
ferences between the single band case shown in Fig. 5 and a
multi-band system. To address this question, we first consider
a two-chain model (Ny = 2) in the independent band regime
with uniform coupling γ̄i = γ. The comparison with the sin-
gle band case is shown in Fig. 7. Two important features
deserve some comments. First, we note that the lowest energy
(Majorana) mode has practically the same dependence on the
Zeeman field in the top and bottom panels, before the collapse
of the quasiparticle gap in (b). This is due to the fact that in
the independent band regime Majorana physics is controlled

(b)

(a)

Ny=1

Ny=2

FIG. 7. (Color online) Dependence of the lowest energy mode and
first excited state on the Zeeman field in the weak-coupling regime
with ∆0 = 0.82 meV and γ = 0.25∆0. The SC gap in field de-
pendent and collapses at Γ = 2 meV (gray area). (a) Single band
model and chemical potential at the bottom of the band. (b) Two-
band model with the chemical potential at the bottom of the second
band. The dashed black line is the same as in the bottom panel of
Fig. 5. The collapse of the quasiparticle gap in (b) is due to states
from the lower energy occupied band. In the orange regions there are
higher discrete states that are not shown explicitly.

by the top occupied band and only depends on the position
of the chemical potential relative to that band. Second, we
note that the quasiparticle gap separating the Majorana mode
from higher energy quasiparticles is significantly suppressed
in the two-band model. This suppression can be minimized
by increasing the strength of the Rashba spin-orbit coupling
(here αR = 150 meV·Å) and the inter-band separation (here
∆ε = 4 meV). In the limit ∆ε → ∞ we recover the single
band result. In practice, a real concern should be the presence
of an occupied band that is very close in energy to the top (Ma-
jorana) band. The presence of such a band would compromise
the quasiparticle gap that protects the Majorana mode and thus
the possibility of topologically-protected operations. While
the lowest energy nanowire band is well separated from the
higher energy spectrum, in wires with multi-band occupancy
the occurrence of small inter-band gaps in the vicinity of the
chemical potential is generically expected.

Next, we consider a two-band system with intermediate
coupling, γ = 1.5∆0, where ∆0 = 0.25 meV. The compari-
son with the single band case is shown in Fig. 8. The main fea-
tures are qualitatively the same as in Fig. 7, i.e., the Majorana
modes in single- and multi-band systems have similar proper-
ties (at low-enough values of the Zeeman field) and the quasi-
particle gap is reduced in the multi-band case. Quantitatively,
however, there is a major difference between the weak cou-
pling regime shown in Fig. 7 and the intermediate-coupling
case illustrated in Fig. 8. The Majorana splitting oscillations
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(a)

(b)

FIG. 8. (Color online) Zeeman field dependence of the lowest two
energy modes at intermediate coupling (γ = 1.5∆0, with ∆0 =
0.25 meV) for a single-band system (a) and a two-band system in the
independent band regime (b). The top panel shows the same results
as the lower panel of Fig. 5 (note the different energy scale).

and the magnitude of the quasiparticle gap are reduced more
than twice in the intermediate coupling case (Fig. 8) as com-
pared to weak coupling (Fig. 7). This significant difference
occurs as a result of the low-energy proximity-induced renor-
malization, despite the fact that the hybrid systems are char-
acterized by the same value of the induced gap ∆ind = 0.167
meV. Indeed, at zero magnetic field the energy of the lowest-
energy state (i.e., the induced gap) is the same for all four
systems shown in Fig. 7 and Fig. 8.

