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We address the nature of spin-orbit torques at the magnetic surfaces of topological insulators
using the linear response theory. We find that the so-called Dirac torques in such systems possess a
different symmetry compared to their Rashba counterpart, as well as a high anisotropy as a function
of the magnetization direction. In particular, the damping torque vanishes when the magnetization
lies in the plane of the topological insulator surface. We also show that the Onsager reciprocal of the
spin-orbit torque, the charge pumping, induces an enhanced anisotropic damping. Via a macrospin
model, we numerically demonstrate that these features have important consequences in terms of
magnetization switching.

PACS numbers: 75.60.Jk,85.75.Dd,72.25.-b

I. INTRODUCTION

Not only has spintronics yielded to the market real deal
solutions for low energy, high density non-volatile mem-
ory [1] but it has also provided a fundamental under-
standing of the different mechanisms by which efficient
electrical control of spin currents and magnetic config-
urations are possible. The spin transfer torque (STT)
mechanism [2], which is central to a whole generation of
memory devices, exploits the transfer of spin angular mo-
mentum between a spin current flow and the local magne-
tization of a ferromagnetic (FM) layer thereby enabling
magnetization switching or precession [3]. A critical hur-
dle for traditional STT setups is the need for a spin-
polarizer generating the spin-current: STT devices com-
prise a number of ultrathin (anti-)ferromagnetic, metallic
and insulating layers (see e.g. Ref. [4]), rendering the de-
sign of architectures rather complex.

Research to circumvent this issue and enhance the
efficiency of torque generation led to the proposal of
the spin-orbit torques (SOTs) [5], which arise from the
transfer of angular momentum between a flowing charge
current and the local magnetization mediated by spin-
orbit coupling. Systems with inversion symmetry break-
ing, such as magnetic multilayers involving heavy metals
(HM), are excellent platforms for the realization of mag-
netization reversal induced by in-plane charge currents
[7, 8]: the HM provides a large spin Hall effect (SHE)
while the FM/HM interface supports sizable Rashba
spin-orbit coupling [9], both at the origin of large SOTs
[10–12]. Various features have been identified experimen-
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tally, such as large angular anisotropies [13] and complex
materials dependence [14]. Innovative concepts such as
spin wave mediated [15] or intrinsic SOTs have also been
introduced lately [16, 17].

The recent observation of SOTs in magnetic bilayers
involving topological insulators (TI) offers an alternative
route towards efficient electrical control of the magneti-
zation [18, 19]. A three dimensional (3D) TI is topolog-
ically distinct from a conventional 3D band insulator: it
possesses an insulating bulk while hosting chiral metallic
channels at the edges, where electrons are described as
massless Dirac fermions with tight interlock between spin
and momentum [20]. The strong spin-momentum locking
results in large spin-charge conversion efficiency [21–24],
as well as large SOTs enabling the control of adjacent
magnetic layers [25, 26]. The main strategies adopted so
far consist in either doping the TI with magnetic impu-
rities [19, 27] or using the proximity effect by coating it
with (possibly insulating) ferromagnets [18, 28].

Various phenomena such as the topological magneto-
electric effect [29, 30], STT and current-driven magneti-
zation dynamics [31–36], the interplay between spin and
charge [37–41], as well as spin transport in magnetic TIs
[42–47] have been studied theoretically. Despite these
important theoretical efforts, major puzzles remain to be
understood such as the emergence of gigantic damping-
like torque [18, 19], the sizable angular dependence of the
SOT [19] and the significant discrepancies between the
spin-charge conversion rates reported in the SOT experi-
ments [18, 19, 25, 26] and the spin pumping experiments
[21–24]. It is still unclear whether the spin-charge conver-
sion efficiencies reported experimentally can be solely at-
tributed to topological surfaces states [48]. It is therefore
crucial to establish a solid understanding of the physics at
stake at the magnetic surface of TIs in order to properly
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FIG. 1. (Color online) (a) Bilayer consisting of a TI substrate
with a ferromagnetic overlayer. The black arrows represent
the local magnetic moment with overall magnetization direc-
tion m. The electric field E is applied along x and generates
two spin density components, S⊥ ∼ z × E (red arrow) and
S‖ ∼ mzE (green arrow). (b) Schematics of the two dimen-
sional band structure at the magnetic surface of the TI when
m = z. The red (blue) arrows represent the spin direction in
the conduction (valence) band and the perpendicular magne-
tization opens a gap 2∆.

interpret these experimental results.

