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Quantum magnetic phases near the magnetic saturation of triangular-lattice antiferromagnets
with XXZ anisotropy have been attracting renewed interest since it has been suggested that a
nontrivial coplanar phase, called π-coplanar or Ψ phase, could be stabilized by quantum effects in
a certain range of anisotropy parameter J/Jz besides the well-known 0-coplanar (known also as V )
and umbrella phases. Recently, Sellmann et al. [Phys. Rev. B 91, 081104(R) (2015)] claimed that
the π-coplanar phase is absent for S = 1/2 from an exact-diagonalization analysis in the sector of
the Hilbert space with only three down spins (three magnons). We first reconsider and improve
this analysis by taking into account several low-lying eigenvalues and the associated eigenstates
as a function of J/Jz and by sensibly increasing the system sizes (up to 1296 spins). A careful
identification analysis shows that the lowest eigenstate is a chirally-antisymmetric combination of
finite-size umbrella states for J/Jz & 2.218 while it corresponds to a coplanar phase for J/Jz . 2.218.
However, we demonstrate that the distinction between 0-coplanar and π-coplanar in the latter region
is fundamentally impossible from the symmetry-preserving finite-size calculations with fixed magnon
number. Therefore, we also perform a cluster mean-field plus scaling analysis for small spins S ≤ 3/2.
The obtained results, together with the previous large-S analysis, indicate that the π-coplanar phase
exists for any S except for the classical limit (S → ∞) and the existence range in J/Jz is largest in
the most quantum case of S = 1/2.

PACS numbers: 75.10.Jm,75.30.Kz,75.45.+j

I. INTRODUCTION

A strong magnetic field applied to a magnet forces
the intrinsic spin moments to align along the field di-
rection. Once the magnetic saturation is reached, the
many-body state is given by a simple direct product of
local maximum-spin (Sz = S) states (if the system is in-
variant under the spin rotation about the field axis, say
the z axis). Therefore, quantum-mechanical fluctuations
are rather small in magnets near the saturation, com-
pared to zero magnetic field. However, in strongly frus-
trated magnets, there can be a large number of possible
magnetization processes that experience different mag-
netic phases but merge into the same saturated state as
the magnetic field increases. This means that the en-
ergies of many different magnetic states are nearly de-
generate in the vicinity of the saturation. Because of
this, even small quantum fluctuations near the satura-
tion could play a significant role in giving rise to exotic
quantum phenomena, such as spin nematic phase [1–4],
multi-q phases [5, 6], and nontrivial quantum critical-
ity [7, 8].

In this context of research, triangular-lattice antifer-
romagnets (TLAFs) have a long history as a promis-
ing model system for studying the interplay among frus-
tration, quantum fluctuations, and magnetic fields [9,

10]. Recent advances in experiments have allowed for
preparing a variety of quasi-two-dimensional (quasi-2D)
TLAF materials and accessing their magnetic proper-
ties in strong magnetic fields up to the saturation field
Hs [11–19]. Since the seminal work by Kawamura and
Miyashita [20], it has been known that the simplest model
of TLAFs with isotropic Heisenberg interactions pos-
sesses an accidental continuous degeneracy of the clas-
sical ground state for finite magnetic fields. Past the-
oretical efforts have established that quantum (or ther-
mal) fluctuations lift the classical degeneracy and select
a magnetization process whose magnetization curve ex-
hibits a plateau at one-third of the saturation magne-
tization [20–26]. However, such a one-third magnetiza-
tion plateau has been actually observed only in a few
TLAF materials [11, 27, 28]. In real TLAF materials,
one has to take into account some extra complexities such
as Dzyaloshinskii-Moriya interaction, longer-range inter-
actions, and some sort of anisotropy (single-ion, spin-
exchange, spatial, etc.), which make further competitions
in determining the ground-state magnetic phase.

For instance, the layered TLAF materials such as
Ba3CoSb2O9 [11–13, 16–18] and Ba3CoNb2O9 [14, 15]
possess XXZ-type anisotropy in the spin-exchange inter-
actions on each layer. The interactions between the spins
on the single layer are modeled by the following XXZ
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Hamiltonian:

Ĥ = J
∑

〈i,j〉

(

Ŝx
i Ŝ

x
j + Ŝy

i Ŝ
y
j

)

+ Jz
∑

〈i,j〉

Ŝz
i Ŝ

z
j , (1)

where Ŝi = (Ŝx
i , Ŝ

y
i , Ŝ

z
i ) is the spin operator with spin S

at site i of the triagular lattice and the sum
∑

〈i,j〉 runs

over nearest-neighbor sites. The triangular-lattice XXZ
model under a strong longitudinal magnetic field

Ĥext = −H
∑

i

Ŝz
i (2)

has recently received increasing attention since the lat-
est theoretical studies [29, 30] indicated the possibility
for the emergence of a new magnetic phase, named π-
coplanar or Ψ phase for J > Jz > 0.
In Ref. [29], some of the current authors determined

the ground-state phase diagram of the spin-1/2 XXZ
model (1) on the triangular lattice as a function of the
XXZ anisotropy J/Jz and the field strength H with the
use of the numerical cluster mean-field method plus scal-
ing scheme (CMF+S). For strong magnetic fields, it was
found that three different magnetic phases appear de-
pending on the value of J/Jz: the so-called 0-coplanar
or V phase for small J/Jz , the umbrella phase for large
J/Jz, and the π-coplanar or Ψ phase in the intermedi-
ate region (see Fig. 1). Whereas the former two already
exist in the classical counterpart of the model [31], the
latter emerges due to quantum-mechanical effects [29].
The critical values of the anisotropy J/Jz at the phase
transitions right below the saturation [H = Hs−0+ with
Hs = 3(J + 2Jz)S; see Fig. 1(b)] were estimated as

(J/Jz)c1 = 1.588
(J/Jz)c2 = 2.220

(S = 1/2) (3)

within the CMF+S calculations for S = 1/2 [29]. For
large spin values S ≫ 1, Starykh et al. [30] have esti-
mated (J/Jz)c1 and (J/Jz)c2 based on the dilute Bose-
gas expansion formalism, in which magnetic states in the
vicinity of the saturation are described as Bose-Einstein
condensation (BEC) of dilute magnons via the Hostein-
Primakoff transformation [32, 33]. The values of (J/Jz)c1
and (J/Jz)c2 were determined at leading order in 1/S as

(J/Jz)c1 ≈ (1− 0.45/S)−1

≈ 1 + 0.45/S

(J/Jz)c2 ≈ (1− 0.53/S)
−1

≈ 1 + 0.53/S

(large S). (4)