The final scenario that we investigate here involves a two-
band system in the coupled band regime. This scenario is po-
tentially relevant in multi-band systems whenever the chemi-
cal potential is in the vicinity of nearly-degenerate bands. The
Zeeman field dependence of the lowest two energy states is
shown in Fig. 9 for three different sets of parameters. The
first striking feature is that the crossover Zeeman field Γc1 de-
creases when increasing the coupling strength γ, in contrast
with the generic behavior that characterizes the independent
band regime. This behavior is consistent with the conclusions
of Sec. III regarding the infinite system. Note that panels
(b) and (c) in Fig. 9 correspond to vertical cuts at µ = 0
in the phase diagram shown in Fig. 3 (c) for finite-size sys-
tems with Lx = 0.8 µm and Lx = 1.5 µm, respectively. The
transverse spin-orbit coupling α′R = 0.75 meV gives a lower
critical field corresponding to the red line in Fig. 3 (c), i.e.
Γc1 ≈ 0.21 meV, while the corresponding crossover fields are
slightly higher due to finite size effects.

The emergence of weakly- and strongly-coupled “bands”
as a result of the proximity-induced inter-band coupling (Sec.
III) is nicely illustrated in Fig. 9 (b) and (c). The weakly cou-
pled band is responsible for the lower value of the crossover
field Γc1 (slightly larger than 0.2 meV) and produces a Ma-

(b)

(a)

(c)

FIG. 9. (Color online) Low-energy modes in the coupled band
regime described by Eq. (19) for a system with inter-band spac-
ing ∆ε = 0.5 meV. (a) Weak coupling: ∆0 = 0.82 meV, γ =
0.25∆0 = 0.205 meV. (b) Intermediate coupling: ∆0 = 0.25 meV,
γ = 1.5∆0 = 0.375 meV. (c) Same as (b) but for a longer wire,
Lx = 1.5 µm. The chemical potential is tuned midway between the
two bands.

jorana mode with sizable splitting oscillations (at least in the
short wire). The strongly-coupled band controls Γc2 (around
1 meV) and generates a second Majorana mode with signifi-
cantly lower amplitude oscillations. Focusing on the weakly
coupled band, i.e., Zeeman fields Γ < 1 meV, we note that
the corresponding Majorana splitting oscillations are larger
than the oscillations characterizing a system in the indepen-
dent band regime having the same nominal SM-SC coupling,
γ = 1.5∆0 = 0.375 meV, as evident when comparing Fig. 9
(b) and Fig. 8 (b). The quasiparticle gap is also larger in the
coupled band regime. On the other hand, the splitting oscil-
lations in Fig. 9 (b) have a lower amplitude than the oscilla-
tions characterizing a nominally weakly coupled system with
a comparable crossover field Γc1 (see Fig. 7).

B. Dependence on the chemical potential and “phase diagram”

In the previous section we have investigated the low-energy
physics of a proximity-coupled wire by varying the applied
Zeeman field while maintaining a constant chemical poten-
tial. We have shown that the Majorana splitting oscillations
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Ny=1

Ny=2

FIG. 10. (Color online) Dependence of the low-energy states on
the chemical potential for a system with weak SM-SC coupling,
γ = 0.25∆0, with ∆0 = 0.82 meV. The top panel corresponds to
a single-band system (Ny = 1), while the bottom panel is for a sys-
tem with Ny = 2 in the independent band regime. The boundary of
the brown region represents the lowest energy state at zero magnetic
field and its minimum corresponds to an induced gap ∆ind ≈ 0.167
meV. The red/blue line represents the Majorana mode at Γ = 0.75
meV and the boundary of the yellow region is the first excited state at
the same Zeeman field. The chemical potential is measured relative
to the bottom of the band (second band for the bottom panel).

and the quasiparticle gap are significantly renormalized when
the effective SM-SC coupling becomes comparable with (or
larger than) the bulk SC gap, i.e., in the intermediate/strong
coupling regime. For completeness, we consider now the de-
pendence of the low-energy features on the chemical poten-
tial at fixed values of the Zeeman field. More specifically,
we calculate the dependence of the lowest-energy states on
the chemical potential in the weak and intermediate coupling
regimes for single-band and two-band systems (within the in-
dependent band regime) at zero magnetic field and in the pres-
ence of a finite Zeeman field Γ = 0.75 meV.

