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We study the formation of dipolar excitons and their superfluidity in a phosphorene double layer.
The analytical expressions for the single dipolar exciton energy spectrum and wave function are
obtained. It is predicted that a weakly interacting gas of dipolar excitons in a double layer of black
phosphorus exhibits superfluidity due to the dipole-dipole repulsion between the dipolar excitons.
In calculations are employed the Keldysh and Coulomb potentials for the interaction between the
charge carriers to analyze the influence of the screening effects on the studied phenomena. It is
shown that the critical velocity of superfluidity, the spectrum of collective excitations, concentra-
tions of the superfluid and normal component, and mean-field critical temperature for superfluidity
are anisotropic and demonstrate the dependence on the direction of motion of dipolar excitons.
The critical temperature for superfluidity increases if the exciton concentration and the interlayer
separation increase. It is shown that the dipolar exciton binding energy and mean-field critical
temperature for superfluidity are sensitive to the electron and hole effective masses. The proposed
experiment to observe a directional superfluidity of excitons is addressed.

PACS numbers: 67.85.Jk, 68.65.Ac, 73.20.Mf

I. INTRODUCTION

The Bose-Einstein condensation (BEC) and superfluidity of dipolar (indirect) excitons, formed by electrons and
holes, spatially separated in two parallel two-dimensional (2D) layers of semiconductor, were proposed1 and recent
progress on BEC of semiconductor dipolar excitons was reviewed2,3. Due to relatively large exciton binding energies
in novel 2D semiconductors, the BEC and superfluidity of dipolar excitons in double layers of transition metal
dichalcogenides (TMDCs) was studied4–6.

Phosphorene, an atom-thick layer of black phosphorus7 that does have a natural band gap, has aroused considerable
interest currently. It has been shown that monolayer phosphorene is an relatively unexplored two dimensional semicon-
ductor with a high hole mobility and exhibits unique many-electron effects8. In particular, first principles calculations
have predicted unusual strong anisotropy for the in-plane thermal conductivity in these materials9. Among the in-
triguing band structure features found are large excitonic binding energy10,11, prominent anisotropic electron and hole
effective masses12–15 and carrier mobility12,16. Recently the exciton binding energy for direct excitons in monolayer
black phosphorus, placed on a SiO2 substrate was obtained experimentally by polarization-resolved photolumines-
cence measurements at room temperature17. External perpendicular electric fields18 and mechanical strain19,20 have
been applied to demonstrate that the electronic properties of phosphorene may be significantly modified. According
to Refs. [11,17], excitons and highly anisotropic optical responses of few-layer black phosphorous may be possible.
Specifically, phosphorene absorbs light polarized along its armchair direction and is transparent to light polarized
along the zigzag direction. Consequently, phosphorene may be employed as a viable linear polarizers. Also the inter-
est in these recently fabricated 2D phosphorene crystals has been growing because they have displayed potential for
applications in electronics including field effect transistors21.

This paper explores the way in which the anisotropy of phosphorene is capable of affecting superfluidity in double
layer structure. While it is important to mention that whereas the exciton binding energy was calculated using
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density functional theory (DFT) and quasiparticle self-consistent GW methods for direct excitons in suspended few-
layer black phosphorus11, here we apply an analytical approach for indirect excitons in a phosphorene double layer.
In our model, electrons and holes are confined to two separated parallel phosphorene layers which are embedded in
a dielectric medium. We have taken screening of the interaction potential between an electron and hole through
the Keldysh potential 22. The dilute system of dipolar excitons form a weakly interacting Bose gas, which can be
treated in the Bogoliubov approximation23. The anisotropic dispersion relation for the single dipolar exciton in a
phosphorene double layer results in the angle dependent spectrum of collective excitations with the angle dependent
sound velocity, which causes the dependence of the critical velocity for the superfluidity on the direction of motion
of dipolar excitons. While the concentrations of the normal and superfluid components for the BCS-type fermionic
superfluid with the anisotropic order parameter do not depend on the direction of motion of the Cooper pairs24, we
obtain the concentrations of the normal and superfluid components for dipolar excitons in a double layer phosphorene
to be dependent on the directions of motion of excitons. Therefore, the mean-field temperature of the superfluidity
for dipolar excitons in a phosphorene double layer also depends on the direction of motion of the dipolar excitons. At
some fixed temperatures, the motion of dipolar excitons in some directions is superfluid, while in other directions is
dissipative. This effect makes superfluidity of dipolar excitons in a phosphorene double layer to be different from other
2D semiconductors, due to high anisotropy of the dispersion relations for the charge carriers in phosphorene. The
calculations have been performed for both the Keldysh and Coulomb potentials, describing the interactions between
the charge carriers. Such approach allows to analyze the influence of the screening effects on the properties of a weakly
interacting Bose gas of dipolar excitons in a phosphorene double layer. We also study the dependence of the binding
energy, the sound velocity, and the mean-field temperature of the superfluidity for dipolar excitons on the electron
and hole effective masses.

The paper is organized in the following way. In Sec. II, the energy spectrum and wave functions for a single dipolar
exciton in a phosphorene double layer are obtained, and the dipolar exciton effective masses and binding energies
are calculated. The angle dependent spectrum of collective excitations and the sound velocity for the dilute weakly
interacting Bose gas of dipolar excitons in the Bogoliubov approximation are derived in Sec. III. In Sec. IV, the
concentrations of the normal and superfluid components and the mean-field critical temperature of superfluidity are
obtained. The proposed experiment to study the superfluidity of dipolar excitons in different directions of motion of
dipolar excitons is discussed in Sec. V. The discussion of the results and conclusions follow in Sec. VI.

II. THEORETICAL MODEL

In the system under consideration in this paper, electrons are confined in a 2D phosphorene monolayer, while an
equal number of positive holes are located in a parallel phosphorene monolayer at a distance D away. The system
of the charge carriers in two parallel phosphorene layers is treated as a two-dimensional system without interlayer
hopping. In this system, the electron-hole recombination due to the tunneling of electrons and holes between different
phosphorene monolayers is suppressed by the dielectric barrier with the dielectric constant εd that separates the
phosphorene monolayers. Therefore, the dipolar excitons, formed by electrons and holes, located in two different
phosphorene monolayers, have a longer lifetime than the direct excitons. The electron and hole via electromagnetic
interaction V (reh), where reh is distance between the electron and hole, could form a bound state, i.e., an exciton, in
three-dimensional (3D) space. Therefore, to determine the binding energy of the exciton one must solve a two body
problem in restricted 3D space. However, if one projects the electron position vector onto the phosphorene plane
with holes and replace the relative coordinate vector reh by its projection r on this plane, the potential V (reh) may

be expressed as V (reh) = V (
√
r2 +D2), where r is the relative distance between the hole and the projection of the

electron position vector onto the phosphorene plane with holes. A schematic illustration of the exciton is presented in
Fig. 1. By introducing in-plane coordinates r1 = (x1, y1) and r2 = (x2, y2) for the electron and the projection vector
of the hole, respectively, so that r = r1 − r2, one can describe the exciton by employing a two-body 2D Schrödinger
equation with potential V (

√
r2 +D2). In this way, we have reduced the restricted 3D two-body problem to a 2D

two-body problem on a phosphorene layer with the holes.