In this work, we explore the nature and the symme-
try of nonequilibrium spin densities, their coupling to the
magnetic order at TI magnetic surfaces, and discuss their
differences with respect to other spin-orbit generated spin
densities via spin Hall effect [10] and Rashba effect [5, 11].
In Section II, we present the model and address the elec-
trically driven Dirac SOTs in magnetized topological in-
sulators using the Kubo formula within the linear re-
sponse theory. We show that the effective Dirac SOT is
of the form T = T‖(mz)mzm×E + T⊥(mz)m× (z×E),
where the in-plane and out-of-plane torques T‖,⊥(mz) ex-
hibit a sizable anisotropy (mz is the projection of the
magnetization m to the normal z to the TI surface and
E is the applied electric field). In Section III, we dis-
cuss the reciprocal effect, i.e. the charge current pumped
by magnetization dynamics and show that it produces
an enhanced anisotropic magnetic damping torque. Fi-
nally in Section IV, we demonstrate numerically using the
Landau-Lifshitz-Gilbert equation that the Dirac torque
can reverse the magnetization in layers with perpendicu-
lar magnetic anisotropy, but is formally less efficient than
the torque arising from spin Hall effect.

II. ELECTRICALLY DRIVEN DIRAC SOTS

Let us start by considering the top surface of a three-
dimensional TI in the presence of magnetic exchange, as
depicted in Fig. 1. Near the Dirac point, the simplest
low-energy effective Hamiltonian of the conducting sur-

face states reads

Ĥ = Ĥ0 + Ĥi, (1)

Ĥ0 = ~vσ̂ · (k× z) + ∆σ̂ ·m− εF, (2)

Ĥi =
∑
i

V0δ(r− ri), (3)

where Ĥ0 is the translationally invariant and time-
independent unperturbed Hamiltonian and Ĥi accounts
for random short-range disorder, treated as a perturba-
tion in this work. In Eq. (2), the first term is the usual
Rashba-type spin-orbit coupling with v the Fermi veloc-
ity (' 6 × 105 m.s−1 in Bi2Se3 and 4.3 × 105 m.s−1 in
Bi2Te3). The electron transport is confined in the (x, y)
plane and k = (kx, ky, 0) = k(cosφk, sinφk, 0). The sec-
ond term in Eq. (2) is the exchange coupling between
itinerant and local spins. Here, σ̂ is the vector of Pauli
matrices and ∆ is the exchange energy and the magneti-
zation m = (mx,my,mz) = (sin θ cosφ, sin θ sinφ, cos θ)
is uniform and can point along any (general) direction.
The last term is the Fermi energy, emphasizing that we
are interested in the metallic regime where the chemical
potential stands away from the charge neutrality point.

The out-of-plane magnetization component is respon-
sible for the gap opening in the TI spectrum via ∆mzσ̂z,
thereby providing the mass of Dirac fermions. Indeed,
the unperturbed Hamiltonian Ĥ0 can be re-written as

Ĥ0 = ~v(z× σ̂) · (k + eA) + ∆mzσ̂z − εF, (4)

where eA = ∆
~vz×m is identified as the effective vector

potential [33]. Hence, the mx,y components of the mag-
netization do not open a gap in the energy dispersion but
only shift the Dirac cone along the kx,y - direction. These
in-plane magnetization components are not expected to
impact any physical observables as they can be straight-
forwardly removed by redefining the position of the Dirac
node. Another particular feature of this model is that the
velocity operator v̂ = ∂~kĤ0 is indeed directly propor-
tional to the spin operator as v̂ = v(z × σ̂), drawing an
equivalence between the electric current j at the surface
of magnetic TIs and the in-plane components of the spin
density S [36, 42, 45, 49],

j = −evz× S. (5)

This spin-velocity identity in TIs is echoed in the ex-
pressions of the response functions such as the conduc-
tivity tensor characterizing the electrical transport and
the dynamical spin susceptibility. Therefore, the coeffi-
cients of the damping-like and field-like torques derived
below correspond to the diagonal and off-diagonal Hall
conductivities, respectively, due to the spin-momentum
lock. The anomalous Hall conductivity in particular has
been analyzed by others in Dirac systems [50–54] and
Weyl semimetals [56, 57].