The weak coupling behavior is illustrated in Fig. 10, while
the intermediate coupling results are shown in Fig. 11. First,
we note that induced gap, i.e. the minimum of the lowest-
energy state at Γ = 0, is the same in all four panels, in agree-
ment with our analysis of the infinite system in Sec. III. Note
that the boundary of the brown regions from the top panels
(i.e., the lowest state of a single-band system at Γ = 0) has the
same structure as induced gap shown in Fig. 2. The upturn
associated with the depletion of the band has a slope that is
renormalized by the SM-SC coupling. The weak dependence
on µ for positive values of the chemical potential is a finite
size effect reflecting the discreteness of the quantum states in
a (relatively) short wire. The additional features present in the

Ny=1

Ny=2

FIG. 11. (Color online) Dependence of the low-energy states on the
chemical potential for a system with intermediate SM-SC coupling,
γ = 1.5∆0, with ∆0 = 0.25 meV. The top and bottom panels corre-
spond to Ny = 1 and Ny = 2, respectively. The significance of the
symbols is the same as in Fig. 10.

bottom panels are generated by states from the lower energy
occupied band.

The major differences between the weak and the interme-
diate coupling regimes emerge in the presence of a finite Zee-
man field. First, we note that the amplitude of the Majorana
splitting oscillations is significantly suppressed at intermedi-
ate coupling, γ = 1.5∆0, as compared to weak coupling,
γ = 0.25∆0. A direct consequence of this property is that
the experimental observation of these oscillations in strongly-
coupled hybrid systems may be difficult, as it requires high en-
ergy resolution. Note that, indeed, experimental observations
of Majorana oscillations are rare. A second consequence of
increasing the SM-SC coupling is the reduction of the quasi-
particle gap that protects the Majorana mode. In the exam-
ple shown in Fig. 11, this quasiparticle gap is of the order of
40−90 µeV. We emphasize that these values correspond to an
“ideal”, i.e., perfectly clean, system. Taking disorder into ac-
count will generate additional low-energy states, thus further
reducing the magnitude of the quasiparticle gap. In turn, a
small quasiparticle gap represents a serious challenge for im-
plementing topologically-protected quantum operations using
Majorana zero modes. These observations suggest that using
a low-gap superconductor (e.g., aluminum) strongly coupled
to the semiconductor wire may not be an optimal path toward
engineering a topological qubit, despite the fact that it gen-
erates a sizable induced gap at zero magnetic field. At finite
field, strong coupling will inevitably bring in sub-gap states
from the bulk superconductor, considerably complicating the
low-energy SM spectrum and destoying the topological pro-
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tection of the Majorana modes.
The main results regarding the proximity-induced low-

energy renormalization can be summarized as an effective
“phase diagram” showing the dependence of the lowest-
energy state of a finite hybrid system on the Zeeman field and
chemical potential. In a long-enough wire, the transition to
a topological phase at the lower critical field Γc1 is signaled
by the vanishing of the quasiparticle gap associated with the
emergence of a zero-energy Majorana mode. In the presence
of a non-vanishing transverse spin-orbit coupling, α′R 6= 0,
higher field phase boundaries (e.g., Γc2) are associated with
the opening/closing of the small “minigap” that characterizes
a wire with an even number of low-energy (Majorana) modes
at each end. In practice, observing these higher field transi-
tions is difficult due to finite size effects (in small systems),
energy resolution requirements, or large values of the Zeeman
field, which could destroy bulk superconductivity itself. Also
note that regions characterized by small values of the quasi-
particle gap may occur inside the low-field “trivial phase” (see
below), hence extra care is always required when interpreting
experimentally-measured “phase diagrams” [27].