More recentely, in Ref. [34], some of the current au-
thors calculated a quantitatively precise result for the
coplanar-umbrella transition point at H = Hs − 0+ for
arbitrary S, by treating the 1/S series exactly within the
dilute Bose-gas framework [35]. This approach, however,
makes it technically difficult to address the distinction
between the 0-coplanar and π-coplanar states [32, 34].
The transition point between the (unspecified) coplanar

V Ψ

FIG. 1: Three magnetic phases predicted for the quantum tri-
angular XXZ model in the presence of strong magnetic fields.
(a) Spin moments on three sublattices A, B, and C in each
phase are illustrated. (b) Schematic representation of the sug-
gested phase diagram [29, 30] in the vicinity of the saturation
field Hs = 3(J + 2Jz)S.

and umbrella phases, denoted by (J/Jz)c2∗ , is obtained
as (J/Jz)c2∗ = 2.218 for S = 1/2, which is in excellent
agreement with the π-coplanar/umbrella boundary given
by the CMF+S [(J/Jz)c2 = 2.220; Eq. (3)].
The existence of the π-coplanar phase, however, is still

under discussion in the case of small S, especially for
S = 1/2. Sellmann et al. have performed an exact di-
agonalization (ED) analysis of Eq. (1) with S = 1/2 in
the three-magnon sector (i.e., near the saturation) [36]
to reexamine the existence of the π-coplanar phase pre-
dicted in the CMF+S study [29]. Although they found
three different parameter ranges of J/Jz with different
lowest eigenstates for N = 108 spins or less, the interme-
diate region appeared to vanish when the ED data were
extrapolated to the limit of infinite system size N → ∞.
From this result, the authors of Ref. [36] concluded that
the “π-coplanar” phase is absent for S = 1/2 in the ther-
modynamic limit. This clearly contradicts the CMF+S
result [29] in which the π-coplanar region in the phase
diagram gets wider as the cluster size increases. How-
ever, it should be noted that the conclusion by Sellmann
et al. relies on their speculation that the spurious phase
that disappears in the thermodynamic limit would be π-
coplanar phase.
Finally, on the experimental side, Susuki et al. have

found that the spin-1/2 XXZ TLAF Ba3CoSb2O9 has ex-
hibited a magnetization anomaly at a strong transverse
magnetic field H ≈ 0.7Hs [13]. This nontrivial anomaly
has been thought to be due to the phase transition be-
tween the 0-coplanar and π-coplanar phases in the first
report. However, its cause was later shown to be a first-
order phase transition induced by small but nonvanishing
interlayer coupling [16, 25, 37].
In this paper, we perform an ED and CMF+S study

on the triangular-lattice XXZ model (1) in longitudinal
magnetic fields (2) to establish the magnetic phases that
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appear in the vicinity of the saturation field for small
S ≤ 3/2. The results also give a resolution to the con-
tradiction between the CMF+S analysis [29] and the ar-
gument by Sellmann et al. [36] regarding the existence of
π-coplanar phase. We carry out the ED calculations of
the model (1) at S = 1/2 on finite-size clusters of N spins
with periodic boundary condition. We mainly focus on
the sector of the Hilbert space with only three down spins
(
∑

i Ŝ
z
i = N/2 − 3) as in Ref. [36] but consider clusters

of much larger size up to N = 1296. Several low-lying
eigenvalues of the Hamiltonian are numerically computed
together with the lowest eigenvalue as a function of the
XXZ anisotropy parameter J/Jz . Moreover, we charac-
terize each eigenstate according to the translational and
point-group symmetries, and make further identification
by calculating the overlap (inner product) with the finite-
size coherent-state description of the candidate magnetic
states (0-coplanar, π-coplanar, and umbrella).

Our ED analysis provides the following results: Firstly,
we confirm the presence of three different J/Jz ranges
separated by two level crossings of the lowest and first-
excited states for relatively small N , which was found
by Sellmann et al., and that the intermediate region
actually vanishes when N exceeds a certain size. Sec-
ondly, however, the lowest eigenstate that disappears in
the thermodynamic limit is not the finite-size π-coplanar
state, contrary to Sellmann et al.’s speculation [36], but
actually a chirally-symmetric superposition of finite-size
umbrella states. Thirdly, the large J/Jz region is oc-
cupied by a chirally-antisymmetric superposition of um-
brella states. Lastly and most importantly, in the small
J/Jz region (J/Jz . 2.218 at N → ∞) the lowest level
is doubly degenerate and its eigenstates correspond to a
coplanar state. However, none of the available informa-
tion allows us to distinguish the π-coplanar state from
the 0-coplanar state. Although we point out that the
third and fourth low-lying eigenstates are crucial to lift
the degeneracy, the distinction between the 0-coplanar
and π-coplanar states is actually difficult since the third
and fourth energy levels quickly approach each other as
N → ∞. The above-mentioned ED results deny the
claim in Ref. [36] regarding the nonexistence of the π-
coplanar phase for S = 1/2, and indicate the difficulty
in distinguishing between the 0-coplanar and π-coplanar
states in the symmetry-preserving finite-size calculations.

Furthermore, in order to complement the CMF+S
study for S = 1/2 in Ref. [29], we also perform the
CMF+S analysis for S = 1 and S = 3/2. In the CMF+S,
the symmetry of the system is broken by self-consistent
mean fields even on finite-size clusters, which enables
us to distinguish between the 0-coplanar and π-coplanar
states. The results for the transition points (J/Jz)c1 and
(J/Jz)c2 just below the saturation field are extrapolated
to the limit of infinite cluster size. Taking into consider-
ation the results for S = 1 and S = 3/2 and the previ-
ous S = 1/2 result [Eq. (3)], we can see that the values
of (J/Jz)c1 and (J/Jz)c2 are naturally approaching the
1/S estimation [30] given in Eq. (4) as S increases. This

strengthens our statement that the π-coplanar phase ex-
ists even for small S down to 1/2 and, moreover, the pa-
rameter (J/Jz) window to realize the π-coplanar phase
is wider for smaller S.
The paper is organized as follows. In Sec. II, we present

the ED calculations for S = 1/2 on two series of clus-
ters with different shapes. We show the level crossing
between four low-lying eigenvalues, and discuss the cor-
respondence between the finite-size eigenstates and the
expected magnetic phases in the thermodynamic limit.
In Sec. III, some details about the CMF+S calculations
for S > 1/2 and the results for S = 1 and S = 3/2 are
given. Section IV is devoted to summary and conclusions.