The chiral basis eigenstates that diagonalize the un-
perturbed Dirac Hamiltonian Ĥ0 are explicitly written
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as ∣∣uk+〉 =

(
eiγk cos χk

2
sin χk

2

)
,
∣∣uk−〉 =

(
−eiγk sin χk

2
cos χk

2

)
, (6)

with

tan γk =
~vk cosφk −∆ sinφ sin θ

~vk sinφk + ∆ cosφ sin θ
, cosχk =

∆

|εsk|
cos θ,

and εsk = s
√

~2v2k2 + ∆2 + 2~vk∆ sin θ sin(φk − φ).
The expectation value of the spin density for state s is
therefore

〈S〉s =
∆

εsk
m− ~k

εsk
z× k. (7)

The expectation value of the spin density contains two
distinct contributions, a component aligned with the
magnetization ∼ m and an in-plane component propor-
tional to ∼ z × k. Only the latter produces a non-
equilibrium spin density and therefore, one should not
expect a current-driven Sz component.

Let us first express the electrically-driven nonequilib-
rium spin density δS in the framework of linear response
theory. The Streda-Smrcka version [58] of the Kubo for-
mula yields two contributions [50]

δSI =
~

2πV
Re

∫ +∞

−∞
dε∂εf(ε)tr

[
σ̂ĜAε (v̂·eE)(ĜRε −ĜAε )

]
,

(8)

δSII =
~

2πV
Re

∫ +∞

−∞
dεf(ε)tr

[
σ̂ĜRε (v̂ · eE)∂εĜ

R
ε

− σ̂∂εĜ
R
ε (v̂ · eE)ĜRε

]
. (9)

Ĝαε are the Green’s functions defined in momentum and
energy space, V is the volume of the unit cell and tr ac-
counts for the trace on the spin space as well as the sum-
mation over the k-space. The Fermi-surface contribution
δSI ∝ ∂εf(ε) is complemented by the Fermi-sea contri-
bution δSII. However, in the case of any two-dimensional
Dirac model such as the TI surface considered here, this
second contribution vanishes in the metallic regime, i.e.
εF > ∆ > 0 (see Appendix for details). The weak impu-
rities we consider here not only broaden the energy levels
by introducing a finite lifetime τ to the quasiparticle in
the chiral bands, but also change the eigenstates. The
quasiparticle lifetime broadening induced by the presence
of impurities is reflected in the retarded self-energy, which
is defined self-consistently as [45]

Σ̂R = niV
2
0

∫
d2k

(2π)2

[
ĜR0 + ∂kĜ

R(Σ̂R)
]
. (10)

For Dirac electrons, the calculation of the entire retarded
self-energy in an environment with δ-type impurities has
to be done with care as logarithmic divergences naturally

occur [59]. The first term of the self-energy is diagonal
(only with σ̂0 and σ̂z components), k-independent and
readily writes as

Σ̂R‖ = − i~
4τ

(1 + βmzσ̂z), (11)

where the impurity scattering rate is given by ~/τ =
niV

2
0 kF/~v and β = ∆/εF is the spin polarization. The

second term is k-dependent and off-diagonal (≡ Σxσ̂x +
Σyσ̂y), and the k-integration should be done here with
the impurity-range ultraviolet cutoff [60] in order to re-
spect gauge invariance via the Takahashi-Ward identity
[61]. The detailed procedure described in Refs. [45, 60]
leads to the renormalization of the velocity of the Dirac

electron as ṽ = (1 − ξ)v with ξ =
niV

2
0

4~2v2 � 1 within the
weak impurity limit and the full renormalized retarded
self-energy reading now as Σ̂R = Σ̂R‖ + ~ξṽ[(σ̂ × k) · z].

In the self-consistent Born approximation, the retarded
Green’s function reads

ĜRε =
ε+ [~ṽ(z× k) + ∆m] · σ̂ + i~

4τ (1− βmzσ̂z)

(ε− ε+
k + iΓ+)(ε− ε−k + iΓ−)

,

(12)
where Γ± = ~

4τ (1 ± β2m2
z). Inserting the perturbed

Green’s function, Eq. (12), into Eq. (8) is not suffi-
cient to fully capture the impact of the impurities. As
a matter of fact, the proper calculation of δS includes a
variety of crossing and non-crossing diagrams of the same
order which have to be properly accounted for [54, 55, 61].
We adopt here the common approximation by selecting
only the non-crossing ladder diagrams through the so-
called vertex correction to the spin operator [61, 62].
Notice that it has been shown recently that a more ac-
curate evaluation should include a subclass of crossing
diagrams in addition to the standard set of non-crossing
ones [54, 55]. However, since we assume a low impurity
concentration, the average distance between the impuri-
ties is larger than the Fermi wavelength of the electronic
carriers and we limit ourselves to the ladder non-crossing
approximation. The spin operator σ̂ in Eq. (8) is then

replaced by a renormalized operator Υ̂ that must satisfy

Υ̂i = σ̂i+niV
2
0

∫
d2k

(2π)2 Ĝ
RΥ̂iĜ

A [50]. By writing Υ̂i in the

tensor form (Υ̂i = Σjς
j
i σ̂j , j = 0, x, y, z), we find the two

components Υ̂x = Aσx + Bσy and Υ̂y = −Bσx + Aσy,

where A = 2
1+β2m2

z

1+3β2m2
z

and B = 2~
τεF

βmz(1+β2m2
z)