A comparison between the “phase diagrams” in the weak-
and intermediate-coupling regimes is shown in Fig. 12. The
results are for simgle-band systems with γ = 0.25∆0 (top)
and γ = 1.5∆0 (bottom). For a vanishing Zeeman field, the
energy of the lowest-energy state is equal to or larger than the
induced gap ∆ind ≈ 0.17 meV. This energy decreases with
increasing Zeeman field and vanishes at a the crossover field
Γc1(µ), which is slightly larger than the value predicted by
Eq. (14) due to finite size effects. At higher values of the
applied Zeeman field the system is in the “topological phase”
and the lowest energy state corresponds to a pair of weakly
overlapping Majorana modes localized at the ends of the wire.
The corresponding energy splitting oscillations generate the
“stripy” regions in Fig. 12.

A few remarks are warranted. First, note the striking dif-
ference between the amplitudes of the Majorana splitting os-
cillations at weak- and intermediate-coupling (top and bottom
panels of Fig. 12, respectively), which is a direct consequence
of the proximity-induced energy renormalization. We empha-
size that in the absence of a Zeeman field the lowest energy
has similar values in both cases. Second, we note that the
boundaries of the “stripy” regions are consistent with the topo-
logical phase boundary described by Eq. (14). Third, the re-
gion of the “trivial phase” corresponding to µ,Γ > 0.4 meV is
characterized by the presence of a low-energy state (dark spots
outside the “stripy” areas in Fig. 12). This state is associated
with the higher energy spin sub-band, which approaches zero-
energy in the vicinity of the trivial-to-topological crossover, as
revealed by the behavior of the yellow regions in Figs. 10 and
11 (top panels). Finally, we note that the Majorana splitting
oscillations should be observable provided i) their amplitude
is larger than the experimental energy resolution, which can
always be realized by working with short-enough wires in the
weak coupling regime, and ii) the measurement is done along
a path in the phase diagram that crosses the “stripes”. Con-
cerning the second requirement, we note that varying the Zee-
man field does not guarantee a constant chemical potential due

FIG. 12. (Color online) Effective phase diagram of a finite sys-
tem as revealed by the dependence of the lowest energy state on
Zeeman field and chemical potential. Top: Weak coupling regime
(γ = 0.25∆0, ∆0 = 0.82 meV). Bottom: Intermediate coupling
regime (γ = 1.5∆0, ∆0 = 0.25 meV). White corresponds to ener-
gies larger than 0.1 meV, while black gapless states. The “stripy”
region, which corresponds to the “topological phase”, reveals the
Majorana splitting oscillations. Note that the oscillations are sig-
nificantly suppressed at intermediate coupling (bottom) as compared
to weak coupling (top). In addition, the “phase boundary” changes
with γ, consistent with Eq. (14). The color code is the same in both
panels; white corresponds to energies E ≥ 0.15 meV.

to electrostatic effects. This may result in paths that run par-
allel to the stripes, which conceals the presence of the energy
splitting oscillations (see next section). On the other hand, the
chemical potential can be varied while maintaining a constant
value of the Zeeman field. This corresponds to vertical cuts
of in the “phase diagram”, which necessarily leads to splitting
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FIG. 13. (Color online) Effective phase diagram of a finite system in
the coupled band regime described by Eq. (19) with ∆ε = 0.5 meV
and γ = 1.5∆0 = 0.375 meV. The transverse Rashba coefficient is
α′
R = 0.75 meV, so that the lower crossover field Γc1 corresponds

to the red line from Fig.3 (c).

oscillations (see, for example, Figs. 10 and 11).
A “phase diagram” corresponding to a two-band system

in the coupled band regime is shown in Fig. 13. Its struc-
ture can be understood by combining the information about
the phase diagram of the infinite system shown in Fig. 3 (c)
with the field dependence of the low-energy spectrum, which
is shown in Fig. 9 (b). The “topological phase” corresponds
to the “stripy” area, while the dark high-field region repre-
sents a trivial “phase” characterized by the presence of two
Majorana modes at each end of the wire. Note that for chem-
ical potentials within the interval (−0.5, 0.5) meV the (low-
field) trivial-to-topological crossover takes place at low val-
ues of the Zeeman field and Γc1 is weakly dependent on the
chemical potential. This behavior is strikingly different from
that of phase boundaries in the independent band regime (see
Fig. 12). Finally, we note that, despite the low values of the
crossover field, the amplitude of the Majorana oscillations is
significantly lower than the corresponding amplitude in the
weakly coupled independent-band regime, as evident when
comparing Fig. 13 and the top panel of Fig. 12 (the same
color code was used in both figures).