II. EXACT DIAGONALIZATION ANALYSIS

FOR S = 1/2

We first perform an ED analysis of the triangular-
lattice spin-1/2 XXZ model (1) on finite-size clusters of
N spins. We impose the periodic boundary condition
defined by Ŝri+T1,2

= Ŝi (ri is the coordinates of site i)
with the vectors

T1 = lu1 +mu2 and T2 = −mu1 + (l +m)u2, (5)

where u1 = (1, 0) and u2 = (1/2,
√
3/2) [38]. To avoid

the cluster shape dependence of the conclusion, we em-
ploy two series of clusters identified by (l,m) = (3p, 0)
and (l,m) = (2p,−p), respectively, with p = 1, 2, . . . ,
which are both compatible with the expected three-
sublattice magnetic orders. The size of the clusters is
given by N = l2+lm+m2 for both series, and specifically
N = 9, 36, 81, 144, · · · and N = 3, 12, 27, 48, · · · , respec-
tively (see Fig. 2). Unless specifically stated otherwise,
the maximum size used in the calculations is N = 1296
for the former series and N = 1200 for the latter. The
data for N ≤ 12 will not be shown since the size is too
small.

FIG. 2: Two series of clusters that are considered in the
present ED analysis.



4

(a) 0-coplanar order (m = 2, 3, · · · )

n 1 m
irreps Γ1,Γ2 Γ1,Γ2,Γ3

(b) π-coplanar order (m = 1, 2, · · · )

n 1 2m 2m+ 1
irreps Γ1,Γ2 Γ1,Γ2,Γ3 Γ1,Γ2,Γ4

(c) umbrella order (m = 0, 1, · · · )

n 3m+ 1 3m+ 2 3m + 3
irreps Γ1,Γ2 Γ1,Γ2 Γ3,Γ4

TABLE I: Irreps of low-lying states characterizing the (a) 0-
coplanar, (b) π-coplanar, and (c) umbrella phases, in each sec-
tor of n magnons. The symbols Γ1−4 are defined in Eq. (10).

Both series possess the point-group symmetry under
the transformations whose generators are the planar ro-
tations R2π/3 and Rπ of angles 2π/3 and π, respectively,
and the axial reflection σx with respect to u1, as well as
the translational symmetry TN . Thus the space group
is GN = TN ⋊ C6v, which has 12N elements. Here, we
mainly focus on the three-magnon sector of the Hilbert
space where only three spins are down and the others
are all up (

∑

i Ŝ
z
i = N/2 − 3) as in Ref. [36]. Thus the

Hamiltonian matrix naively consists of NC3 × NC3 com-
ponents. For efficient calculations, we further divide the
matrix into blocks of smaller dimensions according to the
space-group symmetry, and numerically diagonalize each
block matrix.

A. Coherent-state description

Before showing the results of our ED calculations, we
consider the coherent-state description of the candidate
magnetic phases (0-coplanar, π-coplanar and umbrella) .
Note that for strong fields one can exclude other phases
from consideration, according to the dilute Bose-gas ex-
pansion [32, 34]. When the system size N increases with
a fixed number of magnons n, the density of magnons
n/N goes to 0. Consequently, the corresponding mag-
netic field H approaches the saturation field Hs. In
such a situation with dilute magnons, the magnetic or-
der can be described by the Bose-Einstein condensation
of magnons [32, 33]. The umbrella state is given by sin-
gle BEC with either momentum k = Q = (4π/3, 0) or
−Q. The two options (±Q) reflect the degeneracy with
respect to the chirality. On the other hand, double BEC
with both momenta k = Q and k = −Q corresponds to
coplanar states. The 0-coplanar and π-coplanar states
are characterized by the relative phase φ between the
condensates with k = ±Q: φ = 0, 2π/3, or 4π/3 for 0-
coplanar; φ = π, 5π/3, or π/3 for π-coplanar. The three
options for each reflect the remaining Z3 symmetry with
respect to the exchange of the three sublattices of the
triangular lattice, A, B, and C in Fig. 1.

In the regime of low magnon densities, n/N → 0, the
magnetic orders may be described by the coherent states
of dilute magnons:

|0-coplanar〉φ0

∝ exp
[

−λ
(

ÔQ + e−iφ0Ô−Q

)]

|sat〉

|π-coplanar〉φ0

∝ exp
[

−λ
(

ÔQ − e−iφ0Ô−Q

)]

|sat〉

|umbrella〉± ∝ exp
(

−λÔ±Q

)

|sat〉,

(6)

where φ0 = 0, 2π/3, or 4π/3, λ is, in general, a complex
number, and |sat〉 is the magnetically saturated state
given by a direct product of local spin-up states. The
magnon “creation” operators ÔQ and Ô−Q are given by

Ô±Q =
1

N

∑

i

Ŝ−
i e±iQ·ri (7)

in the spin language. Therefore, in the sector of n
magnons, the states corresponding to each magnetic or-
der should be given by

|0-coplanar〉(n)φ0
∝

(

eiφ0/2ÔQ + e−iφ0/2Ô−Q

)n

|sat〉

|π-coplanar〉(n)φ0
∝

(

eiφ0/2ÔQ − e−iφ0/2Ô−Q

)n

|sat〉

|umbrella〉(n)± ∝ Ôn
±Q|sat〉

(8)

for N → ∞.

The operators ÔQ and Ô−Q are transformed by the
point-group symmetry transformations as

R2π/3 : ÔQ → ÔQ and Ô−Q → Ô−Q,

Rπ : ÔQ → Ô−Q and Ô−Q → ÔQ,

σx : ÔQ → ÔQ and Ô−Q → Ô−Q.

(9)

From Eqs. (8) and (9), the irreducible representations
(irreps) characterizing each magnetic order are listed in
Table I. Here, Γ1−4 are defined by

Γ1 = [k = Q, R2π/3 = 1, σx = 1],
Γ2 = [k = −Q, R2π/3 = 1, σx = 1],
Γ3 = [k = 0, R2π/3 = 1, Rπ = 1, σx = 1],
Γ4 = [k = 0, R2π/3 = 1, Rπ = −1, σx = 1].

(10)

As seen from Table I, the three magnetic orders of inter-
est are distinguishable by the irreps only in the sectors of
n = 2m+1 magnons (m = 1, 2, · · · ), of which we mainly

focus on the minimum one n = 3 (
∑

i Ŝ
z
i = N/2 − 3).

Since the calculation cost grows quickly with the magnon
number n, we will push the analysis to n = 5, 7 only for
several values of J/Jz .
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FIG. 3: The low-lying eigenenergies of the three-magnon sec-
tor for N = 36 as a function of J/Jz . We plot the eigenen-
ergies of the ΨΓ1

, ΨΓ2
, and ΨΓ3

states measured from that
of ΨΓ4

. The lower panel is the enlarged view showing the
energy diffence between ΨΓ3

and ΨΓ4
. In the shaded region

marked by the double-headed arrow, the ΨΓ3
state has the

lowest energy.