(1+3β2m2
z)2 . The

vertex-corrected version of the spin density δS in Eq. (8)
gives

δS =− τεF

2~ṽπ
1− β2m2

z

1 + 3β2m2
z

z× eE

− β

ṽπ

1 + β2m2
z

(1 + 3β2m2
z)

2
mzeE. (13)

First, we emphasize that the non-equilibrium electrically
driven spin density is in-plane and does not have any z-
component, contrary to the Rashba model [11, 17]. As
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a matter of fact, in the Dirac model the flowing elec-
trons only experience the out-of-plane component of the
magnetization [∼ ∆mzσ̂z in Eq. (4)] and therefore their
precession about the magnetization direction only mixes
Sx and Sy components, but does not yield any Sz com-
ponent. The Dirac spin-orbit torque, τ = (2∆/~)m×δS,
straightforwardly yields

τ =− βτε2
F

~2ṽπ

1− β2m2
z

1 + 3β2m2
z

m× (z× eE)

− 2β2εF

~ṽπ
1 + β2m2

z

(1 + 3β2m2
z)

2
mzm× eE. (14)

Notice that this form is more general than the one de-
rived in Ref. [45] which is restricted to m = z. The
effective Dirac SOT is found to be of the form τ =
τ‖mzm × eE + τ⊥m × (z × eE), a form similar to the
one obtained in the limit of large Rashba spin-orbit cou-
pling in a magnetic Rashba gas [17]. The first term is odd
upon magnetization reversal, proportional to the current
flow (∝ τ) and acts like a field-like torque. In contrast,
the second term, ∼ mzm × eE, is even in magnetiza-
tion reversal, independent of scattering and acts like a
damping torque. While the former arises from the tra-
ditional inverse spin galvanic effect [63], the latter is the
magnetoelectric coupling identified by Garate and Franz
[30]. This damping torque is quite different from the
damping-like torque stemming from spin Hall effect, usu-
ally observed in magnetic bilayers involving heavy met-
als [8, 13, 14]. Indeed, the magnetoelectric effect at the
surface of topological insulators vanishes when the mag-
netization lies in the plane of the surface [30], while the
SHE-induced damping torque (∼ m × [(z × E) × m])
remains finite. Notice also that the sign of the SOT re-
ported in Eq. (14) is opposite to the one derived for the
magnetic Rashba gas [17], which is attributable to the
spin chirality of the Dirac conduction band. Due to the
identity between the spin and the velocity operators, Eq.
(5), the field-like and damping-like Dirac torques coef-
ficients correspond to the longitdudinal and transverse
(Hall) conductivities, respectively [45, 50, 51]. Finally,
the SOT in Eq. (14) exhibits a complex dependence as a
function of the magnetization direction, associated with
the distortion of the band structure when the magneti-
zation lies perpendicular to the surface.

III. CHARGE PUMPING AND ANISOTROPIC
DAMPING

While a charge current can exert a torque on the lo-
cal magnetization, a precessing magnetization can pump
a charge current [64, 65]. These two effects are related
to each other via Onsager reciprocity relation and can
be treated on equal footing. The spin-to-charge conver-
sion process has been investigated experimentally in fer-
romagnet/topological insulator heterostructures [21–24]
(e.g. FM/Bi2Se3), and some of its aspects have been
treated theoretically [46, 47].

The magnetization dynamics under an external mag-
netic field and SOT is given by the Landau-Lifschifz-
Gilbert (LLG) equation

∂tm = (γ/Ms)m× ∂mF + κ̂ ·E. (15)

Here, ∂mF is the functional derivative of the magnetic
energy density F that governs the dynamics of the mag-
netization in the absence of charge flow while E is the
electric field that drives the SOT through the tensor κ̂.
γ and Ms are the absolute value of the gyromagnetic ra-
tio and the saturation magnetization, respectively. The
charge current density reads