C. The “visibility” of low-energy features

The last topic that we address concerns the experimentally-
observable consequences on the low-energy features dis-
cussed in the preceding sections. More specifically, we fo-
cus on charge tunneling experiments, which, basically, probe

the local density of states at the end of the proximitized SM
wire. There are two key ingredients that play critical roles in
determining the tunneling conductance and the local density
of states (LDOS), ingredients that have not been considered
so far in our discussion. The first one concerns the spatial
distribution of the spectral weight along the wire. Of course,
energy spectra, like those in Figs. 7-11, do not contain this
type of information. However, it is straightforward to extract
it from the effective Green function by calculating the LDOS

ρ(ω, i) = − 1

π
Im {Tr[Geff(ω + iη, i, i)]} , (26)

where Im{. . . } and Tr[. . . ] represent the imaginary part and
the trace over spin and particle-hole degrees of freedom, re-
spectively.

The second aspect concerns the description of the bulk su-
perconductor. In this study we use the simplified model of the
bulk SC given by Eq. (5), which does not include effects due
to the presence of disorder and finite magnetic fields. How-
ever, in experimentally-relevant conditions these effects may
be crucial. In essence, the presence of disorder and finite mag-
netic field is expected to generate low-energy, sub-gap states
in the bulk SC. Once the SC is coupled to the SM wire, these
low-energy states hybridize with the states residing inside the
wire, effectively resulting in a broadening of the spectral fea-
tures at all energy scales, i.e., including energies lower than
∆0(Γ). Appropriately modeling the bulk SC to incorporate
the effects of disorder and finite magnetic field remains a cru-
cial outstanding problem in this field [60, 62]. Here, we do
not address this issue at the microscopic level. Instead, we
use a toy model that describes the sub-gap states in terms of
an imaginary contribution to the SC Green function that is ob-
tained through the substitution ω → ω+ iη(Γ), where η(Γ) is
a field-depended energy scale related to the presence of low-
energy SC states. In the numerical calculations, the depen-
dence of this energy scale on the Zeeman field is

η(Γ) = 0.01 + 0.025Γ2/(0.2 + Γ2) meV, (27)

which increases with the applied field, ranging from 10 µeV
to 35 µeV. This field dependence is chosen to simulate the
expected increase of the density of low-energy states in the
bulk SC with the applied magnetic field.

Consider now a single-band system in the intermediate-
coupling regime corresponding to the parameters of Fig. 8
(a), with a self-energy (5) that includes the substitution ω →
ω + iη(Γ), with η(Γ) given by Eq. (27). The dependence of
the LDOS at the end of the wire on energy and Zeeman field
for a hybrid system with a relatively “clean” superconductor
characterized by η(Γ) = 0.005 meV is shown in the top panel
of Fig. 14. The model parameters are the same as in the bot-
tom panel of Fig. 5 and in Fig. 8 (a). Indeed, upon close
inspection one can identify the brighter features (i.e., higher
LDOS values) in Fig. 14 (top) as the red/dark red lines in Fig.
5 (bottom). Note, however, that the Majorana mode is much
more visible that the “bullk” states. This is a consequence
of the fact that the Majorana mode is localized near the end
of the wire, while the other states have relatively small ampli-
tudes in this region. In addition, in multi-band systems certain
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FIG. 14. (Color online) Local density of states at the end of the wire
as function of energy and Zeeman field. Top: Single band system
with the same parameters as in Fig. 8 (a) and a “clean” supercon-
ductor with η(γ) = 0.005 meV. Note the higher visibility of the
Majorana mode as compared to the “bulk” states. Middle: Two-band
system with same parameters as in Fig. 8 (b) and “clean” super-
conductor. The states associated with the low-energy occupied band
have higher visibility that states corresponding to the top (Majorana)
band. Bottom: Single band wire coupled to a “dirty” superconductor.
The model parameters are the same as in the top panel and η(Γ) is
given by Eq. (27).