A. Hamiltonian for an electron-hole pair in a phosphorene double layer

Within the framework of our model the coordinate vectors of the electron and hole may be replaced by their 2D
projections onto the plane of one phosphorene layer. These in-plane coordinates r1 = (x1, y1) and r2 = (x2, y2) for
an electron and a hole, respectively, will be used in our description. We assume that at low momentum p = (px, py),

i.e., near the Γ point, the single electron and hole energy spectrum ε
(0)
l (p) is given by
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FIG. 1: (Color online) Schematic illustration of a dipolar exciton consisting of a spatially separated electron and hole in a
phosphorene double layer.
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y

, l = e, h, (1)

where ml
x and ml

y are the electron/hole effective masses along the x and y directions, respectively. We assume that
OX and OY axes correspond to the armchair and zigzag directions in a phosphorene monolayer, respectively.

The model Hamiltonian within the effective mass approximation for a single electron-hole pair in a phosphorene
double layer is given by

Ĥ0 = − ~
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∂2

∂x21
− ~

2

2me
y
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∂y21
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, (2)

where V
(√
r2 +D2

)

is the potential energy for electron-hole pair attraction, when the electron and hole are located in

two different 2D planes. Following the standard procedure25 for the separation of the relative motion of the electron-
hole pair from their center-of-mass motion one can introduces variables for the center-of-mass of an electron-hole
pair R = (X,Y ) and the relative motion of an electron and a hole r = (x, y), as X = (me

xx1 +mh
xx2)/(m

e
x +mh

x),
Y = (me

xy1+m
h
xy2)/(m

e
x+m

h
x), x = x1−x2 , y = y1−y2 , r2 = x2+y2. The Schrödinger equation with Hamiltonian (2)

has the form: Ĥ0Ψ(r1, r2) = EΨ(r1, r2), where Ψ(r1, r2) and E are the eigenfunction and eigenenergy. One can write
Ψ(r1, r2) in the form Ψ(r1, r2) = Ψ(R, r) = eiP·R/~ϕ(r), where P = (Px, Py) is the momentum for the center-of-mass
of the electron-hole pair and ϕ(r) is the wave function for the electron-hole pair, given by the 2D Schrödinger equation:

[

− ~
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− ~

2

2µy

∂2

∂y2
+ V

(

√

r2 +D2
)

]

ϕ(x, y) = Eϕ(x, y), (3)

where E is the eigenenergy of the electron-hole pair in a phosphorene double layer, µx =
me

xm
h
x

me
x+mh

x
and µy =

me
ym

h
y

me
y+mh

y

are the reduced masses, relating to the relative motion of an electron-hole pair in the x and y directions, respectively.

B. Electron-hole interaction in a phosphorene double layer

The electromagnetic interaction in a thin layer of material has a nontrivial form due to screening22,26. Whereas the
electron and hole are interacting via the Coulomb potential, in phosphorene the electron-hole interaction is affected
by screening which causes the electron-hole attraction to be described by the Keldysh potential22. This potential has
been widely used to describe the electron-hole interaction in TMDC27–31 and phosphorene14,15,32 monolayers. The
Keldysh potential has the form14
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V (reh) = − πke2

(ε1 + ε2) ρ0

[

H0

(

reh
ρ0

)

− Y0

(

reh
ρ0

)]

, (4)

where reh is the distance between the electron and hole located in the different parallel planes, k = 9×109 N×m2/C2,
H0(x) and Y0(x) are Struve and Bessel functions of the second kind of order ν = 0, respectively, ε1 and ε2 denote
the background dielectric constants of the dielectrics, surrounding the phosphorene layer, and the screening length
ρ0 is defined by ρ0 = 2πζ/ [(ε1 + ε2) /2], where ζ = 4.1 Å14. Assuming that the dielectric between two phosphorene
monolayers is the same as substrate material with dielectric constant εd, we set ε1 = ε2 = εd. The screening length ρ0
determines the boundary between two different behaviors for the potential due to a nonlocal macroscopic screening.
For large separation between the electron and hole, i.e., reh ≫ ρ0 , the potential has the three-dimensional Coulomb
tail. On the other hand, for small reh ≪ ρ0 distances it becomes a logarithmic Coulomb potential of interaction
between two point charges in 2D. A crossover between these two regimes takes place around distance ρ0.

Making use of reh =
√
r2 +D2 in Eq. (4) and assuming that r ≪ D, one can expand Eq. (4) as a Taylor series in

terms of (r/D)
2
. By limiting ourselves to the first order with respect to (r/D)

2
, we obtain

V (r) = −V0 + γr2, (5)

with

V0 =
πke2

(ε1 + ε2) ρ0

[

H0

(

D

ρ0

)

− Y0

(

D

ρ0

)]

,

γ = − πke2

2 (ε1 + ε2) ρ20D

[

H−1

(

D

ρ0

)

− Y−1

(

D

ρ0

)]

, (6)

where H−1

(

D
ρ0

)

and Y−1

(

D
ρ0

)

are Struve and Bessel functions of the second kind of order ν = −1, respectively.

To illustrate the screening effect of the Keldysh interaction let us use for the electron-hole interaction the Coulomb
potential. The potential energy of the electron-hole attraction in this case is V (r) = −ke2/(ǫd

√
r2 +D2). Assuming

r ≪ D and retaining only the first two terms of the Taylor series, one obtains the same form for a potential as Eq. (5)
but with the following expressions for V0 and γ:

V0 =
ke2

ǫdD
, γ =

ke2

2ǫdD3
. (7)

Replacement of V
(√
r2 +D2

)

in Eq. (3) by the potential (5) allows to reduce the problem of indirect exciton
formed between two layers to an exactly solvable two-body problem as this is demonstrated in the next subsection.

C. Wave function and binding energy of an exciton

Substituting (5) with parameters (6) for the Keldysh potential or (7) for the Coulomb potential, into Eq. (3) and
using r2 = x2 + y2, one obtains an equation which has the form of the Schrödinger equation for a 2D anisotropic
harmonic oscillator. This equation allows to separate the x and y variables and can be reduced to two independent
Schrödinger equations for 1D harmonic oscillators, i.e.,

− ~
2

2µx

d2

dx2
ψ(x) + γx2ψ(x) =

(

Ex +
V0
2

)

ψ(x),

− ~
2

2µy

d2
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ψ(y) + γy2ψ(y) =

(

Ey +
V0
2

)

ψ(y), (8)

which have eigenfunctions given by25:
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where n = 0, 1, 2, 3, . . . and m = 0, 1, 2, 3, . . . are the quantum numbers, Hn(ξ) are Hermite polynomials, and ax =
(

~/
√
2µxγ

)1/2
and ay =

(

~/
√

2µyγ
)1/2

, respectively. The corresponding eigenenergies for the 1D harmonic oscillators

are given by25:

Exn = −V0
2

+ ~

√

2γ

µx

(
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1

2

)

, n = 0, 1, 2, ... ,

Eym = −V0
2

+ ~

√

2γ

µy

(

m+
1

2

)

, m = 0, 1, 2, .... . (10)

Thus, the energy spectrum Enm of an electron and hole comprising a dipolar exciton in a phosphorene double layer,
described by Eq. (3), is

Enm = Exn + Eym = −V0 + ~

√

2γ

µx

(

n+
1

2

)

+ ~

√

2γ

µy

(

m+
1

2

)