Jc = δ̂ · ∂mF + ĝ ·E, (16)

where the electric field drives the charge current through
the conductivity tensor ĝ, while the magnetization dy-

namics pumps a charge current through the tensor δ̂. Let
us now consider a magnetic layer of width w, thickness d,
length L and section normal to the current flow S = wd.
The particle current is defined as ∂tni = SJc,i/e , and the
electric and magnetic potentials driving the charge and
magnetization dynamics respectively read f je = LeEj ,
f jm = Ω∂mj

F . Here Ω = Lwd is the volume of the mag-
net. Therefore, Eqs. (15) and (16) can be rewritten in

the more convenient form

(
∂tni
∂tmi

)
= L̂

(
f je
f jm

)
, where

the Onsager coefficients in L̂ are explicitly expressed as(
Lni,f

j
e
Lni,f

j
m

Lmi,f
j
e
Lmi,f

j
m

)
=

(
S
Le2 gij

1
Leδij

1
Leκij −

γ
MsΩ

(ei × ej) ·m

)
.

(17)
When applying Onsager reciprocity principle [65, 66]

Lni,f
j
m

(m) = −Lmj ,fi
e
(−m), (18)

we get δij(m) = −κji(−m). In the previous section, Eq.
(14), we showed that the torque density τ at the surface
of the TI reads

τ = τ‖mzm×E + τ⊥m× (z×E), (19)

where τ‖,⊥ are the damping-like and field-like compo-
nents, respectively. The total torque exerted on the fer-
romagnet is then T = κ̂ · E =

∫
dAτ (A = Lw is the

surface area), which yields

κij =
µB

Msd

{
τ‖mz(m× ej) · ei + τ⊥[m× (z× ej)] · ei

}
.

(20)

By direct application of the Onsager reciprocity relation,
we then deduce the charge pumping coefficients in TIs

δij =
µB

Msd

{
−τ‖mz(m× ei) · ej + τ⊥[m× (z× ei)] · ej

}
.

(21)

The charge current pumped by the magnetization dy-
namics simply reads

Jpump
c =

~
2d

(
τ‖mz∂tm + τ⊥z× ∂tm

)
. (22)
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This equation establishes the correspondence between
the current-driven Dirac SOT and the charge current
pumped by a time-varying magnetization. By the virtue
of Onsager reciprocity, the results and conclusions drawn
above for the SOT apply straightforwardly to the charge
pumping through Eq. (22), in particular the second com-
ponent ∼ z×∂tm dominates in the metallic regime since
τ⊥ > τ‖. Notice that Jpump

c is the current density flowing
in the magnetic volume and is therefore inversely propor-
tional to the thickness d.

The charge current pumped at the surface of the TI,
dJpump

c , also induces an interfacial non-equilibrium spin
density δSpump = (d/ev)z×Jpump

c [see Eq. (5)]. In turn,
this pumped interfacial spin density induces a torque,
Tpump = (2∆/~)

∫
dAm× δSpump, that reads

Tpump =
µB

Msd

∆

ev
τ⊥m× [z× (∂tm× z)]

+
µB

Msd

∆

ev
τ‖m

2
zz× (∂tm× z). (23)

The first term is odd upon time reversal operation (∂t →
−∂t, m→ −m), while the second term is even. Accord-
ingly, the first term contributes to the magnetic damping,
while the second term renormalized the gyromagnetic
ratio. In particular, the damping torque acts only on
the in-plane components of the magnetization (mx,my),
thereby creating an anisotropic damping. The total mag-
netic damping then reads

Tdamping = −
(
α+

µB

Msd

∆

ev
τ⊥

)
(∂tmxx + ∂tmyy)

+α∂tmzz. (24)

This anisotropic magnetic relaxation echoes the famous
D’yakonov-Perel spin relaxation emerging in two dimen-
sional electron gases [67]. In recent experimental reports
[18, 19, 26], the electrical torque efficiency in TIs ranges
from (µB/γMsd)τ⊥ ≈ 10−9 T·m/V [18] to≈ 10−7 T·m/V
[19, 26], depending on the temperature and thickness
of the ferromagnet. Hence, adopting standard materi-
als parameters (~v ∼ 4 eV·Å, ∆ ∼ 1 eV), we obtain a
damping enhancement of (µB/Msd)(∆/ev)τ⊥ ≈ 3×10−4

to 3×10−2, which is experimentally measurable. For the
sake of comparison, the enhanced damping observed in
Bi2Se3/CoFeB bilayers lies between ∼ 0.03 and ∼ 0.12,
with wide variability from sample to sample [23].

