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A Spiral Spin State with Open Boundary Conditions in a Magnetic Field ∗

Randy S. Fishman and Satoshi Okamoto
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

In order to model a spiral spin state in a thin film, we study a classical Heisenberg model with
open boundary conditions. With magnetic field applied in the plane of the film, the spin state
becomes ferromagnetic above a critical field that increases with thickness N . For a given N , the
spiral passes through states with n = n0 up to 0 complete periods in steps of 1. These numerical
results agree with earlier analytic results in the continuum limit and help explain the susceptibility
jumps observed in thin films.

PACS numbers: 75.10.Pq. 75.25.+z, 75.70.Ak

I. INTRODUCTION

Due to its close connection with multiferroic behavior,
spiral spin order1,2 such as in Fig.1 has been the sub-
ject of intense investigation. Recently, spiral order was
discovered3–9 in several thin films. In order to manipu-
late the magnetic properties of these spiral states, it is
essential to understand how they depend on film thick-
ness N and magnetic field B. A spiral in a thin film can
be modeled by a linear Heisenberg model with neighbor-
ing spins coupled by a ferromagnetic interaction J and
by a Dzyaloshinskii-Moriya (DM) interaction D10,11 due
to broken inversion symmetry.

In the bulk limit, this simple model has an analytic
solution that supports solitonic states12. Consequently,
the spiral state is often referred to as a “solitonic” lat-
tice. For thin films, this model is believed to describe
materials like Cr1/3NbS2

4,6,9 and MnSi5. In Cr1/3NbS2,

Togawa et al.
9 directly imaged the “solitonic lattice” by

Lorentz microscopy in a 1 µm thick sample. They also
found that the spiral state produces steps in the mag-
netoresistance versus field, applied perpendicular to the

FIG. 1: A spiral spin state propagating along z. The thin
film has dimensions M × M × N , where N is the thickness
and M ≫ N .
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chiral axis or in the plane of the spiral. In MnSi5, the
spiral was detected both in magnetoresistance measure-
ments and in the magnetization versus applied field for
25 and 30 nm thick samples.
For both materials, measurements exhibit discontin-

uous changes as the number n of periods of the spiral
decreases by one with increasing field. A high enough
field stabilizes a ferromagnetic state with n = 0 so that
all spins point along the field direction. Because the chi-
rality of the spiral is maintained against defects and tem-
perature, thin films that support spiral states have been
considered as magnetic storage devices13.
To understand the behavior of a spiral sandwiched be-

tween two other magnetic materials, the model described
above has been studied14 with fixed boundary conditions
so that the spins Si on sites i = 1 and N are fixed along
the field direction perpendicular to the chiral axis. How-
ever, most thin films may be better described using open
boundary conditions so that the end spins are free to ro-
tate. For example, both the Cr1/3NbS2 and MnSi sam-
ples discussed above were grown on magnetically inert Si
wafers.
Our numerical solution of this problem qualitatively

agrees with an earlier analytic solution5 in the continuum
limit. We predict that thin films will exhibit jumps in
the magnetization and peaks in the susceptibility when
n decreases by one with increasing field. Remarkably,
our results are also quite similar to earlier results that
imposed fixed boundary conditions14.

II. MODEL AND THEORETICAL RESULTS

The Hamiltonian for this problem is

H = −J

N−1
∑

i=1

Si · Si+1 −D

N−1
∑

i=1

z · (Si × Si+1)

+A
N
∑

i=1

(z · Si)
2
− 2µBB

N
∑

i=1

x · Si, (1)

where the spins Si are treated classically and interact
with their neighbors through the ferromagnetic exchange
J and the DM interactionD. The anisotropyA > 0 keeps
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FIG. 2: Phase diagram of spiral spin state with dimensionless
DM interaction d = 0.16. Plots show dimensionless magnetic
field b versus thickness N . The number of complete periods of
the spiral is n. (a) Green squares were evaluated by sweeping
the thickness, blue circles by sweeping the magnetic field. The
horizontal dashed line shows bc ≈ (π/4)2d2 = 0.015712 . (b)
Square points separate regions with different values of N at
the phase boundaries.

the spins in the xy plane. Notice that the end spins at
sites i = 1 and N are treated differently than spins in the
interior. For example, the spin at i = N experiences an
exchange interaction with the spin at i = N − 1 but the
spin at N + 1 is missing. All spins experience the same
magnetic field along x in the plane of the film.
The dimensionless parameters of this model are d ≡

D/J and b ≡ 2µBB/JS. Aside from keeping all the spins
Si = S(cos θi, sin θi, 0) in the xy plane, the anisotropy A
has no affect on the static properties of this model. For
a bulk system (N → ∞), the DM interaction produces a
spiral with wavelength Λ = 2π/ tan−1(d) ≈ 2π/d. When
d > 0, the spiral is right handed; when d < 0, it is left
handed.
Starting with a uniform spiral, the spin state is allowed

to relax in discrete time steps. At each step, we obtain
updated values for the spins from the condition that Si

lies along the effective field hi, where the energy at site i
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FIG. 3: Spin along the field direction as a function of site i
for different thicknesses and b = 0.01. In (a), N = 137 and
139 correspond to n = 2 and 3, respectively. In (b), N = 179
and 181 correspond to n = 3 and 4, respectively.