, n = 0, 1, 2, ...; m = 0, 1, 2, · · · , (11)

while the wave function ϕnm(x, y) for the relative motion of an electron and a hole in a dipolar exciton in a phosphorene
double layer, described by Eq. (3), is given by

ϕnm(x, y) = ψn(x)ψm(y), (12)

where ψn(x) and ψm(y) are defined by Eq. (9). The corresponding binding energy is

B = −E00 = V0 − ~

√

γ

2µx
− ~

√

γ

2µy
= V0 − ~

√

γ

2µ0
. (13)

In Eq. (13) µ0 =
µxµy

(
√
µx+

√
µy)

2 is “the reduced mass of the exciton reduced masses”. Setting µx = µy = µ̃ corresponding

to an isotropic system, we have µ0 = µ̃/4.
We consider the phosphorene monolayers to be separated by h-BN insulating layers. Besides we assume h-BN

insulating layers to be placed on the top and on the bottom of the phosphorene double layer. For this insulator

εd = 4.89 is the effective dielectric constant, defined as εd =
√
ε⊥

√
ε‖4, where ε⊥ = 6.71 and ε‖ = 3.56 are the

components of the dielectric tensor for h-BN33. Since the thickness of a h-BN monolayer is given by c1 = 3.33 Å4, the
interlayer separation D is presented as D = NLc1, where NL is the number of h-BN monolayers, placed between two
phosphorene monolayers. Let us mention that h-BN monolayers are characterized by relatively small density of the
defects of their crystal structure, which allowed to measure the quantum Hall effect in the few-layer black phosphorus
sandwiched between two h-BN flakes34.
One can obtain the square of the in-plane gyration radius rX of a dipolar exciton, which is the average squared

projection of the electron-hole separation onto the plane of a phosphorene monolayer4, as

r2X =

∫

ϕ∗
00(x, y)r

2ϕ00(x, y)d
2r =

1

ax
√
π

∫ ∞

−∞
x2e

− r2

a2
x dx+

1

ay
√
π

∫ ∞

−∞
y2e

− y2

a2
y dy =

a2x + a2y
2

. (14)

We emphasize that the Taylor series expansion of the electron-hole attraction potential to first order in (r/D)2,
presented in Eq. (5) is valid if the inequality

〈

r2
〉

= r2X =
(

a2x + a2y
)

/2 ≪ D2 is satisfied, where ax and ay are defined

above. Consequently, one finds that ~/
(

2
√
2µ0γ

)

≪ D2. The latter inequality holds for D ≫ D0. For the Coulomb

potential D0 = ~
2εd/

(

4ke2µ0

)

. If µx = µy = µ̃ for the isotropic system, we have D0 = ~
2εd/

(

ke2µ̃
)

. For the Keldysh
potential, one has to use Eq. (6) for γ and solve the following transcendental equation
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TABLE I: Value for D0 for the Keldysh and Coulomb potentials for different sets of masses for electron and hole from
Refs.35,36,37, and38.

Mass from Ref: 35 36 37 38

Keldysh potential D0, Å 1.0 0.98 0.9 0.9

Coulomb potential D0, Å 14.7 14.4 12.2 12.3

D3
0 = − ~

2 (ε1 + ε2) ρ
2
0

4πke2µ0

[

H−1

(

D0

ρ0

)

− Y−1

(

D0

ρ0

)] . (15)

The values of D0 for the Keldysh and Coulomb potentials depends on µ0, therefore, on the effective masses of the
electron and hole. Here and below in our calculations we use effective masses for electron and hole from Refs. 35–38.
The results, reported in these four papers, were performed by using the first principles calculations. The different
functionals for the correlation energy and setting parameters for the hopping lead to some difference in their results,
like geometry structures, e. g. The lattice constants in the four papers do not coincide with each other, and this can
cause the difference in the band curvatures and effective masses. The latter motivate us to use in calculations the
different sets of masses from Refs. 35–38 that allows to understand the dependence of the binding energy, the sound
velocity, and the mean-field temperature of the superfluidity on effective masses of electrons and holes.
The values of D0 for the Keldysh potential, obtained by solving Eq. (15), and the Coulomb potential for the sets

of the masses from Refs. [35–38], respectively, are given in Table I. As it can be seen in Table I, the characteristic
value of D0, entering the condition D ≫ D0 of validity of the first order Taylor expansion of electron-hole attraction
potential, given by Eq. (5), is about one order of magnitude smaller for the Keldysh potential than for the Coulomb
potential. Therefore, the first order Taylor expansion can be valid for the smaller interlayer separations D for the
Keldysh potential than for the Coulomb potential. Thus, validity of the harmonic oscillator approximation of the
Keldysh potential is more reasonable. This is due to the fact that the Keldysh potential describes the screening,
which makes the Keldysh potential to be more short-range than the Coulomb potential. Therefore, the harmonic
oscillator approximation of electron-hole attraction potential, given by Eq. (5), can be valid for smaller number NL

of h-BN insulating layers between two phosphorene monolayers for the Keldysh potential than for the Coulomb
potential. According to Table I, for both potentials D0 is not sensitive to the choice of the set of effective electrons
and holes masses. Comparisons of the Keldysh and Coulomb interaction potentials for an electron-hole pair and their
approximations using harmonic oscillator potentials obtained from a Taylor series expansion are presented in Fig.
2. According to Fig. 2, the Keldysh potential is weaker than the Coulomb potential at small projections r of the
electron-hole distance on the phosphorene monolayer plane, while the both potentials become closer to each other as
r increases, demonstrating almost no difference at r & 25 Å.

For the number NL = 7 of h-BN monolayers, placed between two phosphorene monolayers, the binding energies of
dipolar excitons, calculated for the sets of the masses from Refs. [35–38] by using Eq. (13), are given by 28.2 meV,
29.6 meV, 37.6 meV, and 37.2 meV. Let us mention that the maximal dipolar exciton binding energy was obtained
for the set of the masses, taken from Ref. [38]. The dipolar exciton binding energy increases when the reduced mass
µ0 of the exciton reduced masses increases. The reduced mass µ0 for the sets of the masses from Refs. [35–38] is
presented in Table II. One can conclude that while D0 is not sensitive to the choice of the set of effective electrons
and holes masses, the binding energy of indirect exciton depends on the exciton reduced mass µ0, which is defined by
the effective electron and hole masses.

It is worthy of note that the energy spectrum of the center-of-mass of an electron-hole pair ε0(P) may be expressed
as

ε0(P) =
P 2
x

2Mx
+

P 2
y

2My
, (16)

where Mx = me
x +mh

x and My = me
y +mh

y are the effective exciton masses, relating to the motion of an electron-
hole center-of-mass in the x and y directions, respectively. Substituting the polar coordinate for the momentum
Px = P cosΘ and Py = P sinΘ into Eq. (16), we obtain
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FIG. 2: (Color online) The Keldysh and Coulomb electron-hole potentials in a phosphorene double layer and their approxi-
mations by the harmonic oscillator potential. The calculations were performed for the number NL = 7 of h-BN monolayers,
placed between two phosphorene monolayers, and polarizability from Ref.14.