IV. MAGNETIZATION SWITCHING BY
DIRAC SOT

We conclude by analyzing the impact of the Dirac
damping-like torque on the magnetization reversal. In
particular, we are interested in comparing the ability
of the damping-like Dirac SOT (∼ mzm × E) with the
damping-like SHE-induced SOT [8] (∼m×[(z×E)×m])
to switch the magnetization direction of a perpendicu-
larly magnetized FM. We study the dynamics of the mag-
netization within the standard macrospin approximation

FIG. 2. (Color online) Calculated Switching Phase Diagram
with an applied in-plane field along x, for a current induced
(a) Dirac torque and (b) spin Hall torque (retrieve results
from Ref. [8])

and numerically solve the LLG equation supplemented
by SOT,

∂tm = −γm×Heff + αm× ∂tm + Tdirac/she, (25)

where Heff is the effective field incorporating the demag-
netizing field and/or an external applied magnetic field
while the last term, Tdirac/she, represents the (Dirac or
SHE-induced) damping-like SOT. In the configuration we
adopt, the current is driven along x and the magnetic
anisotropy is along z. The Dirac damping-like SOT is
therefore Tdirac = γHdirmzm×x, while the SHE-induced
SOT is Tshe = γHshem × (y × m), Hdir/she being the
strength of the torque. Solving the LLG equation, Eq.
(25), when varying both the in-plane applied magnetic
field Hxx and the SOT strength, one obtains the switch-
ing phase diagram of the macrospin as displayed in Fig.
2. Notice that Fig. 2(b) has been calculated previously
[8] and is only reproduced here for comparison.

Both diagrams display the same general shape: a
central diamond-like region (green) denotes the bistable
state where both +z and −z states are stable. This re-
gion is surrounded by four regions of monostable states
(blue or red), when only +z or −z state is stable. Be-
sides these general features, we observe two major differ-
ences. First the horizontal extension of the central dia-
mond is twice larger in the case of Dirac SOT than for
SHE-induced SOT, which means that the SHE-induced
SOT is twice as efficient as the Dirac SOT. This can be
understood easily as the SHE-induced SOT has the form
m × (y ×m) = mzm × x −mxm × z, while the Dirac
damping-like SOT is simply ∼ mzm×x. A second inter-
esting aspect is the shape of the transitions between the
monostable regions (red and blue). In the case of SHE-
induced SOT, when varying the in-plane field Hx, there
is a continuous variation between the two opposite stable
states (from blue to red, and from red to blue). In con-
trast, in the case of Dirac SOT, the transition between
the blue and red regions is much more abrupt, which is
related to the vanishing of the Dirac damping-like SOT
when the magnetization lies in the plane of the surface.
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V. CONCLUSION

To summarize, we have analytically derived the electri-
cally driven SOTs and charge pumping at the magnetic
surface of a TI. While the field-like Dirac torque has the
same geometrical form as the standard field-like Rashba
torque, the damping-like Dirac torque presents a remark-
able difference compared to the SHE-induced torque and
vanishes when the magnetization lies in the plane of the
surface. Furthermore, we uncover a strong angular de-
pendence of the torque due to (i) the distortion of the
band structure associated with the gap opening when
the magnetization lies out-of-plane, and (ii) the presence
of anisotropic spin relaxation.

We note that a strong but opposite angular depen-
dence of the torque has been experimentally reported
in magnetically-doped topological insulators by Fan et
al. [19]: in this experiment the magnitude of the torque
is larger when the magnetization lies perpendicular to
the plane of the surface. Another difference between Eq.
(14) and the experimental observations is that in Refs.
[19, 25], the SOT is dominated by the damping-like com-
ponent while in Eq. (14), the field-like torque dominates.

The charge pumping induced by a time-varying mag-
netization presents similar features as it is the Onsager
reciprocal of the SOTs. Interestingly, the pumped charge
current in turns enhances the magnetic damping of the
in-plane magnetization components. Although the mag-
nitude of the enhanced damping calculated in the present
work is consistent with the experimental observations
[23], one cannot exclude that other effects, such as SHE
of the TI bulk states [68], could also contribute to the
spin-charge conversion process in these systems.