states associated with low-energy occupied bands have large
amplitudes at the end of the wire and generate very strong con-
tributions to the LDOS. This is illustrated in the middle panel
of Fig. 14, which shows a two-band system at intermediate
coupling having a low-energy spectrum as in Fig. 8 (b).

Next, we focus on the second key ingredient that determines
the LDOS and consider a “dirty” parent superconductor char-
acterized by η(γ) given by Eq. (27). The dependence of the
LDOS on energy and Zeeman field is shown in the bottom
panel of Fig. 14. There are two important features that dis-
tinguish the “clean” (top) and “dirty” (bottom) cases. First,
in the “dirty” superconductor regime the Majorana mode ac-
quires a significant finite broadening. This introduces a finite
energy resolution that limits the observability of the splitting
oscillations. Second, and perhaps more importantly, in the
presence of a “dirty” superconductor with sub-gap states the
discrete “bulk” spectrum becomes a fuzzy continuum that fills
the quasiparticle gap. In other words, if the bulk superconduc-

FIG. 15. (Color online) Local density of states for a single band
system at intermediate coupling. The model parameters and the color
code are the same as in Fig. 14 (bottom panel). Top: The bulk SC
gap collapses at Γ = 1.25 meV (by contrast, in Fig. 14 and in the
bottom panel the gap collapses at Γ = 2 meV). Bottom: The particle
number (rather than the chemical potential) is kept constant.

tor has low-energy states in the presence of a finite magnetic
field, the Majorana mode is not sharply defined (i.e., it has
a finite characteristic width) and is not protected by a quasi-
particle gap (i.e., there is a finite density of states at all ener-
gies). These features have dramatic consequences regarding
the topological properties of the Majorana zero modes. This
suggests that limiting the value η(Γ) by optimizing the bulk
superconductor is a critical requirement for the realization of
topological operations with Majorana zero modes. It is not
enough to just have a very clean ballistic SM wire; the par-
ent SC must also be clean, with few subgap states even in the
presence of a finite magnetic field, a condition which is hardly
satisfied by the SM-SC hybrid structures currently studied ex-
perimentally.

The final aspect that we address here concerns the visibil-
ity of the Majorana splitting oscillations in a hybrid system
containing a “dirty” superconductor. If the Zeeman field can
be varied while maintaining constant chemical potential, the
oscillations should be visible in short-enough wires, despite
the finite energy resolution introduced by η(Γ), as evident in
the bottom panel of Fig. 14. Nonetheless, even in this case,
the collapse of the bulk SC gap may introduce additional con-
straints by making the high-field regime inaccessible. This
situation is illustrated in the top panel of Fig. 15, where the
Zemman field at which the SC gap collapses has been reduced
from Γ = 2 meV to Γ = 1.25 meV. The splitting oscillations,
which are very clear in the “clean” system (top panel of Fig.
14), can barely be resolved.