ε0(P) = ε0(P,Θ) =
P 2

2M0(Θ)
, (17)

where M0(Θ) is the effective angle-dependent exciton mass in a phosphorene double layer, given by

M0(Θ) =

[

cos2 Θ

Mx
+

sin2 Θ

My

]−1

. (18)

III. COLLECTIVE EXCITATIONS FOR DIPOLAR EXCITONS IN A PHOSPHORENE DOUBLE
LAYER

We now turn our attention to a dilute distribution of electrons and holes in a pair of parallel phosphorene layers
spatially separated by a dielectric, when nr2X ≪ 1, where n is the concentration for dipolar excitons. In this limit,
the dipolar excitons are formed by electron-hole pairs with the electrons and holes spatially separated in two different
phosphorene layers.

The distinction between excitons, which are not an elementary but a composite bosons39 and bosons is caused
by exchange effects2. At large interlayer separations D, the exchange effects in the exciton-exciton interactions in a
phosphorene double layer can be neglected, since the exchange interactions in a spatially separated electron-hole system
in a double layer are suppressed due to the low tunneling probability, caused by the shielding of the dipole-dipole
interaction by the insulating barrier6,40. Therefore, we treat the dilute system of dipolar excitons in a phosphorene
double layer as a weakly interacting Bose gas.

The model Hamiltonian Ĥ of the 2D interacting dipolar excitons is given by

Ĥ =
∑

P

ε0(P,Θ)a†
P
aP +

g

S

∑

P1P2P3

a†
P1
a†
P2
aP3

aP1+P2−P3
, (19)

where a†
P

and aP are Bose creation and annihilation operators for dipolar excitons with momentum P, S is a
normalization area for the system, ε0(P,Θ) is the angular-dependent energy spectrum of non-interacting dipolar
excitons, given by Eq. (17), and g is a coupling constant for the interaction between two dipolar excitons.

We expect that at T = 0 K almost all dipolar excitons condense into a BEC. One can treat this weakly interacting gas
of dipolar excitons within the Bogoliubov approximation23,41. The Bogoliubov approximation for a weakly interacting
Bose gas allows us to diagonalize the many-particle Hamiltonian, replacing the product of four operators in the
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interaction term by the product of two operators. This is justified under the assumption that most of the particles
belong to the BEC, and only the interactions between the condensate and non-condensate particles are taken into
account, while the interactions between non-condensate particles are neglected. The condensate operators are replaced
by numbers23, and the resulting Hamiltonian is quadratic with respect to the creation and annihilation operators.
Employing the Bogoliubov approximation41, we obtain the chemical potential µ of the entire exciton system by
minimizing Ĥ0 −µN̂ with respect to the 2D concentration n, where N̂ denotes the number operator. The later one is

N̂ =
∑

k

a†
P
aP, (20)

while H0 is the Hamiltonian describing the particles in the condensate with zero momentum P = 0. The minimization
of Ĥ0 − µN̂ with respect to the number of excitons N = Sn results in the standard expression23,41

µ = gn. (21)

Following the procedure presented in Ref. [42], the interaction parameters for the exciton-exciton interaction in
very dilute systems could be obtained assuming the exciton-exciton dipole-dipole repulsion exists only at distances
between excitons greater than distance from the exciton to the classical turning point. The distance between two
excitons cannot be less than this distance, which is determined by the conditions reflecting the fact that the energy
of two excitons cannot exceed the doubled chemical potential µ of the system42, i.e.,

U(R0) ≈ 2µ. (22)

In Eq. (22) U(R0) is the potential of interaction between two dipolar excitons at the distance R0, where R0 corresponds
to the distance between two dipolar excitons at their classical turning point. The latter approximation under the
assumption of the single-particle picture, along with Eq. (21), is reasonable for a weakly-interacting Bose gas of
dipolar excitons. Additionally, the exciton-exciton interaction is weak due to their relatively large spatial separation
in a dilute limit.

For our model we investigate the formation of dipolar excitons in a phosphorene double layer with the use of the
Keldysh and Coulomb interactions. Therefore, it is reasonable to adopt the general approach for treating collective
excitations of dipolar excitons. If the distance between two dipolar excitons is R and the electron and hole of one
dipolar exciton interact with the electron and hole of the other dipolar exciton, it is straightforward to show that the
exciton-exciton interaction U(R) has the form:

U(R) = 2V (R)− 2V

(

R

√

1 +
D2

R2

)

, (23)

where V (R) represents the interaction potential between two electrons or two holes in the same phosphorene monolayer.
We can assume the potential V (R) to be given by either Keldysh potential (4) or by Coulomb potential.
In a very dilute system of dipolar excitons and, therefore, D ≪ R, one may expand the second term in Eq. (23) in

terms of (D/R)2, and by retaining only the first order terms with respect to (D/R)2, finally obtains

U(R) =

{

πke2D2

2εdρ2

0
R

[

Y−1

(

R
ρ0

)

−H−1(y)
(

R
ρ0

)]

, for the Keldysh potential,

ke2D2

ǫdR3 , for the Coulomb potential.
(24)

Following the procedure presented in Ref. [42], one can obtain the coupling constant for the exciton-exciton inter-
action:

g = 2π

∫ ∞

R0

RdR U(R). (25)

Substituting Eq. (24) into Eq. (25), one obtains the exciton-exciton coupling constant g as following

g =

{

2π2ke2D2

2ǫdρ0

[

H0

(

R0

ρ0

)

− Y0

(

R0

ρ0

)]

, for the Keldysh potential,

2πke2D2

ǫdR0

, for the Coulomb potential.
(26)
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Combining Eqs. (22), (24) and (26), for the Keldysh potential we obtain the following equation for R0:

4πnρ20y [H0(y)− Y0(y)] = − [H−1(y)− Y−1(y)] , (27)

where y = R0/ρ0.
Combining Eqs. (22), (24) and (26), we obtain the following expression for R0 in the case of Coulomb potential

R0 =
1

2
√
πn

. (28)

From Eqs. (28), (26) and (21), one obtains the exciton-exciton coupling constant g for the Coulomb potential

g =
4πke2D2

√
πn

ǫd
. (29)

The coupling constant g and the distance R0 between two dipolar excitons at the classical turning point for
the Keldysh and Coulomb potentials for a phosphorene double layer as functions of the exciton concentration are
represented in Fig. 3. According to Fig. 3, R0 decreases with the increase of the exciton concentration n. While for
the Coulomb potential R0 is slightly larger than for the Keldysh potential, the difference is very small. As shown
in Fig. 3, the coupling constant g is larger for the Coulomb potential than for the Keldysh potential, because the
interaction between the charge carriers, interacting via the Keldysh potential, is suppressed by the screening effects.
The difference between g for the Keldysh and Coulomb potentials increases as the exciton concentration n increases.

FIG. 3: (Color online) The coupling constant g and the distance R0 between two dipolar excitons at the classical turning point
for the Keldysh and Coulomb potentials for a phosphorene double layer as functions of the exciton concentration. The number
of h-BN monolayers between the phosphorene monolayers is NL = 7.