B. Low-lying eigenstates in the three-magnon

sector

In Fig. 3, we show the four low-lying eigenenergies for
N = 36 in the three-magnon sector (n = 3 or

∑

i Ŝ
z
i =

N/2 − 3) as a function of J/Jz. The higher eigenstates
are clearly separated from them. Thus, the four low-lying
eigenstates are possible candidates for quasi-degenerate
joint states [38]. Each eigenstate is labeled by the irreps
given in Eq. (10), e.g., ΨΓ1

. Note that ΨΓ1
and ΨΓ2

are completely degenerate since the system has a trivial
inversion symmetry of the wavevector, k ↔ −k. On
the other hand, ΨΓ3

and ΨΓ4
are not degenerate, but

the energy difference is much smaller than that between
ΨΓ1,2

and ΨΓ3,4
.

When the anisotropy parameter J/Jz is increased from
easy-axis to easy-plane, the lowest eigenstate is changed
from the degenerate ΨΓ1,2

to ΨΓ3
, then ΨΓ4

through two
eigenenergy crossings. However, as the system size N
increases, the range where ΨΓ3

has the lowest energy
shrinks and it disappears at N ≥ 324, in the case of
the cluster series of N = 36, 81, · · · , 1296. In Fig. 4, we
show the eigenenergy diagram for N = 324. Moreover,
in the case of the cluster series of N = 27, 48, · · · , 1200,
there is no window where ΨΓ3

has the lowest energy even
at N = 27. The eigenenergy-crossing points are summa-
rized in Fig. 5. In either case of the two cluster series,
the degenerate ΨΓ1,2

state is the lowest eigenstate for
J/Jz . 2.218 while the ΨΓ4

is for J/Jz & 2.218 in the

FIG. 4: Idem as in Fig. 3, but for N = 324. There is no J/Jz

range where the Γ3 state has the lowest energy.

FIG. 5: Lowest eigenstate diagram of 1/N versus J/Jz. The
eigenenergy-crossing points between the ΨΓ1,2 and ΨΓ4

states
(marked by the circles), between the ΨΓ1,2 and ΨΓ3

states
(diamonds) and between the ΨΓ3

and ΨΓ4
states (inverted

triangles) are shown. The boundary lines are just a guide for
the eye. The left (right) panel shows the data for the series
of N = 36, 81, · · · , 1296 (N = 27, 48, · · · , 1200).

thermodynamic limit.

C. Identification of the low-lying eigenstates

In Ref. [36], Sellmann et al. supposed that the ΨΓ1,2
,

ΨΓ3
, and ΨΓ4

states corresponded to the 0-coplanar, π-
coplanar, and umbrella orders, respectively, and thus
concluded that the π-coplanar phase was not stabilized as
the ground state in the thermodynamic limit for S = 1/2.
However, it should be noted that their argument lacked a
precise identification of the eigenstates. In the following,
we identify each low-lying eigenstate on the basis of the
space-group symmetry (10) and, more crucially, by cal-
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culating the overlap with the coherent states (8) of the
expected magnetic orders. Note that a similar identifi-
cation approach based on the coherent-state description
of long-range orders has been used for the study of a
multiple-spin exchange model and has successfully iden-
tified the emergence of a spin nematic order [39].
From Eq. (8), the finite-size 0-coplanar, π-coplanar,

and umbrella states are given in the three-magnon (n =
3) sector by

|0-coplanar〉(3)φ0
∝ 3eiφ0/2|Ψ∗

Γ1
〉+ 3e−iφ0/2|Ψ∗

Γ2
〉

+cos (3φ0/2)|Ψ∗
Γ3
〉

|π-coplanar〉(3)φ0
∝ 3eiφ0/2|Ψ∗

Γ1
〉 − 3e−iφ0/2|Ψ∗

Γ2
〉

−cos (3φ0/2)|Ψ∗
Γ4
〉

|umbrella〉(3)± ∝ |Ψ∗
Γ3
〉 ± |Ψ∗

Γ4
〉,

(11)

where

|Ψ∗
Γ1
〉 ≡ Ô2

QÔ−Q|sat〉,

|Ψ∗
Γ2
〉 ≡ ÔQÔ2

−Q|sat〉,

|Ψ∗
Γ3
〉 ≡

(

Ô3
Q + Ô3

−Q

)

|sat〉,

|Ψ∗
Γ4
〉 ≡

(

Ô3
Q − Ô3

−Q

)

|sat〉.

(12)

The subscript Γm means the irrep characterizing the
state Ψ∗

Γm
, which can be easily obtained from Eq. (9).

Since the symmetry is not spontaneously broken in
finite-size systems, the eigenstates of the Hamiltonian (1)
must belong to one of the irreps of the space group
GN = TN ⋊ C6v. Therefore, for example, the finite-size
umbrella state appears only in the form of the chirally-
symmetric combination

|umbrella〉(3)+ + |umbrella〉(3)− ∝ |Ψ∗
Γ3
〉

or the chirally-antisymmetric combination

|umbrella〉(3)+ − |umbrella〉(3)− ∝ |Ψ∗
Γ4
〉.

In a similar fashion, the Z3 symmetry with respect to φ0

in the finite-size 0-coplanar (resp. π-coplanar) state is not
broken for finite N , and the basis symmetry-preserving
states Ψ∗

Γ1
, Ψ∗

Γ2
, and Ψ∗

Γ3
(resp. Ψ∗

Γ1
, Ψ∗

Γ2
, and Ψ∗

Γ4
)

appear as separate eigenstates.
From the correspondence of the symmetry property,

it can be naturally expected that the eigenstates calcu-
lated by the exact diagonalization, ΨΓ1−4

in Sec. II B,
correspond to Ψ∗

Γ1−4
of Eq. (12) in the thermodynamic

limit, i.e., |ΨΓm
〉 → |Ψ∗

Γm
〉 (N → ∞; m = 1, 2, 3, 4).

We confirm this expectation by numerically calculating
the overlap (inner-product) between |ΨΓm

〉 and the corre-
sponding |Ψ∗

Γm
〉 as a function of 1/N . Figure 6 shows an

example of the results. The overlaps 〈ΨΓm
|Ψ∗

Γm
〉/ZΓm

,

FIG. 6: Overlaps between ΨΓm and Ψ∗

Γm
as a function of 1/N

at J/Jz = 1. The upper and lower panels show the data for
the series of N = 36, 81, · · · , 1296 and N = 27, 48, · · · , 1200,
respectively. All data seem to approach 1 as N → ∞.

where ZΓm
≡

√

〈ΨΓm
|ΨΓm

〉〈Ψ∗
Γm

|Ψ∗
Γm

〉 is the normal-
ization factor, approach 1 as N → ∞ as expected for all
m = 1, 2, 3, 4.