In real devices the chemical potential may vary as a func-
tion of Γ, as a result of electrostatic effects. When these ef-
fects are strong, it is the particle number (rather than the chem-
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G= 0.75 meV

G= 0

FIG. 16. (Color online) Constant field cuts of the LDOS for a wire
with fixed particle number shown in Fig. 15 (bottom panel). A
clearly defined “hard” gap characterizes the system in the absence
of a Zeeman field (Γ = 0). For Γ = 0.75 meV the broad zero-bias
Majorana peak cannot be separated from the finite-energy features,
which means that the Majorana subspace is not topologically pro-
tected by a finite quasiparticle gap.

ical potential) that is constant as the Zeeman field is varied.
This corresponds to a path in the “phase diagram” shown in
Fig. 12 (bottom) that runs almost parallel to the stripes. This
situation is illustrated in the bottom panel of Fig. 15. Note the
absence of splitting oscillations. A faint signature of a single
splitting of the zero-bias peak is visible above Γ ≈ 1.2 meV.
Of course, if the bulk SC gap collapses at a lower value of the
magnetic field (here we have Γ = 2 meV), any signature of
the zero-bias peak splitting would completely disappear.

Finally, we would like to emphasize once more two of the
main results of this study: i) The quasiparticle gap that pro-
tects the Majorana mode is renormalized as a result of the
proximity-coupling to the superconductor. Consequently, in
the intermediate and strong coupling regimes the magnitude
of the gap is significantly reduced as compared to weak cou-
pling estimates. ii) A “dirty” superconductor broadens all the
low-energy spectral features of the hybrid system and partially
fills in the quasiparticle gap. These properties are illustrated
in Fig. 16, which shows two constant field cuts of the LDOS
from Fig. 15 (bottom panel). While in the absence of a Zee-
man field the induced gap is clearly defined, at Γ = 0.75 meV
one cannot define a quasiparticle gap that separates the broad
zero-bias peak from the features associated with finite-energy
states. We conclude that obtaining a Majorana mode that is
well separated from the finite energy states requires a quasi-
particle gap that is much larger that the characteristic energy
η(Γ) for the bulk SC. Consequently, if one uses a low gap
superconductor (e.g., Al) one has to work in the intermediate
coupling regime (to optimize the induced gap) and to make
the bulk SC very clean (to minimize η). Using a large gap su-
perconductor appears to be a better solution, as it allows one
to work in the weak-coupling regime and can tolerate higher
levels of sub-gap states (i.e., larger η). We emphasize that the
situation depicted in Fig. 16 is rather generic in all SM-SC
Majorana systems studied experimentally so far. In particular,

even when a hard gap exists at zero magnetic field, the corre-
sponding gap at a finite field where the Majorana mode may
exist (and a zero energy conductance peak is observed), the
induced gap is invariably soft.

V. CONCLUSIONS

We have developed a general theory for proximity-induced
topological superconductivity in semiconductor nanowires by
fully taking into account the self-energy corrections to the
nanowire Green function generated by the parent supercon-
ductor. The theory provides a complete low-energy de-
scription of superconductor-semiconductor hybrid structures,
which are of much current experimental interest for study-
ing localized zero energy Majorana modes. This general the-
ory, which treats the superconductor and the semiconductor
on an equal footing, should be the basis for all future theo-
retical work in the subject, since recent experiments appear
to indicate that the widely used minimal model that only in-
cludes Cooper pairs induced by the superconductor into the
nanowire and neglects all superconductor-induced renormal-
ization effects, is incapable of describing various key features
of the measured data. We show that in the strong/intermediate
coupling regimes, i.e. when the effective semiconductor - su-
perconductor coupling is larger than/comparable to the su-
perconducting energy gap, the parent superconductor plays
a critical role in determining the low-energy physics of the
hybrid device and has to be treated with care, both theoret-
ically and experimentally. Our theory naturally incorporates
the effects of subgap states that may be present in the par-
ent superconductor, particularly in the presence of a finite
magnetic field. These effects are shown to have crucial con-
sequences for the induced topological superconductivity and
the corresponding Majorana modes and provide a natural ex-
planation for the universally observed soft topological gap in
semiconductor nanowires. The theory also explains various
features in the experimental data as effects arising from the
interplay of multi-subband physics, superconductor-induced
renormalization, and superconductor-induced inter-band cou-
pling. Equally important, the theory shows that the zero-
energy nanowire spectrum may manifest complex Majorana
splitting oscillations, which cannot be interpreted on the basis
of just the bare semiconductor energy levels, while the topo-
logical gap protecting the Majorana modes may be strongly
renormalized. We establish the quantitative effects of the
proximity-induced renormalization on the nanowire topolog-
ical quantum phase diagram. Certain features of the phase
digram are nonintuitive and much more complex than those
predicted by the usual minimal model, which does not incor-
porate the proximity-induced renormalization and the inter-
band coupling effects. In particular, inter-subband couplings
are non-trivially generated by the parent superconductor, lead-
ing to significant modifications in the topological phase dia-
gram. In general, when the nanowire is in the coupled-band
regime, no simple equation can describe the quantum tran-
sitions between trivial and topological phases. The theoret-
ical framework provided in our paper should be the start-