The many-particle Hamiltonian of dipolar excitons in a phosphorene double layer given by Eq. (19) is standard for a
weakly interacting Bose gas with the only difference being that the single-particle energy spectrum of non-interacting
excitons is angular-dependent due to the orientation variation of the exciton effective mass. Whereas the first term in
Eq. (19) which is responsible for the single-particle kinetic energy is angular dependent, the second interaction term
in Eq. (19) does not depend on an angle because the dipole-dipole repulsion between excitons does not depend on an
angle. Therefore, for a weakly interacting gas of dipolar excitons in a phosphorene double layer, in the framework of
the Bogoliubov approximation, we could apply exactly the same procedure which has been adapted for a standard
weakly interacting Bose gas23,41, but taking into account the angular dependence of a single-particle energy spectrum
of dipolar excitons. Therefore, the Hamiltonian Ĥcol of the collective excitations in the Bogoliubov approximation for
the weakly interacting gas of dipolar excitons in phosphorene is given by

Ĥcol =
∑

P 6=0,Θ

ε(P,Θ)α†
P
αP, (30)
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where α†
jP and αjP are the creation and annihilation Bose operators for the quasiparticles with the energy dispersion

corresponding to the angular dependent spectrum of the collective excitations ε(P,Θ), described by

ε(P,Θ) =
[

(ε0(P,Θ) + µ)
2 − µ2

]1/2

. (31)

Eq. (31) is based on a well-known result obtained in the Bogoliubov approximation23,41. However, in our case the
single-particle energy ε0 (P,Θ) depends on the angle Θ because the Hamiltonian is itself angle dependent. We note
that the exciton-exciton interaction term does not depend on Θ. Therefore, in the spectrum of collective excitations
ε (P,Θ) the angular dependence enters only through the single-particle energy ε0 (P,Θ).

In the limit of small momenta P , when ε0(P,Θ) ≪ gn, we expand the spectrum of collective excitations ε(P,Θ) up to
first order with respect to the momentum P and obtain the sound mode of the collective excitations ε(P,Θ) = cS(Θ)P ,
where cS(Θ) is the angular dependent sound velocity, given by

cS(Θ) =

√

gn

M0(Θ)
. (32)

The asymmetry of the electron and hole dispersion in phosphorene is reflected in the angular dependence of the
sound velocity through the angular dependence of the effective exciton mass. The angular dependence of the sound
velocity for the Keldysh and Coulomb potentials is presented in Fig. 4, where it is demonstrated that the exciton
sound velocity is maximal at Θ = 0 and Θ = π and minimal at Θ = π/2. As it follows from comparison of Fig. 4a
with Fig. 4b, at the same parameters, the sound velocity cS(Θ) is greater in the case of Coulomb potential for the
interaction between the charge carriers than for the Keldysh potential, because the Keldysh potential implies the
screening effects, which make the interaction between the carriers weaker. According to Fig. 4, the sound velocity
depends on the effective electron and hole masses. However, the sound velocities are coincided at all angles Θ for
two sets of masses from Refs. [37] and [38], correspondingly. Since at low momenta the sound-like energy spectrum
of collective excitations in the dipolar exciton system in a phosphorene double layer satisfies to the Landau criterion
for superfluidity, the dipolar exciton superfluidity in a phosphorene double layer is possible. Let us mention that
the exciton concentration, used for the calculations, represented in Fig. 4 and below, corresponds by the order of
magnitude to the experimental values43,44.

FIG. 4: (Color online) The angular dependence of the sound velocity. (a) The interaction between the carriers is described by
the Keldysh potential. (b) The interaction between the carriers is described by the Coulomb potential. The calculations were
performed for the exciton concentration n = 2× 1016 m−2 and the number NL = 7 of h-BN monolayers, placed between two
phosphorene monolayers.

We emphasize that above we considered the BEC of indirect excitons in an infinite 2D system only at zero temper-
ature. The reason for this is that in an infinite 2D system, BEC does not exist at finite temperatures. Furthermore,
the critical temperature for BEC of a finite 2D system is reduced as the size of the system is increased.
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IV. SUPERFLUIDITY OF DIPOLAR EXCITONS IN A PHOSPHORENE DOUBLE LAYER

Since, at small momenta, the energy spectrum of the quasiparticles for a weakly interacting gas of dipolar excitons
is sound-like, this means that the system satisfies to the Landau criterion for superfluidity23,41. The critical exciton
velocity for superfluidity is angular-dependent, and it is given by vc(Θ) = cS(Θ), because the quasiparticles are
created at velocities above the angle dependent velocity of sound. According to Fig. 4, the critical exciton velocity
for superfluidity has maximum at Θ = 0 and Θ = π and has minimum at Θ = π/2. Therefore, as shown in Fig. 4a,
if the excitons move with the velocities in the range of approximately between 8 × 103 m/s and 3.4 × 104 m/s, the
superfluity is present for the angles at the edges of the angle range between Θ = 0 and Θ = π, while the superfluidity
is absent at the center of this angle range.

Let us now consider the system at nonzero temperatures. The density of the superfluid component ρs(T ) is defined
as ρs(T ) = ρ−ρn(T ), where ρ is the total 2D density of the system and ρn(T ) is the density of the normal component.
We define the normal component density ρn(T ) in the usual way.45. Suppose that the excitonic system moves with
a velocity u, which means that the superfluid component moves with the velocity u. At nonzero temperatures T
dissipating quasiparticles will appear in this system. Since their density is small at low temperatures, one may assume
that the gas of quasiparticles is an ideal Bose gas. To calculate the superfluid component density, we define the total
mass current J for a Bose-gas of quasiparticles in the frame of reference where the superfluid component is at rest, by

J =

∫

sd2P

(2π~)2
Pf [ε(P,Θ)−Pu] . (33)

In Eq. (33) f [ε(P,Θ)] = (exp [ε(P,Θ)/(kBT )]− 1)
−1

is the Bose-Einstein distribution function for quasiparticles
with the angle dependent dispersion ε(P,Θ), s = 4 is the spin degeneracy factor, and kB is the Boltzmann constant.
Expanding the integrand of Eq. (33) in terms of Pu/(kBT ) and restricting ourselves by the first order term, we obtain

J = − s

kBT

∫

d2P

(2π~)2
P (Pu)

∂f [ε(P,Θ)]

∂ε(P,Θ)
. (34)

The normal density ρn in the anisotropic system has tensor form24. We define the tensor elements for the normal

component density ρ
(ij)
n (T ) by

Ji = ρ(ij)n (T )uj, (35)

where i and j denote either the x or y component of the vectors. Assuming that the vector u ↑↑ OX (↑↑ denotes
that u is parallel to the OX axis and has the same direction as the OX axis), we have u = uxi and P = Pxi + Pyj.
Therefore, we obtain

P · u = Pxux,

P (P · u) = P 2
xuxi+ PxPyuxj, (36)

where i and j are unit vectors in the x and y directions, respectively. Upon substituting Eq. (36) into Eq. (34), one
obtains

Jx = − s

kBT

∫ ∞

0

dP
P 3

(2π~)2

∫ 2π

0

dΘ
∂f [ε(P,Θ)]

∂ε(P,Θ)
cos2 Θux. (37)

Using the definition of the density for the normal component from Eq. (35), we obtain

ρ(xx)n (T ) =
s

kBT

∫ ∞

0

dP
P 3

(2π~)2

∫ 2π

0

dΘ
exp [ε(P,Θ)/(kBT )]

(exp [ε(P,Θ)/(kBT )]− 1)2
cos2 Θ. (38)

Substitution of Eq. (36) into Eq. (34) gives
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Jy = − s

kBT

∫

d2P

(2π~)2
PxPy

∂f [ε(P,Θ)]

∂ε(P,Θ)
ux

=
s

kBT

∫ ∞

0

dP
P 3

(2π~)2

∫ 2π

0

dΘ
exp [ε(P,Θ)/(kBT )]

(exp [ε(P,Θ)/(kBT )]− 1)
2 cosΘ sinΘux = 0. (39)

The integral in Eq. (39) equals to zero, since the integral over the angle Θ over the period of the function results in

zero. Therefore, one obtains ρ
(xy)
n = 0.