In conclusion, while the standard theory of magnetic
TI surfaces derived in the present work can account for
some of the features observed experimentally, some ma-
jor discrepancies (in particular the angular dependence
and the magnitude of the damping torque) cannot be ex-
plained. These limitations suggest that the coupling be-
tween the magnetic material and the TI surface [28, 48],
as well as the contribution of bulk states [68] should be
taken into account to model the experiments.
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Appendix: Integration of δSII when εF > ∆

In this appendix, we further clarify the significance of
the Fermi sea contribution to the non-equilibrium spin
density, δSII, given by Eq. (9). Let us demonstrate that
this contribution vanishes in the metallic regime. Such
a demonstration has been carried out by Sinitsyn et al.
[51] for the anomalous Hall effect and we now explicitly
extend it to the non-equilibrium spin density. We can
notice straightaway that δSII is, by construction, even
in scattering time 1/τ [Eq. (9) only involves terms like
∼ GRε G

R
ε and ∼ GAε G

A
ε ]. Therefore, in the limit of long

relaxation time, δSII ≈ δSII
int + O(1/τ2), where δSII

int is
the intrinsic contribution in the absence of disorder. The
higher-order contributions lie beyond the scope of our
study since we only search for terms∼ τ and∼ 1+O(1/τ)
[see Eq. (13)]. Hence, our aim is to demonstrate that the
intrinsic contribution, δSII

int, vanishes.
The strategy is to write down Eq. (9) in the chiral basis{∣∣uk+〉 , ∣∣uk−〉} given in Eq. (6). In this basis, the retarded

(advanced) Green’s function read Ĝ
R(A)
ε =

∑
s
|uk

s〉〈uk
s |

ε−εsk±i0+ .

Let us now decompose the energy integral into positive
and negative energy regions

δSII−
int =

~
2π

Re

∫ 0

−∞
dεf(ε)tr{· · · }, (A.1)

δSII+
int =

~
2π

Re

∫ +∞

0

dεf(ε)tr{· · · }. (A.2)

In the different regions, the unperturbed Green’s function
reads

Ĝ
R(A)
ε<0 =

∣∣uk+〉 〈uk+∣∣
ε− ε+

k

+

∣∣uk−〉 〈uk−∣∣
ε− ε−k ± i0+

, (A.3)

Ĝ
R(A)
ε>0 =

∣∣uk+〉 〈uk+∣∣
ε− ε+

k ± i0+
+

∣∣uk−〉 〈uk−∣∣
ε− ε−k

. (A.4)

Then, Eqs. (A.1) and (A.2) can be rewritten



7

δSII−
int =

~
2π

Re

∫ 0

−∞
dεf(ε)

∫
d2k

(2π)2
F+−

k

[
1

ε− ε−k + i0
∂ε

1

ε− ε+
k

− ∂ε
1

ε− ε−k + i0

1

ε− ε+
k

]
, (A.5)

δSII+
int =

~
2π

Re

∫ +∞

0

dεf(ε)

∫
d2k

(2π)2
F+−

k

[
1

ε− ε−k
∂ε

1

ε− ε+
k + i0

− ∂ε
1

ε− ε−k

1

ε− ε+
k + i0

]
, (A.6)

where F+−
k = 〈u+

k |σ̂|u
−
k 〉〈u

−
k |(v̂ · eE)|u+

k 〉. Let us now
transform Eqs. (A.5) and (A.6) so that the δ-functions
appear explicitly. The second part of Eq. (A.5), ∼
∂ε

1
ε−ε−k +i0

can be manipulated by performing integra-

tion by part. This way, the energy derivative is dis-
tributed over 1/(ε− ε+

k ) and f(ε). Since f(ε) is constant
in the range ] − ∞, 0], the contribution ∼ ∂εf(ε) van-
ishes. We perform the same integration by part on the
term ∼ ∂ε 1

ε−ε+k +i0
in Eq. (A.6), but now ∂εf(ε) does not

vanish at the Fermi energy. Overall, we obtain

δSII−
int = −~ Im

∫
d2k

(2π)2

F+−
k

(ε+
k − ε

−
k )2

(A.7)

δS
II+(a)
int = −~ Im

∫
d2k

(2π)2
f(ε+

k )
F+−

k

(ε+
k − ε

−
k )2

(A.8)

δS
II+(b)
int = −~

2
Im

∫
d2k

(2π)2
F+−

k

δ(εF − ε+
k )

εF − ε−k
. (A.9)

In Eq. (A.7), the integration over k lies in the range
[0,+∞[, while in Eq. (A.8) it runs over [0, kF], where kF

is the solution of ε+
k = εF and depends on the angle φk.