Having the above facts in mind, let us look again at
the results of Figs. 3, 4, and 5: (i) There is no J/Jz
range where the ΨΓ3

state has the lowest energy in the
thermodynamic limit as shown in Fig. 5, which, how-
ever, does not necessarily mean the absence of the π-
coplanar phase for S = 1/2. This is because ΨΓ3

is not
the π-coplanar state but the chirally-symmetric combi-
nation of finite-size umbrella states (unlike the interpre-
tation of Ref. [36]). (ii) The double degeneracy of the
lowest-energy eigenstates ΨΓ1

and ΨΓ2
in the region of

J/Jz . 2.218 (N → ∞) should correspond to a coplanar
phase according to Eq. (11), although one cannot identify
only from the lowest eigenstate which is the ground state
at the thermodynamic limit, the 0-coplanar or π-coplanar
state. (iii) For J/Jz & 2.218, the lowest eigenstate is
ΨΓ4

, which is the chirally-antisymmetric combination of
finite-size umbrella states. Therefore, the threshold value
J/Jz ≈ 2.218 may indicate the coplanar-umbrella tran-
sition point just below the saturation field. The value is
indeed in good agreement with the semi-analytical value
(J/Jz)c2∗ = 2.218 of the dilute Bose-gas expansion for
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FIG. 7: The energy-crossing point around J/Jz ∼ 1 between
the eigenstates ΨΓ3

and ΨΓ4
as a function of 1/N . The circles

and inverted triangles show the data for the series of N =
36, 81, · · · , 1296 and N = 27, 48, · · · , 1200, respectively.

the coplanar-umbrella transition point [34].

D. 0-coplanar or π-coplanar

As seen from the discussion of Sec. II C, only the con-
sideration of the lowest eigenstate is not sufficient to de-
termine which state is selected as the ground state in the
region of J/Jz . 2.218, 0-coplanar or π-coplanar, be-
cause the degenerate eigenstates ΨΓ1,2

are common for
general coplanar orders [see Eq. (11)]. Hence, one needs
to take higher eigenstates into consideration.
As seen in the ED data of Fig. 4, the energy of ΨΓ4

is smaller than that of ΨΓ3
for J/Jz . 1.03 while it is

opposite for 1.03 . J/Jz . 2.2. This feature does not de-
pend on the system size or the cluster shape (see Fig. 7).
According to Eq. (11), if the eigenstates ΨΓ1,2

and ΨΓ3

(resp. ΨΓ1,2
and ΨΓ4

) collapse to the ground state in
the the thermodynamic limit, the 0-coplanar (resp. π-
coplanar) ground state would be formed as a result of the
spontaneous U(1) × Z3 symmetry breaking. Therefore,
naively considering the ED data, one might conclude that
the π-coplanar phase emerges for 0 < J/Jz . 1.03 while
the 0-coplanar phase is stabilized for 1.03 . J/Jz . 2.22.
However, this conclusion is in clear contrast with the

widely-accepted consensus that the ground state of the
quantum isotropic Heisenberg model (J/Jz = 1) on the
triangular lattice exhibits the 0-coplanar (V ) magnetic
order for strong magnetic fields [21]. This discrepancy
can be understood in the following way. In the ED cal-
culations, we consider a sector of the Hilbert space with
a fixed number of magnons (n = 3 in this paper). There-
fore, the “thermodynamic limit” N → ∞ means the
“dilute-magnon” limit n/N → 0 (i.e., H → Hs − 0+)
at the same time. It should be recalled that in such
a limit the 0-coplanar, Ψ-coplanar, and umbrella states
become all degenerate and merge into the saturated state
at H = Hs. Thus, the finite-size ED analysis can distin-
guish between the 0-coplanar and π-coplanar states only
when the merging of the two states as H → Hs − 0+ is

FIG. 8: (a) Log-log plots of the eigenenergy differences be-
tween ΨΓ1,2 and ΨΓ4

(circles) and between ΨΓ3
and ΨΓ4

(in-
verted triangles) as a function of the system size N . The slope
of each pair of the two neighboring data points are shown in
(b) for the former and (c) for the latter as a function of 1/N .
The right panel of (a) is the schematic diagram of the energy
levels in the range of 0 < J/Jz . 1.03. We show the data at
J/Jz = 0.5 for the cluster series of N = 27, 48, · · · , 1200 as
an example.

slower than the collapse of the basis eigenstates in each
state ({ΨΓ1,2

, ΨΓ3
} or {ΨΓ1,2

, ΨΓ4
}) to the ground state

as N → ∞.
In Fig. 8, we show a typical example of the finite-size

scaling of the eigenenergy differences between ΨΓ1,2
and

ΨΓ4
and between ΨΓ3

and ΨΓ4
. The energy of the eigen-

state ΨΓ4
approaches the lowest ΨΓ1,2

level, and the dif-
ference goes to 0 as ∼ N−α with α ≈ 1.0 − 1.3, which
seems slightly faster than the Nambu-Goldstone mode
expected to collapse as ∼ N−1. However, at the same
time, the ΨΓ3

level also collapse into the ground state.
More importantly, the merging of ΨΓ3

into ΨΓ4
is much

faster (∼ N−3) than the collapse of ΨΓ4
and ΨΓ1,2

. This
means that it is fundamentally impossible to distinguish
between the 0-coplanar and π-coplanar states from the
finite-size eigenstates with a fixed number of magnons.

E. Analysis with a fixed density of magnons

As seen above, the finite-size ED analysis with a fixed
number of magnons is inadequate for discussing the rela-
tive angles among the three sublattice moments in copla-
nar states. The point is that both 0-coplanar and π-
coplanar states merge into the saturated state as n/N →
0 (H → Hs − 0+) and become indistinguishable from
each other. One may avoid this issue by fixing the den-

sity of magnons n/N instead of the number of magnons
n when taking the thermodynamic limit N → ∞. In the
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FIG. 9: Log-log plots of the eigenenergies of ΨΓ3
(circles) and

ΨΓ4
(diamonds) measured from that of the lowest eigenstate

ΨΓ1,2 as a function of the system size N at J/Jz = 0.5. We
show the data for different magnon numbers (n = 3, 5, and
7). The lines for n = 3 (n = 5) are linear fitting functions
of the N = 27, 48, 75 (N = 48, 75, 108) data for each data
series. The vertical dashed lines mark the point at which the
magnon density n/N = 7/108 ≈ 0.065.

magnetic phases supposed here (0-coplanar, π-coplanar,
or umbrella), the finite-size gap of the Nambu-Goldstone
mode (linear in the wavelength) is expected to scale as
∼ N−1/2 at fixed magnon density [38]. Therefore, the
magnetic phase that appears in the thermodynamic limit
is determined by the finite-size eigenstates that collapse
into the ground state faster than N−1/2. Each candidate
magnetic order is identified by the eigenstates with the
irreps listed in Table I.