Now assuming the vector u ↑↑ OY , we obtain analogously the following relations:

ρ(yy)n (T ) =
s

kBT

∫ ∞

0

dP
P 3

(2π~)2

∫ 2π

0

dΘ
exp [ε(P,Θ)/(kBT )]

(exp [ε(P,Θ)/(kBT )]− 1)
2 sin2 Θ,

ρ(yx)n (T ) = 0 . (40)

By defining the tensor of the concentration of the normal component as the linear response of the flow of quasipar-

ticles on the external velocity as n
(ij)
n = ρ

(ij)
n /Mi, one obtains:

n(xx)
n (T ) =

s

kBMxT

∫ ∞

0

dP
P 3

(2π~)2

∫ 2π

0

dΘ
exp [ε(P,Θ)/(kBT )]

(exp [ε(P,Θ)/(kBT )]− 1)
2 cos2 Θ,

n(xy)
n (T ) = 0

n(yy)
n (T ) =

s

kBMyT

∫ ∞

0

dP
P 3

(2π~)2

∫ 2π

0

dΘ
exp [ε(P,Θ)/(kBT )]

(exp [ε(P,Θ)/(kBT )]− 1)
2 sin2 Θ,

n(yx)
n (T ) = 0. (41)

The linear response of the flow of quasiparticles Jqp with respect to the external velocity at any angle measured
from the OX direction is given in terms of the angle dependent concentration for the normal component ñn(Θ, T ) as

|Jqp| =
∣

∣

∣
n(xx)
n (T )uxi+ n(yy)

n (T )uyj
∣

∣

∣

=

√

[

n
(xx)
n (T )

]2

u2 cos2 Θ+
[

n
(yy)
n (T )

]2

u2 sin2 Θ = ñ(Θ, T )u, (42)

where the concentration of the normal component ñn(Θ, T ) is

ñn(Θ, T ) =

√

[

n
(xx)
n (T )

]2

cos2 Θ+
[

n
(yy)
n (T )

]2

sin2 Θ. (43)

From Eq. (43) it follows that n
(xx)
n = ñn(Θ = 0) and n

(yy)
n = ñn(Θ = π

2 ).
Eq. (43) can be rewritten in the following form:

ñn(Θ, T ) =

√

√

√

√

√

[

n
(xx)
n (T )

]2

+
[

n
(yy)
n (T )

]2

2
+

(

[

n
(xx)
n (T )

]2

−
[

n
(yy)
n (T )

]2
)

cos (2Θ)

2
. (44)

We define the angle dependent concentration of the superfluid component ñs(Θ, T ) by

ñs(Θ, T ) = n− ñn(Θ, T ), (45)

where n is the total concentration of the dipolar excitons. The mean-field critical temperature Tc(Θ) of the phase
transition related to the occurrence of superfluidity in the direction with the angle Θ relative to the x direction is
determined by the condition

ñn(Θ, Tc(Θ)) = n. (46)
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A. Superfluidity for the sound-like spectrum of collective excitations

For small momenta, substituting the sound spectrum of collective excitations ε(P,Θ) = cS(Θ)P with the angular-
dependent sound velocity cS(Θ), given by Eq. (32), into Eq. (41), we obtain

n(xx)
n (T ) =

2s(kBT )
3ζ(3)

(π~)2Mx

∫ 2π

0

cos2 Θ

c4S(Θ)
dΘ =

2s(kBT )
3ζ(3)

(π~gn)2Mx

∫ 2π

0

cos2 Θ
(

cos2 Θ
Mx

+ sin2 Θ
My

)2 dΘ,

n(xy)
n (T ) = 0,

n(yy)
n (T ) =

2s(kBT )
3ζ(3)

(π~)2My

∫ 2π

0

sin2 Θ

c4S(Θ)
dΘ =

2s(kBT )
3ζ(3)

(π~gn)2My

∫ 2π

0

sin2 Θ
(

cos2 Θ
Mx

+ sin2 Θ
My

)2 dΘ,

n(yx)
n (T ) = 0, (47)

where ζ(z) is the Riemann zeta function (ζ(3) ≃ 1.202).
The integrals in Eq. (47) can be evaluated analytically and the results are the following46

∫ 2π

0

cos2 Θ
(

cos2 Θ
Mx

+ sin2 Θ
My

)2 dΘ = πMx

√

MxMy,

∫ 2π

0

sin2 Θ
(

cos2 Θ
Mx

+ sin2 Θ
My

)2 dΘ = πMy

√

MxMy. (48)

Substituting (48) into Eq. (47), one obtains

n(xx)
n (T ) = n(yy)

n (T ) =
2ζ(3)s(kBT )

3
√

MxMy

π(~gn)2
, n(xy)

n (T ) = n(yx)
n (T ) = 0. (49)

Let us mention that Eq. (48) is valid if Mx

2(My−Mx)
> 0, which is true for a phosphorene double layer. Note that for

the anisotropic superfluid, formed by paired fermions, the relation n
(xx)
n (T ) = n

(yy)
n (T ) is also valid24.

Under the assumption of the sound spectrum of collective excitations using Eq. (49), implying n
(xx)
n (T ) = n

(yy)
n (T ),

one obtains from Eq. (43) the concentration of the normal component ñn(T ) as

ñn(T ) = n(xx)
n (T ) = n(yy)

n (T ) =
2ζ(3)s(kBT )

3
√

MxMy

π(~gn)2
. (50)

Therefore, in case of the sound-like spectrum of collective excitations, the concentration of the superfluid component
ñs(T ) is given by

ñs(T ) = n− 2ζ(3)s(kBT )
3
√

MxMy

π(~gn)2
. (51)

It follows from Eqs. (50) and (51) that for the sound-like spectrum of collective excitations, the concentrations of
the normal and superfluid components do not depend on an angle.
For the sound-like spectrum of collective excitations, the mean field critical temperature Tc can be obtained by

substitution Eq. (50) into the condition ñn(Tc) = n as following

Tc =

(

π(~g)2

2ζ(3)s
√

MxMy

)1/3
n

kB
. (52)

It follows from Eq. (52) that under the assumption about the sound-like spectrum of collective excitations, the mean-
field critical temperature Tc does not depend on an angle. The mean field critical temperature of the superfluidity
Tc for the Keldysh and Coulomb potentials for the sound-like spectrum of collective excitations obtained by using
Eq. (52) as a function of the interlayer separation D, is presented in Fig. 5. The calculations are performed for the
sets of effective electron and hole masses from Refs. 35–38. Comparing Fig. 5a with Fig. 5b, one concludes that at
the same parameters, the critical temperature for the superfluidity Tc(Θ) is much larger for the Coulomb potential
than for the Keldysh potential, because the sound velocity for the Coulomb potential is larger than for the Keldysh
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potential due to the screening effects, implied by the Keldysh potential. However, for both potentials the mean-field
critical temperature for superfluidity shows the similar depends on the electron and hole effective masses.

As it is demonstrated in Table II, the critical temperature for the superfluidity Tc decreases when MxMy increases.
Therefore, Tc is sensitive to the electron and hole effective masses.