is given by −JShi · Si. The dimensionless effective field
hi has components

hix = cos θi+1 +cos θi−1 + d
(

sin θi+1 − sin θi−1

)

+ b, (2)

hiy = sin θi+1 + sin θi−1 − d
(

cos θi+1 − cos θi−1

)

. (3)

Of course, hiz = 0. For the end spins at i = 1 or N , the
exchange and DM terms to the left (i = 0) or the right
(i = N + 1) are missing.
Approximately 90% of the old state is mixed with 10%

of the new state in order to avoid oscillations between
possible solutions. This procedure continues until no fur-
ther updates are obtained. In order to simplify this pro-
cedure, we use the fact that the spin state is either mirror
symmetric about the center for even N or has spin angle
θi = 0 or π at the central site for odd N . These symme-
try considerations reduce the number of spin degrees of
freedom by half. Even for the largest thickness N = 250
in Fig.1, our numerical procedure converges in less than
105 steps. To locate the phase boundary between dif-
ferent topological sectors, we compare the energy of dif-
ferent sectors. Only during the field sweep within each
topological sector, we used a lower-field solution as an
initial trial state to accelerate the convergence.
To evaluate the phase diagram, we take d = 0.16,

which corresponds to a zero-field spiral with wavelength
Λ = 39.6, the same as observed in bulk Cr1/3NbS2

4.
Phase boundaries are evaluated by either sweeping in
thickness N for a fixed magnetic field or in magnetic
field b for a fixed thickness. As seen in Fig.2(a), these
two techniques produce consistent results.
In zero field, the spiral is not affected by the open

boundary conditions because the rotation angle φ =
cos−1(Si · Si+1/S

2) does not change between pairs of
spins at sites i and i+ 1, even for the first and last pairs
with i = 1 and N − 1. Hence, the zero-field spiral has
the bulk period Λ = 39.6. The transition from n = n′

to n′ + 1 complete periods occurs when N − 1 just ex-
ceeds (n′ + 1)Λ. So in zero field, the ferromagnetic state
(n′ = 0) is stable below N = 41.
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FIG. 4: Spin along the field direction as a function of site i
for N = 119 and (a) b = 0 and 0.0005, and (b) b = 0.001.
Starting with n = 2 complete periods at b = 0, the spin
configuration changes to n = 3 at b = 0.0005 and back to
n = 2 at b = 0.001. The increase in n in (a) is produced by
the downturn in cos θi at the end sites, as shown in the insert.

In nonzero field, the end sites behave differently than
the interior sites because the effective fields h1 and hN

at sites i = 1 and N contain only half the exchange and
DM couplings from their neighbors but the full magnetic
field bx. This difference quantizes the number of periods
n of the spiral.

For any thickness, the spiral passes through states with
n = n0 to 0 complete periods in steps of 1 as b increases.
At high thicknesses (N ≫ Λ), the ferromagnetic state
is stable above bc ≈ (π/4)2d2 = 0.015712. These re-
sults agree with earlier calculations5 made in the contin-
uum limit and with previous results14 that assumed fixed
boundary conditions.

The spin cos θi along the field direction is plotted as a
function of i in Fig.3 for b = 0.01. The pairs of thick-
nesses in Figs.3(a) and (b) were chosen so that the spi-
ral passes from n = n′ to n = n′ + 1 with increasing
N . In a nonzero magnetic field, the spin state becomes
anharmonic with the spins Si spending more time with
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FIG. 5: Average magnetization as a function of magnetic field
for thicknesses N = 159 to 163 (a) and N = 211 (b). The
vertical dashed line shows bc = 0.015712 . Circles in (b) are
the numerical results with the fixed boundary condition taken
from Ref.14. The inset of (a) shows the jump from n = 4 to 3
for each thickness N . The inset of (b) shows the jumps from
n = 2 to 0.

cos θi > 0 than with cos θi < 0 as they rotate about z.
As a result, cos θi is more rounded near cos θi = 1 and
sharper near cos θi = −1. For the end spins, cos θi always
increases just above the phase boundary.