In order to take the thermodynamic limit at a fixed
magnon density, it is required to perform the ED calcu-
lations with different values of magnon number n; how-
ever, the computable system size decreases rapidely as n
increases. Moreover, according to the irreps listed in Ta-
ble I, only the Hilbert space sector with an odd number
of magnons n = 2m+1 (m = 1, 2, · · · ) can distinguish be-
tween the 0-coplanar and π-coplanar states. Therefore,
we consider the magnon numbers n = 3, 5, and 7 and the
cluster series of N = 27, 48, · · · . The maximum system
size computed in the present work for n = 7 is N = 108,
and thus we shall take a small but fixed magnon density,
namely n/N = 7/108 ≈ 0.065. According to Table I,
the 0-coplanar (resp. π-coplanar) state is expected to be
formed in the thermodynamic limit when the ΨΓ3

(resp.
ΨΓ4

) state collapse into the lowest ΨΓ1,2
state faster than

N−1/2 and is separated from the ΨΓ4
(resp. ΨΓ3

) state
in a distinguishable fashion.

In Fig. 9, we show the size dependence of the eigenen-
ergies of the ΨΓ3

and ΨΓ4
states measured from that of

FIG. 10: Log-log plots of the eigenenergies of ΨΓ3
(circles)

and ΨΓ4
(diamonds) measured from that of the lowest eigen-

state ΨΓ1,2 as a function of the system size N at the fixed
magnon density n/N = 0.065. We show the data for different
anisotropy parameters (J/Jz = 0.5, 1, and 2). The lines are
a linear fitting function for each data series.

the lowest eigenstate ΨΓ1,2
at J/Jz = 0.5 (as an exam-

ple) for n = 3, 5, and 7, respectively. The system size N
can take only specific values. Therefore, we employ the
following interpolation scheme in order to fix the magnon
density to n/N = 7/108 ≈ 0.065 for n = 3 and 5: Us-
ing the log-log plots shown in Fig. 9, we perform a linear
least-squares fitting for the data of the three system sizes
neighboring to N = n/0.065, that is, N = 28, 48, 75 for
n = 3 and N = 48, 75, 108 for n = 5. From the fit-
ting functions, we obtain the interpolation values of the
eigenenergy deferences that correspond to the magnon
density n/N = 0.065. The same procedure is also per-
formed for other values of J/Jz.
In Fig. 10, we show the size dependence of the eigenen-

ergies of the ΨΓ3
and ΨΓ4

states measured from that of
the lowest eigenstate ΨΓ1,2

at J/Jz = 0.5, 1, and 2, after
refining the data such that the magnon density is fixed to
n/N = 0.065. Contrary to expectation, we find no clear
splitting of the ΨΓ3

and ΨΓ4
levels for any case, although

it should, in principle, be possible to distinguish between
0-coplanar and π-coplanar from the analysis with a fixed
magnon density as mentioned above. This might be at-
tributed to the fact that the number of magnons n ≤ 7
and, correspondingly, the size of the system N ≤ 108 are
still too small to see a clear separation of the ΨΓ3

and
ΨΓ4

levels; also, we might have to reconsider more care-
fully the mechanism which leads to the generation of the
symmetry broken state in the thermodynamic limit.

Surprisingly, even for the isotropic Heisenberg model
(J/Jz = 1), although it is widely believed that the 0-
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coplanar phase is formed for strong magnetic fields, one
cannot rigorously specify the coplanar phase, 0 or π,
from the “exact” calculations for finite-size systems at
the stage of the current numerical capabilities. Further
developments of computer performance and numerical
techniques are anticipated to solve this open fundamental
problem regarding the spontenious symmetry breaking in
frustrated systems.

III. CLUSTER MEAN-FIELD THEORY WITH

CLUSTER-SIZE SCALING FOR S ≤ 3/2

We found out in Sec. II that it is diffecult to address
the issue of the distinction between the 0-coplanar and
π-coplanar states by using the symmetry-preserving ED
analysis on finite systems. In the case of analytical stud-
ies with the dilute Bose-gas expansion [32, 34], the cal-
culation of sixth-order corrections to the ground state
energy is required to address the distinction between the
0-coplanar and π-coplanar states, but it is also techni-
cally difficult.
One promising approach to address the problem is the

CMF+S method [25, 29, 37, 40]. This method has been
applied to the triangular-lattice XXZ model (1) for S =
1/2 and has successfully produced the ground-state phase
diagram including the transition between the 0-coplanar
and π-coplanar phases [29]. In the CMF+S, although
one deals with interacting spins on a finite-size cluster as
in the ED analysis, the correlation effects from the spins
outside the cluster are also treated as effective magnetic
fields (mean fields) acting on the edge sites of the cluster.
The many-body problem with the Hamiltonian (1) in

the presence of external magnetic fields (2) is replaced by
a NC-body problem described by the cluster Hamiltonian

ĤC = J

NB
∑

〈i,j〉∈C

(

Ŝx
i Ŝ

x
j + Ŝy

i Ŝ
y
j

)

+ Jz

NB
∑

〈i,j〉∈C

Ŝz
i Ŝ

z
j

−H

NC
∑

i∈C

Ŝz
i −

∑

i∈∂C

hMF
i · Ŝi, (13)

where NB is the number of nearest-neighbor bonds inside
the cluster C and ∂C is the edge sites of the cluster.
The mean-field decoupling Ŝα

i Ŝ
α
j → 〈Ŝα

i 〉Ŝα
j + 〈Ŝα

j 〉Ŝα
i −

〈Ŝα
i 〉〈Ŝα

j 〉 of the interactions across the spins inside and
outside the cluster gives the effective one-body fields

hMF
i =

∑

j∈C̄

(

Jij〈Ŝx
j 〉, Jij〈Ŝy

j 〉, Jz
ij〈Ŝz

j 〉
)

, (14)

where Jij = J and Jz
ij = Jz for nearest-neighbor pairs

〈i, j〉 and Jij , J
z
ij = 0 otherwise, and C̄ is the outside of

cluster C.
In contrast to the ED analysis in Sec. II with the peri-

odic boundary condition, the existence of the mean fields
hMF
i , whose values will be self-consistently determined,