Assuming the sound-like spectrum of collective excitations, the mean-field critical temperature of the superfluidity
Tc obtained by using Eq. (52) as a function of the exciton concentration n and the interlayer separationD, is presented
in Fig. 6. While the calculations, presented in Fig. 6, were performed for the Coulomb potential, one can obtain the
similar behavior for the mean field critical temperature of the superfluidity by employing the Keldysh potential.
According to Figs. 5 and 6, the mean-field critical temperature of the superfluidity Tc is an increasing function of the
exciton concentration n and the interlayer separation D.

FIG. 5: (Color online) The mean-field critical temperature for superfluidity Tc for a phosphorene double layer as a function
of the interlayer separation D, assuming the sound-like spectrum of collective excitations. (a) The interaction between the
carriers is described by the Keldysh potential. (b) The interaction between the carriers is described by the Coulomb potential.
The exciton concentration is n = 2× 1012 cm−2.

B. Superfluidity when the spectrum of collective excitations is given by Eq. (31)

Beyond the assumption of the sound-like spectrum, substituting Eq. (31) for the spectrum of collective excitations
into Eq. (41), and using Eq. (44), we obtain the mean-field critical temperature of the superfluidity Tc(Θ), by solving

numerically Eq. (46). Since in this case n
(xx)
n (T ) 6= n

(yy)
n (T ), the mean-field critical temperature of the superfluidity

Tc(Θ) is angular dependent. The angular dependence of critical temperature Tc(Θ) for the Keldysh and Coulomb
potentials for different exciton concentrations, calculated by solution of transcendental equation (46), is presented in
Fig. 7. According to Fig. 7, the mean-field critical temperature of the superfluidity Tc(Θ), is an increasing function
of the exciton concentration n. According to Fig. 7, the critical temperature of the superfluidity is maximal at Θ = 0
and Θ = π and minimal at Θ = π/2.

TABLE II: The critical temperatures under the assumption about the sound-like spectrum of collective excitations for different
sets of masses from Refs.35,36,37, and38. The phosphorene layers are separated by 7 layers of h-BN. µ0 and MxMy are expressed
in units of free electron mass m0 and m2

0, respectively.

Mass from Ref: 35 36 37 38

µ0, ×10−2m0 3.99 4.11 4.84 4.79

Coulomb potential Tc, K 182 192 174 172

Keldysh potential Tc, K 115 121 109 107

MxMy , ×m2

0 1.67 1.23 2.24 2.39



15

FIG. 6: (Color online) The critical temperature for superfluidity Tc for a phosphorene double layer as a function of the exciton
concentration n and the interlayer separation D, assuming the sound-like spectrum of collective excitations. The calculations
are performed for the Coulomb potential. The set of masses is taken from Ref. [37].

As it follows from comparison of Fig. 7a with Fig. 7b, at the same parameters, the mean-field critical temperature
for the superfluidity Tc(Θ) is greater when one considers the Coulomb potential for the interaction between the charge
carriers than for the Keldysh potential, because the sound velocity for the Coulomb potential is greater than for the
Keldysh potential due to the screening effects, taken into account by the Keldysh potential.

It is interesting to mention that the ratio of the maximal critical temperature T
(max)
c = Tc(0) to the minimal critical

temperature T
(min)
c = Tc(π/2), T

(max)
c /T

(min)
c , in case of both the Keldysh and Coulomb interactions between the

charge carriers decreases from 3.55 to 2.69 for the Keldysh potential, and from 3.29 to 2.64 for the Coulomb potential,
when the density of exciton increases from n = 2× 1011 cm−2 to n = 3× 1012 cm−2. One concludes that the angular
dependence of the mean-field critical temperature Tc decreases, when the exciton concentration increases.

At the fixed exciton concentration n, at the temperatures below T
(min)
c , exciton superfluidity exists at any direction

of exciton motion with any angle Θ relative to the armchair direction, while at the temperatures above T
(max)
c , exciton

superfluidity is absent at any direction of exciton motion with any angle Θ. At the fixed exciton concentration n,

at the temperatures in the range T
(min)
c < T < T

(max)
c , exciton superfluidity exists only for the directions of exciton

motion with the angles in the ranges 0 < Θ < Θc1(T ) and Θc2(T ) < Θ < π, while the superfluidity is absent for the
directions of exciton motion with the angles in the range Θc1(T ) < Θ < Θc2(T ). The critical angles of superfluidity
Θc1(T ) and Θc2(T ) correspond in Fig. 7 to the left and right crossing points of the horizontal line at the temperature
T with the curve at the fixed exciton concentration n, respectively.
Let us mention that the critical temperature for the superfluidity for a BCS-like fermionic superfluid with the

anisotropic order parameter does not depend on the direction of motion of Cooper pairs because in this case n
(xx)
n (T ) =

n
(yy)
n (T )24.
Let us mention that we chose to use the set of masses from Ref. [37], because this set results in higher exciton binding

energy. We used the number of h-BN monolayers between the phosphorene monolayers NL = 7 for Figs. 4 and 7,
because higher NL corresponds to higher interlayer separation D, which results in higher critical exciton velocity of
superfluidity equal to the sound velocity cS(Θ) and higher mean-field critical temperature of the superfluidity Tc(Θ).

According to Eq. (44), the angular dependent concentration of the normal component ñn(Θ, T ) for 0 ≤ Θ ≤ π/2

increases with Θ if n
(yy)
n (T ) > n

(xx)
n (T ) and decreases with Θ if n

(yy)
n (T ) < n

(xx)
n (T ). Therefore, at n

(yy)
n (T ) > n

(xx)
n (T )

the superfluidity can exist only if Θ < Θc(T ), while at n
(yy)
n (T ) < n

(xx)
n (T ) the superfluidity can exist only if

Θ > Θc(T ), where Θc(T ) is the critical angle of the occurrence of superfluidity.

For a chosen temperature, the critical angle Θc(T ), which corresponds to the occurrence of superfluidity, is given
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FIG. 7: (Color online) The angular dependence of the critical temperature for superfluidity Tc(Θ) for a phosphorene double
layer for different exciton concentrations. (a) The interaction between the carriers is described by the Keldysh potential. (b)
The interaction between the carriers is described by the Coulomb potential. The number of h-BN monolayers between the
phosphorene monolayers is NL = 7. The set of masses is taken from Ref. [37].

by the condition

ñn(Θc(T ), T ) = n . (53)

Substituting Eq. (44) into Eq, (53), one obtains a closed form analytic expression for Θc(T ) as

Θc(T ) =
1

2
arccos









2n2 −
(

[

n
(xx)
n (T )

]2

+
[

n
(yy)
n (T )

]2
)

[

n
(xx)
n (T )

]2

−
[

n
(yy)
n (T )

]2









. (54)

V. PROPOSED EXPERIMENT TO OBSERVE THE ANGULAR DEPENDENT SUPERFLUIDITY OF
DIPOLAR EXCITONS IN A PHOSPHORENE DOUBLE LAYER

The angular dependent superfluidity in a phosphorene double layer may be observed in electron-hole Coulomb
drag experiments. The Coulomb attraction between electrons and holes can introduce a Coulomb drag that is a
process in spatially separated conductors, which enables a current to flow in one of the layers to induce a voltage
drop in the other one. In the case when the adjacent layer is part of a closed electrical circuit, an induced current
flows. The experimental observation of exciton condensation and perfect Coulomb drag was claimed recently for
spatially separated electrons and holes in GaAs/AlGaAs coupled quantum wells in the presence of high magnetic field
perpendicular to the quantum wells47. A steady transport current of electrons driven through one quantum well was
accompanied by an equal current of holes in another. In Ref. [48], the authors discussed the drag of holes by electrons
in a semiconductor-insulator-semiconductor structure. The prediction was that for two conducting layers separated by
an insulator there will be a drag of carriers in one layer due to the direct Coulomb attraction with the carriers in the
other layer. The Coulomb drag effect in the electron-hole double layer BCS system was also analyzed in Refs. [49,50].
If the external potential difference is applied to one of the layers, it will produce an electric current. The current in
an adjacent layer will be initiated as a result of the correlations between electrons and holes at temperatures below
the critical one. Consequently, the Coulomb drag effect was explored for semiconductor coupled quantum wells in a
number of theoretical and experimental studies51–60. The Coulomb drag effect in two coaxial nanotubes was studied
in Ref. [61]. The experimental and theoretical achievements in Coulomb drag effect have been reviewed in Ref. [62].