Surprisingly, each phase boundary in Fig.2(a) exhibits
a slight bulge towards lower N with increasing field. This
behavior is shown in Fig.2(b). Hence, the boundary be-
tween 0 and 1 node is 40.5 at zero field but drops to 39.5
at b = 0.001. A value of 40.5 is recovered at b = 0.003.
The bulge moves to lower fields with increasing N . Its
presence implies that a state with n = n′ complete peri-
ods at zero field can transform into a state with n = n′+1
before n starts to decrease with increasing field. To bet-
ter understand this behavior, we plot the spin configu-
ration for N = 119 for fields b ranging from 0 to 0.001
in Fig.4. Although the number of complete periods n
increases from 2 to 3 from b = 0 to 0.0005, the spin
configuration is continuous. On the other hand, the spin
configuration changes discontinuously (with cos θi chang-
ing from −1 to 1 at the central site i = 60) as the field
increases from b = 0.0005 to 0.001 and n decreases from
3 back to n = 2. So the “re-entrance” in Fig.2 is only
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a mathematical oddity and the lower transition has no
physical effect.
Keeping the thickness fixed, we plot the average mag-

netization

M =
1

N

N
∑

i=1

cos θi (4)

versus magnetic field b in Fig.5. As b increases, the mag-
netization jumps when n drops by one. Those jumps be-
come larger as n approaches 0. For thicknesses N = 159
through 163, the spiral has 3 periods over the largest
range of magnetic field. Above bc, the magnetization de-
pends very weakly on field and continues to saturate as
b increases. A close examination reveals M is continuous
at the “re-entrant” transition for N = 159 from n = 3 to
4 at b ≈ 10−4, indicated by the star in the inset to Fig.5.
We found that the boundary condition influences the

low field behavior rather strongly. Fig. 5 (b) compares
two results for N = 211 with different boundary condi-
tions. Circles are the results of the fixed boundary con-
dition, in which the direction of boundary spins is fixed
along the field direction (taken from Ref.14), and the solid
line is the result with the free boundary condition (cur-
rent work). Because boundary spins can move freely,
the spin configuration can be modified more easily under
a magnetic field. As a result, low field magnetization is
slightly enhanced, and the phase boundaries between dif-
ferent topological sectors are shifted to lower fields. This
implies that the phase boundaries are more rounded in
Fig. 2 (a) than those with the fixed boundary condition.
Nevertheless, the critical field, above which n = 0 sector
is most stable, is not changed.
Experimentally, a thin film will exhibit susceptibility

peaks at the field separating n′ + 1 from n′ spiral peri-
ods. For very thin films, there may be only one or two
peaks. For larger films, several peaks may be observ-

able. However, the peaks will be largest as n approaches
0. For films with N − 1 below the spiral period Λ, the
susceptibility will be a smooth function of field.
Because an actual film contains steps, its properties are

averaged over several thicknesses N . These steps then
smear out the susceptibility peaks. Nonetheless, Wilson
et al.

5 successfully observed two susceptibility peaks in a
MnSi film. Presumably, the lower peak marks the tran-
sition from n = 2 to 1 and the higher, larger peak from
n = 1 to 0.
The insensitivity of the phase diagram of this model

to the precise boundary conditions is remarkable. Open
boundary conditions seem just as effective at quantizing
the number of spiral periods as fixed boundary condi-
tions. Qualitatively, a phase diagram like that in Fig.2
requires only that the end spins are treated differently
than the interior spins. Of course, the details of the
phase diagram, such as the critical fields for the tran-
sitions from n = n′ to n′ − 1 for a fixed N , will depend
on the specific boundary conditions.

III. SUMMARY

To conclude, we have evaluated the magnetic state and
phase diagram of a spiral with open boundary conditions.
For every thickness, the spin state passes through every
number of complete periods from n0 to 0 with increasing
field. A decrease in n by one is marked by a jump in
the magnetization and by a peak in the magnetic sus-
ceptibility. Most importantly, the qualitative behavior of
spiral states in thin films does not depend on the precise
boundary conditions.
We acknowledge helpful conversations with Zheng Gai.
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T. L. Mochesky, Phys. Rev. B 88, 214420 (2013).

6 B.J. Chapman, A.C. Bornstein, N.J. Ghimire, D. Mandrus,
and M. Lee, Appl. Phys. Lett. 105, 072405 (2014).

7 S.A. Meynell, M.N. Wilson, H. Fritzche, A.N. Bogdanov,
and T.L. Monchesky, Phys. Rev. B 90, 014406 (2014).

8 N.A. Porter, C.S. Spencer, R.C. Temple, C.J. Kinane, T.R.
Charlton, S. Langridge, and C.H. Marrows, Phys. Rev. B

92, 144402 (2015).
9 Y. Togawa, T. Koyama, Y. Nishimori, Y. Matsumoto,
S. McVitie, D. McGrouther, R.L. Stamps, Y. Kousaka,
J. Akimitsu, S. Nishihara, K. Inoue, I.G. Bostrem, Vl.E.
Sinitsyn, A.S Ovchinnikov, and J. Kishine, Phys. Rev. B
92, 220412 (2015).

10 I.E. Dzyaloshinskii, JETP 10, 628 (1959).
11 T. Moriya, Phys. Rev. 120, 91 (1960).
12 J. Kishine, K. Inoue, and Y. Yoshida, Prog. Theor. Phys.

159, 82 (2005).
13 H.-B. Braun, J. Kulda, B. Roessli, D. Visser, K.W.
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