FIG. 11: Series of the clusters used in the CMF+S analysis.
The parameter λ is defined by λ ≡ NB/(3NC ). The lower
illustrations show examples of the independent clusters that
have to be considered under the three-sublattice ansatz.

approximates the effects of spontaneous symmetry break-
ing expected to take place in the thermodynamic limit.
Therefore, one can describe the distinction between the
0-coplanar and π-coplanar phases at the level of finite-
size calculations. The approximation error caused by
the mean field decoupling can be neglected in principle
by performing the cluster-size scaling NC → ∞ in the
CMF+S. Of course, there is a practical limitation on the
cluster size NC that can be handled with numerical diag-
onalization. Unfortunately, since the assumption of the
mean fields also breaks the conservation of the total spins
∑

i Ŝ
z
i , the maximum size of tractable clusters becomes

rather smaller than that of the ED analysis with the pe-
riodic boundary condition.
In the following, we apply the CMF+S method to

higher spins S = 1 and S = 3/2 to complement the study
in Ref. [29] treating S = 1/2. We calculate the transition
points just below the saturation, (J/Jz)c1 between the
0-coplanar and π-coplanar phases and (J/Jz)c2 between
the π-coplanar and umbrella phases, and compare the
dependences on the spin value S in the small-S regime
with those of the large-S expansion given in Eq. (4).
In order to take an efficient scaling within the cluster-

size limitation, we employ the series of triangular-shaped
clusters shown in Fig. 11. The maximum size of the clus-
ter in the practical calculations is NC = 15 for S = 1
and NC = 10 for S = 3/2. The magnetic orders such as
0-coplanar, π-coplanar, and umbrella are characterized
by the sublattice magnetic moments mα

µ (α = x, y, z) on
sublattice µ = A,B,C:

mα
µ =

1

Nµ

MC
∑

n=1

∑

iµ∈Cn

Tr
(

Ŝα
iµe

−βĤCn

)/

Tr(e−βĤCn ), (15)

where iµ denotes site i belonging to sublattice µ, MC is
the number of independent clusters determined by the
matching between the cluster shape and the sublattice
ansatz (see Fig. 11), Nµ is the number of total sites
belonging to the sublattice µ in the MC clusters, and



10

0.0 0.2 0.4 0.6 0.8 1.0
0.8

1.0

1.2

1.4

1.6

1.8

0.0 0.2 0.4 0.6 0.8 1.0

1.0

1.1

1.2

1.3

1.4

FIG. 12: Cluster-size scaling of the CMF+S for the phase
boundaries just below the saturation field for (a) S = 1
and (b) S = 3/2. The transition points (J/Jz)c1 and
(J/Jz)c2 correspond to the transitions between the 0-coplanar
and π-coplanar phases and between the π-coplanar and um-
brella phases, respectively. The symbols (×) mark the semi-
analytical values (J/Jz)c2∗ from the dilute Bose-gas expan-
sion [34]

β = 1/T (we take T → 0 to consider the ground-state

properties). Substituting mα
µ into 〈Ŝα

iµ
〉 in the effective

field terms (hMF
i ) of ĤCn

, Eq. (15) becomes a set of self-
consistent equations for mα

µ. Starting with a certain set
of initial values for mα

µ, we evaluate the right-hand side
of Eq. (15) in an iterative manner until the convergence
of the values of mα

µ is reached. Finally, we take the limit
of the infinite cluster size for the results by using a scal-
ing parameter λ ≡ NB/3NC [25, 29, 37, 40]. Note that a
similar approach has been also applied to study a S = 1
bilinear-biquadratic model with single-ion anisotropy (at
zero magnetic field) [41].

A. The CMF+S result for the transition points

just below the saturation

Solving numerically Eq. (15), we obtain the ground-
state phase diagram of the triangular XXZ model for
S = 1 and S = 3/2 in the strong-field regime, which
has the same topology as in the case of S = 1/2 [29]
[shown in Fig. 1(b)]. Both phase transitions between the
0-coplanar and π-coplanar phases and between the π-
coplanar and umbrella phases are of first-order. At the
transition points, the energies of each pair of the two
phases are equal. We calculate the values of J/Jz at the
transitions with the help of the Maxwell construction in
the plane of J/Jz versus χ ≡ −∑

〈i,j〉〈Ŝx
i Ŝ

x
j + Ŝy

i Ŝ
y
j 〉/M ,

namely the nearest-neighbor transverse correlation (see
Ref. [29] for more details).
In Fig. 12, we show the cluster-size scaling of the phase

transition points (J/Jz)c1 and (J/Jz)c2 just below the
saturation field for S = 1 and S = 3/2. The scalings
are performed with the parameter λ ≡ NB/3NC , which
takes value 0 for NC = 1 and 1 for NC → ∞. Note that
for S = 3/2, the π-coplanar state is not energetically
favorable against the 0-coplanar or umbrella state for any

S 1/2 1 3/2
CMF+S: (J/Jz)c1 1.588 [29] 1.417 1.309
CMF+S: (J/Jz)c2 2.220 [29] 1.553 1.340

dilute Bose-gas expansion: 2.218 1.554 1.361
(J/Jz)c2∗ [34]

TABLE II: The CMF+S data for (J/Jz)c1 and (J/Jz)c2 ob-
tained by the scaling with cluster sizes NC ≤ 21 for S =
1/2 [29], NC ≤ 15 for S = 1, and NC ≤ 10 for S = 3/2.
The semi-analytical values for the coplanar-umbrella transi-
tion point (J/Jz)c2∗ just below the saturation field [34] are
also listed for comparison.

J/Jz when the cluster size is small (NC = 3, 6). However,
the π-coplanar phase is still found as a stationary solution
of Eq. (15). Therefore, in Fig. 12 we plot the equal-energy
points between the 0-copalanr and π-coplanar solutions
and between the π-coplanar and umbrella solutions also
for those small clusters in order to obtain a proper scaling
series for (J/Jz)c1 and (J/Jz)c2.

The fittings with a linear function are performed for
the data points of the three largest clusters (NC =
6, 10, 15 for S = 1 and NC = 3, 6, 10 for S = 3/2).
To see the accuracy, we also mark the semi-analytical
results of the arbitrary-S dilute Bose-gas expansion for
the coplanar-umbrella transition [34], which show good
agreement with the extrapolated value of the π-coplanar-
umbrella transition (J/Jz)c2 for S = 1. The agreement is
worse (but still within 2 percent) for S = 3/2. This can
be attributed to the fact that the scaling series includes
the data of the NC = 3 cluster, which is evidently too
small. Indeed, the fitting with a linear function does not
seem completely satisfactory in this case.