Therefore, one can rewrite these expression explicitly

δSII−
int =

~v
2

∫ 2π

0

∫ +∞

0

dφkkdk

(2π)2

1

ε3
k

(∆(cos θeE− (m · eE)z) + ~v[(z× k) · eE]z) (A.10)

δS
II+(a)
int = −δSII−

int +
~v
2

∫ 2π

0

∫ +∞

kF

dφkkdk

(2π)2

1

ε3
k

(∆(cos θeE− (m · eE)z) + ~v[(z× k) · eE]z) (A.11)

δS
II+(b)
int =

~v
2εF

∫ 2π

0

∫ +∞

0

dφkkdk

(2π)2

(
∆(cos θeE− (m · eE)z) + ~v[(z× k) · eE]z)δ(εF − ε+

k

)
. (A.12)

Hence, it is sufficient to calculate δS
II+(a)
int + δSII−

int and δS
II+(b)
int . After some algebra, we get

δS
II+(a)
int + δSII−

int =
∆

4π

1

~vεF
cos θeE, (A.13)

δS
II+(b)
int = − ∆

4π

1

~vεF
cos θeE, (A.14)

and then, δSII
int = δS

II+(a)
int + δSII−

int + δS
II+(b)
int = 0.

Consequently, the Fermi sea contribution to the non-
equilibrium electrically induced spin density vanishes in
the metallic limit, within the weak scattering regime.
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S. Blügel, and Y. Mokrousov, Phys. Rev. B 90, 174423
(2014).

[13] K. Garello et al. , Nature Nanotech. 8, 587-593 (2013).
[14] Kim et al. , Nat. Mater. 12, 240 (2012); Phys. Rev. B

89, 174424 (2014); Avci et al. , Phys. Rev. B 89, 214419
(2014).

[15] A. Manchon, P. B. Ndiaye, J. H. Moon, H. W. Lee, and
K. J. Lee, Phys. Rev. B 90, 224403 (2014).

[16] Kurebayashi et al. , Nat. Nanotechnology 9, 2011 (2014).
[17] Li et al. , Phys. Rev. B 91, 134402 (2015); Lee et al. ,

Phys. Rev. B 91, 144401 (2015).
[18] A. R. Mellnik et al. , Nature 511, 449-451 (2014).
[19] Y. Fan et al. , Nature Mater. 13, 699-704 (2014).
[20] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045

(2010).
[21] Y. Shiomi et al. . Phys. Rev. Lett. 113, 196601 (2014).
[22] P. Deorani, J. Son, K. Banerjee, N. Koirala, M. Brahlek,

S. Oh, and H. Yang, Phys. Rev. B 90, 094403 (2014).
[23] M. Jamali al., Nano Lett. 15, 7126 (2015).
[24] J.C. Rojas-Sánchez et al, Phys. Rev. Lett. 116, 096602

(2016).
[25] Y. Fan, X. Kou, P. Upadhyaya, Q. Shao, L. Pan, M.

Lang, X. Che, J. Tang, M. Montazeri, K. Murata, L.-
T. Chang, M. Akyol, G. Yu, T. Nie, K. Wong, J. Liu, Y.
Wang, Y. Tserkovnyak, and K. Wang, Nat. Nanotechnol.
11, 352 (2016).

[26] Y. Wang et al. ., Phys. Rev. Lett. 114, 257202 (2015).
[27] Y.L. Chen et al. , Science 329, 659 (2010); J. Checkel-

sky et al. , Nat. Phys. 8, 729 (2012); J. Henk et al. ,
Phys. Rev. Lett. 108, 206801 (2012); J. Henk et al. ,
109, 076801 (2012).

[28] M. R. Scholz et al. , Phys. Rev. Lett. 108, 256810 (2012).
[29] X.-L. Qi, T. L. Hughes, and S.-C. Zhang, Phys. Rev. B

78, 195424 (2008).
[30] I. Garate and M. Franz, Phys. Rev. Lett. 104, 146802

(2010).
[31] T. Yokoyama, J. Zang, and N. Nagaosa, Phys. Rev. B

81, 241410(R) (2010).
[32] T. Yokoyama, Phys. Rev. B 84, 113407 (2011).
[33] K. Nomura and N. Nagaosa, Phys. Rev. B 82, 161401

(2010).
[34] Y. Tserkovnyak and D. Loss, Phys. Rev. Lett. 108,

187201 (2012).
[35] J. Linder, Phys. Rev. B 90, 041412(R) (2014).
[36] Y. Tserkovnyak, D. A. Pesin, and D. Loss, Phys. Rev. B

91, 041121(R) (2015).
[37] A. A. Burkov and D. G. Hawthorn, Phys. Rev. Lett. 105,

066802 (2010).

[38] H. T. Ueda, A. Takeuchi, G. Tatara, and T. Yokoyama,
Phys. Rev. B 85, 115110 (2012).

[39] X. Liu and J. Sinova, Phys. Rev. Lett. 111, 166801
(2013).

[40] P.-H. Chang, T. Markussen, S. Smidstrup, Kurt Stokbro,
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