We propose to study experimentally the angular dependent superfluidity of dipolar excitons in a phosphorene double
layer by applying a voltage difference for current flowing in one layer in a chosen direction at a chosen angle Θ relative
to the armchair direction and measuring the drag current in the same direction in another layer. This drag current
in another layer in the same direction as the current in the first layer will be initiated by the electron-hole Coulomb
drag effect due to electron-hole attraction. The measurement of the drag current in an adjacent layer for a certain
direction with the corresponding Θ will indicate the existence of superfluidity in this direction. Due to the angular
dependence of the sound velocity, the critical exciton velocity for superfluidity depends on an angle. Therefore, for
certain exciton velocities, there are the angle ranges, which correspond to the superfluid exciton flow, and other
angle ranges, which correspond to the normal exciton flow. This can be applied as a working principal for switchers,
controlling the exciton flows in different directions of exciton motion, caused by the Coulomb drag effect.
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VI. DISCUSSION AND CONCLUSIONS

We note that for dipolar excitons in isotropic 2D materials, such as gapped graphene and TMDCs, as discussed in
Refs.40,63 and6, respectively, the spectrum of collective excitations and the sound velocity do not depend on the angular
orientation with respect to a particular axis of the crystal lattice. Also, the normal and superfluid concentrations, and
the mean-field critical temperature for superfluidity do not depend on the direction of exciton flow. For anisotropic
phosphorene double layer, the spectrum of collective excitations and the sound velocity depend on the angle made
with the armchair direction in monolayer phosphorene, as shown in Fig. 4. Furthermore, for dipolar excitons in
double layer phosphorene, the normal and superfluid concentrations have tensor form whose components depend on
the direction of the exciton flow. The elements of these tensors are not equal to each other, as this is pointed out
in Sec. IVB. Also, for double layer phosphorene, the mean-field critical temperature of superfluidity depends on the
direction of exciton flow, as demonstrated in Fig. 7. These unique properties of exciton superfluid in a phosphorene
double layer are due to the anisotropy of the electron and hole energy band structures in a phosphorene monolayer.

It is worthy observing that if the condition r ≪ D is not satisfied, the dipolar exciton binding energies will be
larger than those given by Eq. (13). In this case, the harmonic oscillator approximation cannot be used. According to
Fig. 2, for a larger r the magnitude of the harmonic oscillator potentials are smaller than that for the corresponding
Keldysh or Coulomb potential. Therefore, the electron-hole attraction would be weaker under the harmonic oscillator
potential which results in larger binding energies for the exact potential. However, the results for the collective
properties of dipolar excitons, such as the spectrum of collective excitations, sound velocity, the normal and superfluid
concentrations as well as the mean-field critical temperature of superfluidity will not be affected when the condition
r ≪ D is not satisfied since this situation was not used for deriving and calculating numerically the collective properties
of dipolar excitons.

In summary, the influence of the anisotropy of the dispersion relation of dipolar excitons in a double layer of
phosphorene on the excitonic BEC and directional superfluidity has been investigated. The analytical expressions for
the single dipolar exciton energy spectrum and wave functions have been derived. The angle dependent spectrum
of collective excitations and sound velocity have been derived. It is predicted that a weakly interacting gas of
dipolar excitons in a double layer of black phosphorus exhibits superfluidity at low temperatures due to the dipole-
dipole repulsion between the dipolar excitons. It is concluded that the anisotropy of the energy band structure in a
phosphorene causes the critical velocity of the superfluidity to depend on the direction of motion of dipolar excitons.
It is demonstrated that the dependence of the concentrations of the normal and superfluid components and the mean-
field critical temperatures for superfluidity on the direction of motion of dipolar excitons occurs beyond the sound-like
approximation for the spectrum of collective excitations. Therefore, the directional superfluidity of dipolar excitons
in a phosphorene double layer is possible. Moreover, the presented results, obtained for both Keldysh and Coulomb
potentials, describing the interactions between the charge carriers, allow to study the influence of the screening effects
on the dipolar exciton binding energy, exciton-exciton interaction, the spectrum of collective excitations, and the
critical temperature of superfluidity for a weakly interacting Bose gas of dipolar excitons in a phosphorene double
layer. It is important to mention that the binding energy of dipolar excitons, and mean-field critical temperature
for superfluidity are sensitive to the electron and hole effective masses. Besides, the possibilities of the experimental
observation of the superfluidity for various directions of motion of excitons were briefly discussed.

Our analytical and numerical results will provide motivation for future experimental and theoretical investigations
on excitonic BEC and superfluidity for double layer phosphorene.

1 Yu. E. Lozovik and V. I. Yudson, Zh. Eksp. Teor. Fiz. 71, 738 (1976) [Sov. Phys. JETP 44, 389 (1976)]; Physica A 93, 493
(1978).

2 S. A. Moskalenko and D. W. Snoke, Bose-Einstein Condensation of Excitons and Biexcitons and Coherent Nonlinear Optics
with Excitons (Cambridge University Press, New York, 2000; see also a recent review D. W. Snoke, ”Dipole excitons in
coupled quantum wells: toward an equilibrium exciton condensate,” in Quantum Gases: Finite Temperature and Non-
Equilibrium Dynamics (Vol. 1, Cold Atoms Series), N.P. Proukakis, S.A. Gardiner, M.J. Davis, and M.H. Szymanska, eds.
(Imperial College Press, London, 2013).

3 M. Combescot, R. Combescot, and F. Dubin, Rep. Prog. Phys. 80, 066501 (2017).
4 M. M. Fogler, L. V. Butov, and K. S. Novoselov, Nature Commun. 5, 4555 (2014).
5 F. Wu, F. Qu, and A. H. MacDonald, Phys. Rev. B 91, 075310 (2015).
6 O. L. Berman and R. Ya. Kezerashvili, Phys. Rev. B 93, 245410 (2016).
7 A. H. Woomer, T. W. Farnsworth, J. Hu, R. A. Wells, C. L. Donley, and S. C. Warren, ACS Nano 9, 8869 (2015).
8 H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, and D. Tomnek ACS Nano, 8, 4033 (2014).



18

9 A. Jain and A. J. H. McGaughey, Scientific Reports 5, Article number: 8501 (2015).
10 H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. D. Ye, ACS Nano 8, 4033 (2014).
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