For the 0-π transition point (J/Jz)c1, no analytical
value has been found in the literature. However, one can
see that the linear fitting for (J/Jz)c1 is better than that
for (J/Jz)c2. Even for S = 3/2 with the data including
NC = 3, the linear fitting is fine for (J/Jz)c1. One can
clearly see that the difference (J/Jz)c2 − (J/Jz)c1, i.e.,
the range where the π-coplanar phase appears, increases
with NC → ∞ for both S = 1 and S = 3/2 as in the case
of S = 1/2 [29].

The CMF+S results for (J/Jz)c1 and (J/Jz)c2 in the
small-S regime are summarized in Table. II together with
the arbitrary-S dilute Bose-gas results [34]. Although the
latter has not addressed the distinction between the 0-
coplanar and π-coplanar states for a technical reason (as
was explained in Sec. I), the semi-analytical values for
the transition point (J/Jz)c2∗ between the (unspecified)
coplanar and umbrella phases are quantitatively repro-
duced as (J/Jz)c2 in our CMF+S especially for S = 1/2
and S = 1, in which the calculations with relatively large
clusters NC ≥ 15 have been done.
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FIG. 13: Phase boundaries among the two coplanar and um-
brella states just bellow the saturation field. We show the cur-
rent CMF+S results for S = 1 and S = 3/2 together with the
previous S = 1/2 values [29] for (J/Jz)c1 (inverted triangles)
and (J/Jz)c2 (diamonds). The dilute Bose-gas results for ar-
bitrary S (circles) [34] and within the large-S approximation
(dashed and dashed-dotted curves) [30] are also plotted for
comparison. Note that the arbitrary-S dilute Bose-gas anal-
ysis provides a quantitatively precise value for the coplanar-
umbrella transition point (J/Jz)c2∗ just below the saturaion,
but which coplanar state (0-coplanar or π-coplanar) appears
for J/Jz ≤ (J/Jz)c2∗ is unspecified [32, 34]. The boundary
lines are just a guide for the eye.

B. Comparison with the large-S approximation

Taking the current CMF+S results and the previous
studies [29, 30, 34] into account, we discuss the crossover
from the nearly-classical, large-S regime to the highly-
quantum, small-S regime of the magnetic phases in the
TLAFs near saturation. In Fig. 13, we show the tran-
sition points (J/Jz)c1 and (J/Jz)c2 just below the sat-
uration field as a function of spin S. One can see that
the transition points for small S ≤ 3/2, obtained by the
CMF+S, are smoothly connected to the large-S values
[Eq. (4)] for S & 2. It can be also expected that the
π-coplanar phase is present as the ground state for any
finite value of S, and asymptotically vanishes in the clas-
sical limit of S → ∞.

Of particular interest is that the J/Jz range where the
π-coplanar phase is stabilized, i.e., (J/Jz)c2 − (J/Jz)c1,
monotonically increases as S decreases. The most quan-
tum case of S = 1/2 has the greatest chance to observe
the quantum stabilization of π-coplanar phase in experi-
ments on TLAF materials.

IV. CONCLUSIONS

We have studied the ground-state magnetic phases as
a function of anisotropy J/Jz in the triangular-lattice
XXZ model near saturation for small spins S ≤ 3/2. In
the former part, we reconsidered the previous ED anal-
ysis of Sellmann et al. for S = 1/2 in the three-magnon
(n = 3) sector of the Hilbert space [36] by taking into
consideration much larger-size clusters (N ≤ 1296) and
several higher eigenvalues. Moreover, we identified the
associated eigenstates from the space-group symmetry
and by calculating the overlaps with the coherent states
corresponding to the candidate magnetic orders, i.e., the
0-coplanar, π-coplanar and umbrella states. For the sys-
tem sizes N = 36, 81, 144, 225, the model exhibits three
parameter J/Jz ranges that have different lowest eigen-
states. However, the intermediate one of the three ranges
shrinks and vanishes as N is further increased, or does
not exist from the beginning in the case of another clus-
ter series with N = 27, 48, · · · . The authors in Ref. [36]
interpreted this result as indicating the nonexistence of
π-coplanar phase in the ground state, as opposed to our
previous suggestion [29].
The current ED study with proper identification of the

low-lying eigenstates offered a counterargument against
Ref. [36]. From the identification analysis, we demon-
strated that the spurious phase which is present in
finite-size calculations and disappears in the thermody-
namic limit is actually a chirally-symmetric combination
of finite-size umbrella states. Furthermore, the lowest
eigenstate in the coplanar region 0 < J/Jz . 2.218 is
always doubly degenerate, and does not identify what
coplanar (more specifically, 0-coplanar or π-coplanar) ap-
pears in the thermodynamic limit. Although the higher
(but low-lying) eigenstates are expected to lift the de-
generacy in such a case, it is also fundamentally impossi-
ble to argue that here since the collapse of the low-lying
eigenstates into the symmetry-broken ground state in the
thermodynamic limit N → ∞ is much slower than the
merging of the 0-coplanar and π-coplanar states into the
magnetically saturated state as n/N → 0.

In the latter part of the paper, we applied the CMF+S
method to the cases of S = 1 and S = 3/2 to complement
the previous study [29], in which the CMF+S has given a
distinction between the 0-coplanar and π-coplanar states
for S = 1/2. Also for S = 1 and S = 3/2, we found
the π-coplanar phase as the ground state for strong mag-
netic fields in a finite range of J/Jz as well as the 0-
coplanar and umbrella phases. In addition, we showed
the crossover from the small-S regime to the large-S
regime of the transition points just below the satura-
tion field between the 0-coplanar and π-coplanar phases
and between the π-coplanar and umbrella phases. It was
predicted that the π-coplanar phase occupies the largest
range of J/Jz in the most quantum case of S = 1/2,
and asymptotically disappears as increasing S towards
the classical limit of S → ∞.
In order to access the π-coplanar phase in real TLAF
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materials, it is required that the material has a rela-
tively large easy-plane anisotropy, e.g., J/Jz ≈ 1.6-2.2
for S = 1/2, J/Jz ≈ 1.4-1.6 for S = 1, and J/Jz ≈ 1.3-
1.4 for S = 3/2. A possible option is a family of Co-
based compounds [11, 12, 14, 15, 19], which can pos-
sess an effective XXZ anisotropy due to the strong spin-
orbit coupling. For example, the latest estimation of the
anisotropy parameter J/Jz in Ba3CoSb2O9 (S = 1/2) is
ranging from J/Jz ≈ 1.18 to 1.3 [18, 29, 42]. Another way
is to place TLAF materials under static pressure [43, 44],

which could tune the system parameters including the
anisotropy.
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