19

ing point in all future efforts to understanding experiments in
superconductor-semiconductor hybrid platforms.

Our work leads immediately to one important conclu-
sion: If one wants to restrict oneself to the ‘simple’ situa-
tion that does not involve ‘complications’ such as soft topo-
logical gaps, broad Majorana-related zero bias conductance
peaks, and multiple sub-gap structures, which arise from the
parent superconductor, then one must take particular care
to design hybrid systems characterized by (i) values of the
superconductor-semiconductor tunnel coupling much smaller
that the gap of the parent superconductor and (ii) the ab-
sence of low-energy, sub-gap states in the parent supercon-
ductor at relevant values of the magnetic field. Indeed, in
the weak-coupling limit the effects of the superconductor-
induced renormalization and inter-band coupling are negli-
gible. However, if the gap of the parent superconductor is
small, this weak-coupling condition comes with the heavy
price of the proximity induced gap being very small, since
it will essentially be determined by the weak semiconductor-
superconductor coupling. This would specifically rule out the
currently popular InAs-Al core-shell nanowire epitaxial sys-
tems, where the tunnel coupling is large (and has to be so
to ensure a reasonable value of the induced gap). If, on the
other hand, the parent superconductor has a large gap (e.g.,
Nb-based superconductors), the size of the induced gap and
the energy renormalization effects do not represent major con-
cerns. This is because the semiconductor-superconductor cou-
pling can be sizable (thus ensuring a large induced gap), yet
much smaller than the parent superconducting gap (thus min-

imizing the renormalization effects). However, even in this
case the existence of low-energy sub-gap states in the parent
superconductor can easily compromise the properties of the
Majorana modes by generating a soft topological gap and cre-
ating clusters of hybrid states that appear as broad zero-energy
features (e.g., in tunneling measurements). In fact, it is well-
known that NbTiN, for example, is an extremely dirty material
with substantial disorder-induced subgap states, which makes
its use as the parent superconductor very problematic [65].
The actual solution to these problems may require the design
of new relatively large-gap parent superconductors with desir-
able low-energy properties, so that their renormalization of the
nanowire spectrum is benign and their subgap states are elimi-
nated. We urge materials science efforts toward the fabrication
of optimal hybrid structures using better parent superconduc-
tors in order to avoid the problems of small and soft topo-
logical gaps and strongly renormalized low-energy nanowire
spectra that plague the current experimental systems. In par-
ticular, the soft topological gap is a very serious problem be-
cause a hybrid system with a soft gap is, strictly speaking,
gapless or, at best, can be characterized by some small ‘effec-
tive gap’. Since the size of the gap itself defines the strength
of the topological protection, a small and/or soft topological
gap will prevent non-Abelian braiding from being successfu in
semiconductor wire-superconductor structures, even if Majo-
rana zero modes are localized at the wire ends. In our opinion,
this is the most important problem preventing further experi-
mental progress in the field.
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T. S. Jespersen, J. Nygård, P. Krogstrup, and C. M. Marcus,
Nature 531, 206 (2016).

[25] M. T. Deng, S. Vaitiekenas, E. B. Hansen, J. Danon, M. Lei-
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